 
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ||
| 51 |  | ||||||||||||||||
| 
 
 |  | ||||||||||||||||
| For the second, two variations are considered. | In the first, a 1D model is constructed in the |  | |||||||||||||||
| forward control dimension and inverted to obtain the required  |  | ||||||||||||||||
| A second 1D model is then |  | ||||||||||||||||
| constructed in the lateral control dimension making use of the known value of  |  | ||||||||||||||||
| We refer to |  | ||||||||||||||||
| this as forward-then-lateral (F-L) sampling. | Lateral-then-forward (L-F) sampling is similar but |  | |||||||||||||||
| performs 1D control in the lateral dimension first, then uses this result to construct a 1D model in the forward dimension. We might expect that one or both of these approaches perform better than superposition sampling since they both incorporate additional knowledge of the perturbations to be applied. Somewhat surprisingly, this turns out not to be the case as we shall see in Chapter 4. All three approaches give comparable results, with superposition slightly outperforming the other two. The three sampling strategies investigated are illustrated in Figure 3.23. |  | ||||||||||||||||
| 
		 |  | ||||||||||||||||
| (a) 
 | 
 
 | (c) |  | ||||||||||||||
| sample points | 
		 | 
		 | final points |  | |||||||||||||
| Figure 3.23 - 2D sampling strategies |  | ||||||||||||||||
| The final parameters to consider in constructing a good linear model of the discrete system are the perturbation scaling factors used to sample  |  | ||||||||||||||||