 
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
  
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | ||
| 39 |  | ||||||||||||||||||||
| 
 |  | ||||||||||||||||||||
| useful. | RV interdependencies can be complex (e.g. non-smooth), making it more |  | |||||||||||||||||||
| difficult to find parametric perturbations which cause only smooth variations over  wide range of RV values. For our bipedal control, we assume near-independent RVs. |  | ||||||||||||||||||||
| 
		 | 
		 | 
		 |  | ||||||||||||||||||
| (a) | 
 
 | (c) |  | ||||||||||||||||||
| 
		 |  | ||||||||||||||||||||
| Figure 3.12 - Balance RV vectors |  | ||||||||||||||||||||
| In this thesis, we experiment with three choices of RVs, based on the vectors shown in Figure |  | ||||||||||||||||||||
| 3.12. | The first, the up-vector, is based on the notion of torso "uprightness". | The up-vector is |  | ||||||||||||||||||
| fixed to and runs along the length of the torso in the human model and the head in the robo-bird model. The swing-centre of mass (swing-COM) vector |  | ||||||||||||||||||||
| biped with respect to the current swing foot. | The  |  | |||||||||||||||||||
| indicates the position of the COM with respect to the stance foot. | The sampling time for all three |  | |||||||||||||||||||
| types of RV are at the end of states S3 and S6. For the purpose of computing RVs, the swing and |  | ||||||||||||||||||||
| stance legs do not exchange until after the last base PCG state of the step. | The leg which is the |  | |||||||||||||||||||
| swing leg for most of the current step is used to compute the swing-COM RV. RV is treated in a similar fashion. | The stance-COM |  | |||||||||||||||||||