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Figure 1: Input strokes are drawn in red, with drawing speed indicated by the spacing of green input points (a). The 
input stroke in (a) is neatened using Laplacian smoothing with fixed-distance sampling (b), and using elasticurves (c). 
Note the sharp corners and smooth arcs on the waves and teeth in (c), compared to the featureless smoothing in (b).  

ABSTRACT 

Elasticurves present a novel approach to neaten sketches in 

real-time, resulting in curves that combine smoothness with 

user-intended detail. Inspired by natural variations in stroke 

speed when drawing quickly or with precision, we exploit 

stroke dynamics to distinguish intentional fine detail from 

stroke noise. Combining inertia and stroke dynamics, 

elasticurves can be imagined as the trace of a pen attached 

to the user by an oscillation-free elastic band. Sketched 

quickly, the elasticurve spatially lags behind the stroke, 

smoothing over stroke detail, but catches up and matches 

the input stroke at slower speeds. Connectors, such as lines 

or circular-arcs link the evolving elasticurve to the next 

input point, growing the curve by a responsiveness fraction 

along the connector. Responsiveness is calibrated, to reflect 

drawing skill or device noise. Elasticurves are theoretically 

sound and robust to variations in stroke sampling. 

Practically, they neaten digital strokes in real-time while 

retaining the modeless and visceral feel of pen on paper. 
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INTRODUCTION 

Sketching has been used throughout history as a primitive 

mode of expression and visual communication. Sketching is 

also an increasingly viable medium of interaction with 

devices ranging in size from small tablets to large displays. 

Sketch strokes are used in a variety of computing scenarios: 

as curves representing visual content from simple 2D 

cartoons to complex 3D product designs [4, 15, 16, 23], as 

motion paths for animation [13, 30] and as general gestural 

input to invoke commands [3, 17, 22, 24, 25, 34].  

An important area of ongoing research deals with 

attempting to model and eliminate the difference or error 

between the stroke a user mentally imagines and the one 

that is drawn using a digital device. In this paper, we refer 

to this problem as stroke neatening.  

Stroke neatening can be addressed in two ways: first, by 

attempting to model the characteristics of the differences 

between sketched strokes and the resulting curves; second, 

by using priors that describe desirable properties of curves 

resulting from user strokes. Perhaps the most common prior 

is smoothness (Figure 1b) since high-frequency jitter is 

usually the result of device noise or an unsteady hand and 

further, smooth or fair [8, 19] curves are generally 

desirable. Indeed for many applications such as 3D design 

curves, paths for navigation or spatial curves for 

visualization, smoothing is sufficient for stroke neatening.  

There are, however, applications such as 2D cartoon 

drawing or motion paths for performance-based animation 

and interactive tracking, where the desired result of a sketch 
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is a mix of smoothness and high-frequency detail in 

different parts of the neatened output curve (Figure 1c).  

In general, the extent to which a user intends the resulting 

curve to precisely track any portion of a sketched stroke is a 

directive that must be explicitly defined by the user. While 

the intended precision along parts of a stroke could be 

specified after its completion using a variety of interfaces 

[19, 26], not only would such an approach impede the 

fluidity of a sketching workflow, it comes too late for real-

time applications like drawing or performance animation, 

where the stroke must be neatened as the user sketches. It 

would thus be ideal if a user could specify intended 

precision along the stroke while sketching, using an 

affordance of the drawing tool such as finger pressure or 

pen tilt [21, 31]. Unfortunately, there is no evidence 

indicating that there exists a natural relationship between 

these device affordances and intended precision. We have 

observed, however, that there is a relationship between 

drawing speed and intended precision. In accordance with 

the speed-accuracy trade-off common to human activity 

[28], users instinctively slow down when drawing parts of a 

curve where they desire precision and speed up over regions 

that are smoother or less precise. We note also that drawing 

speed is a user controlled variable independent of the input 

device used, be it a finger, mouse, or stylus. Thus, using 

speed as a mechanism to control precision simply builds on 

users’ inherent sketching behaviour.  

A number of approaches that neaten a stroke after its 

completion [4, 16, 19, 23] typically fit a curve primitive 

such as a cubic spline [4] or optimize a criterion such as 

variation of curvature [19], over the entire stroke. Most of 

these approaches can be further improved by additionally 

exploiting the precision intent conveyed via stroke speed.  

These approaches, however, remain ill-suited to real-time 

applications, where a neatened curve must be incrementally 

committed while the user draws. This was especially noted 

by in-between and clean-up artists sketching over scanned 

drawings, where the lack of commitment of any part of the 

neatened curve until a stroke was completed was visually 

frustrating and often required sketching the same stroke 

multiple times without guarantee of success. A similar 

frustration was voiced by animators wishing to lasso-select 

objects in regions contained within neatened strokes. 

To perform real-time neatening, however, the evolving end 

of a committed curve must differ at times from the current 

end of the stroke, which we refer to as stroke inertia or 

spatial lag (see waves in Figure 1c and video). We draw 

inspiration from the traditional tape drawing technique [5] 

used by designers where curves are created by rolling out 

tape with one hand and fastening it with the other. 

Metaphorically, the hand rolling out the tape defines the 

stroke and the hand fastening the tape defines the 

committed curve. The tape in-between the two hands is the 

spatial lag. In a one-handed sketch-based version of tape 

drawing [11], the spatial lag has a fixed length and the 

committed curve can be thought of as being drawn by a pen 

attached to the user’s hand by an invisible rod. The smaller 

the lag (the shorter the rod), the more closely the committed 

curve tracks the sketched stroke, and larger lags result in 

smoother curves with less detail. This is captured in spirit 

by Dynadraw [12], simulating a pen with mass and friction 

being physically pulled across the paper. Given that 

controlling the amount of lag enables the creation of curves 

with different smoothness and detailed variation 

characteristics, we propose a novel approach whereby the 

lag is directly modulated in real-time by the stroke speed. 

The user can select from different curve primitives such as 

lines or circular-arcs to model the lag segment, allowing 

them to generate near perfect lines or arcs despite drawing 

quickly. At the same time, slowly drawn parts of a curve are 

tracked precisely without any explicit mode changes.  

There exists a continuum of intended curves ranging from 

completely free-hand to precise geometric primitives like 

lines and circles [10]. A good real-time stroke neatening 

algorithm would allow users to move freely within this 

continuum over the course of a single stroke. We believe 

elasticurves are the first real-time stroke neatening approach 

to possess this property. 

RELATED WORK 

There has been much research in the area of stroke 

processing. Broadly one branch looks at the symbolic 

processing of strokes for handwriting and other gestural 

recognition [3, 17, 22, 24, 25, 34]. Here, the stroke is 

classified as an instance of a known set of symbols. This is 

typically done by looking for structure within the stroke in 

terms of geometric features such as corners or inflections 

and then by matching these features to corresponding sets 

of examples for each known symbol. The actual geometry 

of such strokes serves only to classify and distinguish them.  

The second and more relevant branch addresses the 

neatening of strokes. An essential aspect of stroke neatening 

is determining which parts of the stroke to neaten. The 

majority of approaches [4, 19] simply neaten the entire 

stroke based on the assumption that smooth curves are 

desirable and that sharp corners or high-frequency detail 

will explicitly be created by concatenating multiple smooth 

strokes [4]. While this is perfectly acceptable for many 

applications, sketches such as that in Figure 1c would be 

cumbersome to create and require a large number of tiny 

strokes. Some approaches relax this assumption by breaking 

the stroke into a number of smooth segments connected at 

sharp corners [26].  

In other approaches users explicitly describe the intended 

shape of the curve using templates [10] or French curves 

[27] allowing the creation of very precise curve shapes. The 

two disadvantages of such approaches are that it is still 

difficult to transition through different neatening directives 

within the same stroke, and the external template needs to 

be invoked explicitly by the user, breaking the desirable 

flow of pure modeless sketching [14].  



There are many different ways of achieving a desired stroke 

neatening directive. For simple stroke smoothing a variety 

of techniques exist including Laplacian smoothing [32], 

cubic spline fitting [4], clothoid fitting [19] and one-handed 

tape drawing [11]. Piecewise clothoid fitting [19] has been 

shown to create curves with the most appealing curvature 

properties but is hard to combine with point, tangent or 

other precise constraints. Some of these techniques such as 

Laplacian smoothing and one-handed tape drawing can be 

used to smooth and commit a stroke as it is drawn, whereas 

the remainder of the approaches are global in nature, based 

on optimization or fitting, and require a complete stroke. 

Ours is the first approach to propose the principled and 

explicit use of stroke dynamics as a neatening directive and 

perform this neatening in real-time as the stroke is sketched. 

We draw inspiration for this affordance from the kinematics 

of drawing [18, 28] and research that relates drawing speed 

to curve features such as cusps and corners [25]. 

There are a number of other approaches to curve creation 

and control that are relevant to this work. Fiume [9] 

introduced arc-length as a control parameter in conjunction 

with typical Bezier constraints. Using physical forces and 

dynamics as a control methodology has also been used 

extensively [6, 12, 29]. Dynadraw [12], aimed at creating 

calligraphic strokes, indirectly correlates stroke speed and 

lag by physically simulating a pen pulled across paper. 

Cords [7] are 3D curves which wrap around scene objects. 

Cords are procedurally generated from user-defined guide 

curves and a stiffness parameter that models their pliability. 

Our elasticurve framework has a similar mathematical 

formulation. 

Variants of the above research exist in commercial software 

such as Sketchbook-Pro [2], Illustrator [1] and Windows 

Journal [20]. We discuss these in relation to Elasticurves in 

the comparisons section.  

PROBLEM STATEMENT 

Given an input stroke segment Q, compute a neatened curve 

P that continuously changes from precisely Q to a smooth 

approximation of Q with increasing drawing speed (Figure 

3). The curve construction must also be incremental: i.e. if 

Q is a sub-stroke of a longer stroke Q’, its neatened curve P 

is the corresponding sub-stroke of the longer neatened 

curve P’ (Figure 2).  

 

Figure 2: Incremental Elasticurve construction: (a) A 
partial segment Q of an input stroke. (b) The 
elasticurve segment P corresponding to Q. (c) The 
continued stroke Q’ and elasticurve P’ (in blue). 
Once commited, P is invariant to subsequent input. 

ELASTICURVES ALGORITHM 

The elasticurve framework is a “pure” sketching interface, 

in that all information related to stroke input and neatening 

is provided by the user in the stroke itself. We describe a 

minimal number of parameters that allow additional control 

over the generated curves but in practice users can create 

their desired curves predictably with the default settings. 

 

Figure 3: The input stroke (left) is parameterized by 
time: the spacing of the green input points indicates 
stroke speed. The elasticurve (right) varies with 
increasing speed from a precise replica to a smooth 
approximation of the input. 

Input Stroke 

Input strokes from current sketching devices are typically a 

sequence of 2D points that are sampled at a small and 

regular time interval dt ms (see Appendix A). In practice 

this simply parameterizes the input stroke such that the 

distance between adjacent point samples is a measure of 

stroke speed (Figure 3). We denote this input stroke as Q, 

and the i
th

 point on it as qi. Elasticurves grow as a fraction 

(called responsiveness) of the spatial lag between the 

current elasticurve and stroke. Therefore, in a discrete 

setting, they only ever get infinitesimally close to the input 

stroke if subsequent points on the stroke are at the same 

position. In practice we can replace this converging 

progression of elasticurve points with an analytic curve 

segment as long as we can detect such a paused stroke state. 

Note that while the elasticurve will inertially lag and catch-

up to the stroke as the user draws, the paused state can be 

thought of as an explicit catch-up of the elasticurve where 

the stroke inertia or lag is reset to zero. In practice, the 

curve often enters the paused state at sharp corners and 

upon stroke completion. We detect a pause in a stroke at a 

point where there is no movement for dtpause milliseconds.  

Curve Generation 

We define an inertial responsiveness parameter r, which 

controls the mapping from stroke speed to the neatness of 

the curve. Users typically calibrate r to reflect their drawing 

skill or the noise and ergonomic inaccuracy of the input 

device (0<r<=1, r=0.5 by default). The elasticurve 

precisely matches the input stroke for r=1. Lowering r 

increases stroke inertia (for r=0 the elasticurve is a 

stationary point) resulting in fairer curves (Figure 6). 

We will denote the generated elasticurve as P and its i
th

 

point as pi. While we can use the metaphor of an 



oscillation-free zero-rest-length elastic band to describe the 

inertia between pi and qi, this is more to describe its visual 

behaviour than to accurately model its dynamics. Indeed in 

our case, the points are generated by a generalization of the 

formulation in [7], subject to p0=q0. 

                          (1) 

We will refer to the function f as being the connector 

between the evolving elasticurve and the input stroke. The 

connector locally controls the shape of the elasticurve and 

thus models prior knowledge of desirable curve shapes 

(such as lines or circles) that would connect pi and qi+1. The 

elasticurve segment between pi and pi+1 is simply the 

parametric fraction r of this connector (Figure 5). The 

overall evolution of the elasticurve for linear and circular-

arc connectors is shown in Figure 4. We explored various 

connector shapes and present the mathematical details of 

lines and circular-arcs in Appendix A.  

 

Figure 4: Elasticurve construction for 6 points of an 
input stroke using linear (top) and circular (bottom) 
connectors: the elasticurve evolves over six steps. 
At each step the curve grows by a fraction (r=0.5) 
along the connector shown by a dashed shape. 

 

Figure 5: Connector shapes: lines, parabolas, arcs 
(left to right) with increasing r (top to bottom). 

Linear Connectors 

Linear elasticurves favour a linear interpretation of the 

input stroke. Intuitively, if the user were to provide input 

points which were all collinear, the generated curve should 

be a straight line. Deviations from this linearity in the input 

stroke result in similar deviations in the elasticurve, albeit 

dampened by a factor of r. The formulation used is: 

                          

Leading to the following recursive formula: 

                     

This allows deviations from linearity in Q to be attenuated 

in P. As a consequence, P will always be more linear than 

Q especially when drawn rapidly (Figure 6), making the 

linear formulation ideal for sketching straight lines quickly. 

Further, while linear elasticurves seem to be only discrete 

polylines, they converge with finer sampling of an input 

stroke to a limit curve with the same degree of continuity as 

the input stroke (Appendix A).  

Circular-arc Connectors 

Circles are also a common shape prior that can be captured 

as a connector. Circular-arc connectors are defined by the 

circle passing through qi+1, pi with the tangent at pi being 

the same as the tangent of P at pi. Using this circle, we take 

a fraction r of the smaller-arc between pi and qi+1 to find 

pi+1. (Figure 5). The first circular-arc connector is defined 

by the smaller circular-arc connecting q0,q1,q2. Like linear 

elasticurves, circular-arc elasticurves also converge to a 

limit curve but are G
1
 continuous (a sequence of tangent 

continuous circular-arcs) even in the discrete setting. 

Circular-arcs can also represent lines (arcs of infinite 

radius) and are thus our default choice of connector. 

  

Figure 6: Responsiveness: At high r, elasticurves 

track the input regardless of connector. The impact 
of the connector shape is evident at lower r or when 

drawing quickly (left). A comparison between linear 
and circular-arcs for the same input at low r shows 

that circular-arcs handle curved regions better and 
can also capture line segments (right).  

Alternate Connectors  

While we present linear and circular connectors in detail, 

the elasticurve framework can accommodate any parametric 

connector function f. In particular, cubic Beziers can be 

used if curvature continuous elasticurves are desired. 

Curves with desired arc-lengths [9] can also be created 

using a tangent continuous parabolic connector passing 

through pi with an arc length given by            . 



 

Figure 7: The elasticurve (connector is shown dashed) naturally catches-up to the input in a slowly drawn section. 

Elasticurve Properties 

Explicit use of drawing speed 

An important property of elasticurves is their embodiment 

of stroke dynamics. Regardless of the connector or the 

responsiveness, elasticurves naturally match the input 

stroke when the user draws slowly and approximates 

quickly drawn portions of the stroke, in keeping with the 

speed-accuracy trade-off seen in human input actions [28]. 

Figure 7 shows a circular-arc elasticurve approaching a 

slowly drawn section of the input stroke, indicated by the 

many input points (sampled at equal time intervals) close to 

each other. Since the elasticurve grows by a fraction of the 

connector it gets progressively closer to the input where 

points are repeated or are close to each other. Within a few 

such iterations, the elasticurve becomes visually 

indistinguishable from that of the input stroke until an 

increase in stroke speed creates visually discernable spatial 

lag. If multiple points of an elasticurve are built using the 

same input point repeated over time, the elasticurve 

converges to the point as an infinite geometric progression 

of the responsiveness fraction. We identify this condition as 

a pause in sketching to complete the connector. These 

pauses occur naturally when drawing sharp corners, cusps 

and upon stroke completion. 

 

Figure 8: Curve completion: The elasticurve typically 
lags the end-point of a stroke (top). A paused state 
causes the curve to grow to the end-point (bottom). 

Curve Completion 

Once the input stroke is in a paused state, which is to say 

the cursor has not changed position for dtpause ms or the 

stroke is completed, we complete the curve along its last 

connector. Conceptually, this is equivalent to creating an 

infinite number of input points at the given end-point. We 

implement this by repeating end-points (till the elasticurve 

is within a distance threshold to the curve) and then snap to 

the end-point, to keep the point distribution of the generated 

elasticurves consistent (Figure 8). Using the paused state in 

this manner also allows for the easy creation of cusps and 

tangent discontinuities, where natural pauses in drawing 

allow the elasticurve to catch up to the input at corners. 

Incremental generation 

The incremental construction of elasticurves makes it 

suitable to real-time curve neatening. In contrast most curve 

neatening algorithms [4, 19, 26] use a “global” fit to the 

current stroke, implying that the overall curve is never 

finalized until the input stroke is completed. 

While the “global” fit algorithms can produce curves with 

nicer mathematical properties such as linear variation in 

curvature [19], it comes at the cost of losing the immediacy 

of curve creation, a critical affordance in certain scenarios.  

Elasticurve Parameters 

Elasticurves have three meaningful parameters: sampling 

interval (dt), time interval for a pause state to be detected 

(dtpause), and responsiveness (r). dt is a function of  the 

spatio-temporal resolution of the input device and dtpause a 

matter of user agility and drawing skill. While we set these 

manually in our implementation, both are easy to calibrate: 

dt can be set such that the difference between the user input 

and the poly-line stroke is below a desired threshold. dtpause 

can be inferred by asking users to draw a few sharp corners. 

Responsiveness is the one free parameter that relates to the 

inertial feel of the curve. While we could attempt to learn a 

user-specific default setting for r, we find that users grasp 

its behaviour quickly and adjust it often while sketching.  

SPATIAL LAG RELATIONSHIPS 

As mentioned above, elasticurves possess an inertial 

relationship to their input stroke. This spatial lag is a direct 

consequence of real-time neatening, where the curve can 

drift from the stroke to smoothen the input but must adhere 

to it when precision is intended. The spatial lag model used 



impacts the nature of curves produced. We classify a few 

existing models: stick lag connects the evolving curve and 

current input by a conceptual stick, akin to one-handed tape 

drawing [11]. String lag models this link as a piece of 

string. Points are added to the input stroke only when the 

string is taut, creating curves similar to one-handed tape 

drawing but allowing sharp corners, by letting the string go 

slack to abruptly change directions. Spring lag, akin to 

Dynadraw [12], models the link with a zero-rest-length 

spring, creating physically plausible trajectories that are 

often pleasing but can have undesirable oscillations. 

Elasticurves model what can be termed as speed lag, where 

the spatial inertia is directly related to stroke speed. Note 

that connectors and lag models are complementary and can 

be arbitrarily paired.   

HUMAN ABILITY TO CONTROL SKETCHING SPEED 

An obvious question that follows from wanting to use 

dynamics to indicate stroke precision while drawing is: how 

naturally and precisely can a user control sketching speed?  

Attempting to determine if users had any control over their 

drawing speed, we asked 5 participants (aged 24-30, 4 

right-handed, 1 left-handed), to continuously draw the same 

shape repeatedly, but with decreasing speed. For example, a 

participant would begin by drawing a line as fast as they 

could, and subsequently draw that same line with 

monotonically decreasing speed. This experiment was 

performed with lines, Bezier arcs and circles. 

The results (Figure 9) illustrate that users do in fact possess 

reasonable control over their drawing speed, in that they 

can gradually slow down or speed up. The results, like other 

sensory controls, tend to follow Weber’s law [33], in that a 

user can more aptly distinguish between slower speeds than 

fast ones. While a formal investigation of human drawing 

speed is worthwhile, this experiment suggests that users do 

possess adequate stroke speed control to utilize elasticurves 

effectively. 

Figure 9: Speed control experiment: plotting average speed 
(in pix/ms) versus stroke index (decreasing speed). 

CURVATURE AND ELASTICURVES 

A well-documented perceptual factor affecting sketching 

speed is curvature. As was noted in [18], stroke speed 

follows a power law relationship with respect to curvature, 

namely: 

              
   

Where      is tangential end-point speed,      is the 

instantaneous curvature of the path, and   is a constant. 

This formula entails that sketching speed is lower when 

attempting to draw areas of high curvature. However, this 

behaviour arises instinctively; there is no active decision to 

do so. In other words one might expect that a user intends to 

draw a curve with the same degree of smoothing but the 

unconscious drop in speed in regions of high curvature 

cause them to be drawn more precisely than regions of low 

curvature. Elasticurves can be modified to compensate for 

this by computing two speeds: vmeasured, the observed speed 

of the input stroke, and vexpected, the speed given by the 

power law relationship. Discrete curvature is computed at 

points by looking one input ahead and computing the angle 

between the neighbours. The difference         
                      thus captures any conscious 

variation in stroke speed by the user. We then map vactual to 

responsiveness. 

While the compensation method described above accounts 

for the perceptual effect curvature has on sketching speed, 

we found it to have little effect in practice, since the instant 

visual feedback from the elasticurve lets users compensate 

for this effect in their drawing directly. 

USER FEEDBACK 

We evaluated our system by distributing it to 6 users and 

asking them to try it out and send us their creations. We did 

not specify which input method they should use; two used a 

tablet computer, one a trackpad and three a mouse. Each 

user was aged between 20 and 40, had a familiarity with 

computers and drawing ability varying from professional to 

completely inexperienced. Notably, the experienced users 

used tablets, while the inexperienced ones used a mouse or 

trackpad as their input device. Their period of usage ranged 

from one to eight hours. Figures 1 and 10 illustrate sketches 

created by a user of above-average drawing skill on a pen 

and tablet interface. Of particular note in these images is 

how elasticurves satisfactorily handle both precise strokes 

(such as the arm and book of the character, as well as the 

fish and shark) and rapid strokes where precision is of no 

concern (such as the waves, ground, and tree foliage).  

Figure 11, on the other hand, illustrates how elasticurves 

can be used to improve sketching ability. The image was 

created by a user with no sketching experience using a 

mouse and a background image to trace over.  

The ability of elasticurves to allow users to create desirable 

primitive shapes (Figures 11-13), with a mouse or trackpad 

and little drawing experience, is particularly noteworthy. 



 

Figure 10: Elasticurve sketch created using pen and tablet interface. Stroke input (left), overlaid elasticurves (right).

An experienced user also mentioned how she felt she had to 

draw “extra slow” for it to match her exact movements. We 

feel this is indicative of how, with experience, skilled artists 

will become proficient at making precise strokes quickly. 

While increasing responsiveness easily remedies this 

problem, it does indicate that parameter calibration is 

recommended (if not required) before extended use. Yet 

another user complained that the sampling frequency setting 

was too coarse for their device, once again hinting that 

calibration may be required on different input devices. One 

user also complained that the stroke inertia of elasticurves 

was distracting. The user felt they had to mentally predict 

the curve’s reaction to their future motion. Given that other 

users were comfortable with spatial lag, something 

professional tape-drawing artists live with, we believe that 

experience with the tool would mitigate such discomfort. 

 

Figure 11: Sketches created by a novice user. Tracing 
over a background image (top). 

 
Figure 12: Mouse sketches by an intermediate user. 

Users described the interface as “cool”, “fluid” or 

“physical” and remarked that the system was different from 

any sketching applications with which they had prior 

experience. One user who sketched with a mouse 

mentioned how when using our tool he “drew in a different 

way than [he] would using something unassisted” because 

“with [something else], [he] would try to draw things as 

straight (or circular) as possible, and probably fail, whereas 

with [elasticurves], [he] would guide the mouse in the 

general direction knowing roughly how the program was 

going to correct it”. 

 

Figure 13: Sketches created using a trackpad by an 
intermediate user. An oversketch (top). Using the 
trackpad as a virtual skating rink (bottom). 



Another user mentioned that it felt like “drawing with hair 

on bathroom tiles”, which we believe is an allusion to the 

inertial and smooth nature of elasticurves.  

 
Figure 14: Additional sketches created by various 
users of intermediate drawing experience. 

APPLICATIONS 

We believe the affordances provided by an elasticurve 

sketching system are applicable in many fields. Notable 

here are: a front-end to gesture-based interfaces [3, 17, 22, 

24, 25, 34], where the real-time mix of smoothness and 

sharp corners can provide shape recognizers with improved 

input; image tracing for vectorization and cel animation, 

where the incremental nature of elasticurves allows visual 

evaluation of the result while the user draws; interactive 

trajectories for performance animation [30], where in 

addition to real-time neatening, the timing along the path is 

encoded in elasticurve parameterization. 

In general sketching scenarios, responsiveness provides 

users a single parameter to control a level of drawing 

assistance and to compensate for device and motor noise.      

Drawing Assistance 

Elasticurves were in part developed as a means to assist 

users lacking the control and practice of a professional artist 

(Figure 11). Since the responsiveness parameter controls 

how closely the input stroke is tracked (Figure 6), it 

provides all users with a manner by which to adjust 

elasticurves to appropriately augment their personal 

sketching ability, in particular for drawing near perfect lines 

or circular arcs.  

Device and motor ability compensation 

The strong approximations elasticurves with low 

responsiveness can induce on input strokes make them 

viable candidates for sketching tasks on commonly used 

devices that are not designed for drawing such as mice, 

trackpads, touchscreens and trackballs (Figures 11-13).  

 

Figure 15: An input stroke with jitter is attenuated 
using a low responsiveness elasticurve. 

A similar argument holds for users lacking fine motor 

control. As shown in Figure 15, by lowering responsiveness 

to an appropriate level, jitter and noisy input can be 

attenuated to create visually appealing strokes. 

ELASTICURVE COMPARISONS 

The neatening of sketches is a long standing problem with a 

large body of research. To evaluate elasticurves relative to 

existing research we compare elasticurves to three popular 

commercial systems: Windows7 Journal [20], Illustrator 

CS5 [1] and Sketchbook-Pro 2010 [2].  

 

Figure 16: Sketch neatening technique comparison 
using a trackpad on an image tracing task. The 
visually neatest result of 7 trials for each technique 
by an intermediate user are shown. 

Sketch neatening in Journal and Illustrator are based on 

global fitting after stroke completion. Sketchbook-Pro 

implements a real-time variant of Dynadraw [12]. 

Theoretically, a fair comparison with elasticurves is 

difficult. Journal and Illustrator have the advantage of 

globally optimizing an entire stroke over the real-time local 

approach of Sketchbook and Elasticurves. Conversely, the 

latter two use speed as a neatening directive. Elasticurves 

enable further user control via responsiveness. Despite 

these issues, to gain some practical insight, we asked an 

intermediate user to trace the outline of a background image 

using all four techniques. After a few strokes to gain 

familiarity with all systems, the user traced over the image 

with a single stroke. The four techniques were used in turn 

and repeated overall 7 times. The neatest visual result of 

each technique using a trackpad is shown in Figure 16. 

Qualitatively, the neatening in Journal is more localized 

than Illustrator, resulting in sharp corners but an overall 

noisier sketch. Illustrator conversely produces a globally 

smooth but wiggly curve that tends to round subtle corners 

(the concave corners of the star in Figure 16). Sketchbook is 

optimized for local real-time neatening and produces noisy 

results visually similar to Journal. Elasticurves, with low 

responsiveness, produce the most pleasing result: Corners 

are precisely created at pauses in the stroke and the circular-

arc connector captures lines, arcs and smooth curves with 

ease. The same task done with a pen produced differences 

that were subtler but noticeably similar to the trackpad.   



Within the genre of elasticurves we further explored viable 

alternatives to the problem of real-time curve neatening. In 

both cases we re-parameterized the curve by arc-length and 

then used stroke speed to modulate a smoothing approach.   

Speed modulated Laplacian Smoothing 

Simple neighbour averaging is a popular approach to stroke 

smoothing that is trivial to implement. Conceptually, 

correlating smoothing strength to stroke speed should result 

in neatened curves. In practice (Figure 1b), the locality of 

neighbour averaging can create wiggles or pockets of 

curvature in curves and varying smoothing strength along 

the curve can cause irregular spacing of curve points. It also 

lacks the tangent continuity of circular-arc connectors. 

Speed modulated responsiveness 

Stroke speed can also be inversely related to the 

responsiveness of an arc-length parameterized elasticurve. 

This provides better results than Laplacian smoothing (see 

Figure 17 and video), but both approaches suffer from re-

parameterization artifacts and do not have the convergence 

guarantees of elasticurves shown in Appendix A.  

 

Figure 17: Speed modulated responsiveness built 
using input points 30 pixels apart. The brightness of 
the green input points indicates speed.  

CONCLUSION 

We explored stroke neatening in real-time, and argued that 

in a general scenario, neatening intent along a stroke should 

be provided by the user. Motivated by the ergonomics of 

sketching, we proposed using stroke speed as a neatening 

directive. An experiment where users drew sequences of 

strokes while consciously controlling drawing speed led 

further credence to this choice 

We then developed elasticurves, a stroke neatening 

framework explicitly driven by stroke speed. We capture 

desirable shapes like lines and circles as connectors along 

which the elasticurve evolves. We analyzed the geometric 

properties of elasticurves and showed them to be 

mathematically stable, robust and convergent with 

increasing sampling resolution of the input. They are also 

capable of representing precise shapes like lines and circles.  

Our evaluation of elasticurves was two-fold. First a free-

form user study with 6 users of varying skills show 

elasticurves to be an effective and promising solution to the 

real-time neatening of sketch input. Second, we favourably 

compared our results with those of three commercial 

systems for an image tracing task. 

Avenues for improvement and future work on elasticurves 

include the automatic adaption of responsiveness to 

estimated sketch noise, curvature continuous connectors 

and an extension of elasticurves to 3D surface modeling. 
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APPENDIX A 

We present the computation of linear and circular-arc 

connectors. We also show convergence to a continuous 

limit elasticurve with increased sampling frequency 

Linear Elasticurves 

                          

And substituting back into (1), we get: 

                     

Writing the responsiveness   as s*dt, where we fix s to be 

constant and dt is the sampling interval of time we get: 

                    

which is a linear first order differential equation, whose 

solution is the elasticurve p(t) as dt→0. 

Circular-arc Elasticurves 

Figure 18 shows the circle passing through qi+1, pi with 

tangent ti at pi, where ti and ni are the tangent and normal of 

the elasticurve at pi.  

 

Figure 18: Computing the circular-arc connector. 

                                          

The circle radius R =                      and the 

connector angle       , where 

                                . 

As before writing   as s*dt we get: 

                                        

In the limit as dt→0,              

which verifies that the curve is tangent continuous and 

shows that p(t) converges to the solution of the above 

equations as dt→0. It is important to note here that the 

vectors    and    are updated by a rotation of   . 

 


