
Elasticurves: Exploiting Stroke Dynamics and Inertia for
the Real-time Neatening of Sketched 2D Curves

Yannick Thiel, Karan Singh, Ravin Balakrishnan

Department of Computer Science

University of Toronto

{ythiel, karan, ravin}@dgp.toronto.edu

Figure 1: Input strokes are drawn in red, with drawing speed indicated by the spacing of green input points (a). The
input stroke in (a) is neatened using Laplacian smoothing with fixed-distance sampling (b), and using elasticurves (c).
Note the sharp corners and smooth arcs on the waves and teeth in (c), compared to the featureless smoothing in (b).

ABSTRACT

Elasticurves present a novel approach to neaten sketches in

real-time, resulting in curves that combine smoothness with

user-intended detail. Inspired by natural variations in stroke

speed when drawing quickly or with precision, we exploit

stroke dynamics to distinguish intentional fine detail from

stroke noise. Combining inertia and stroke dynamics,

elasticurves can be imagined as the trace of a pen attached

to the user by an oscillation-free elastic band. Sketched

quickly, the elasticurve spatially lags behind the stroke,

smoothing over stroke detail, but catches up and matches

the input stroke at slower speeds. Connectors, such as lines

or circular-arcs link the evolving elasticurve to the next

input point, growing the curve by a responsiveness fraction

along the connector. Responsiveness is calibrated, to reflect

drawing skill or device noise. Elasticurves are theoretically

sound and robust to variations in stroke sampling.

Practically, they neaten digital strokes in real-time while

retaining the modeless and visceral feel of pen on paper.

Author Keywords

Sketching, Stroke-based interfaces, Fair curve design.

ACM Classification Keywords

H.5.2 Graphical User Interfaces, Input Devices, and

Strategies;D.2.2User Interfaces;I.3.6 Interaction Techniques

General Terms

Algorithms, Design, Human Factors.

INTRODUCTION

Sketching has been used throughout history as a primitive

mode of expression and visual communication. Sketching is

also an increasingly viable medium of interaction with

devices ranging in size from small tablets to large displays.

Sketch strokes are used in a variety of computing scenarios:

as curves representing visual content from simple 2D

cartoons to complex 3D product designs [4, 15, 16, 23], as

motion paths for animation [13, 30] and as general gestural

input to invoke commands [3, 17, 22, 24, 25, 34].

An important area of ongoing research deals with

attempting to model and eliminate the difference or error

between the stroke a user mentally imagines and the one

that is drawn using a digital device. In this paper, we refer

to this problem as stroke neatening.

Stroke neatening can be addressed in two ways: first, by

attempting to model the characteristics of the differences

between sketched strokes and the resulting curves; second,

by using priors that describe desirable properties of curves

resulting from user strokes. Perhaps the most common prior

is smoothness (Figure 1b) since high-frequency jitter is

usually the result of device noise or an unsteady hand and

further, smooth or fair [8, 19] curves are generally

desirable. Indeed for many applications such as 3D design

curves, paths for navigation or spatial curves for

visualization, smoothing is sufficient for stroke neatening.

There are, however, applications such as 2D cartoon

drawing or motion paths for performance-based animation

and interactive tracking, where the desired result of a sketch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

UIST’11, October 16–19, 2011, Santa Barbara, California, USA.
Copyright 2011 ACM 978-1-4503-0716-1/11/10...$10.00.

is a mix of smoothness and high-frequency detail in

different parts of the neatened output curve (Figure 1c).

In general, the extent to which a user intends the resulting

curve to precisely track any portion of a sketched stroke is a

directive that must be explicitly defined by the user. While

the intended precision along parts of a stroke could be

specified after its completion using a variety of interfaces

[19, 26], not only would such an approach impede the

fluidity of a sketching workflow, it comes too late for real-

time applications like drawing or performance animation,

where the stroke must be neatened as the user sketches. It

would thus be ideal if a user could specify intended

precision along the stroke while sketching, using an

affordance of the drawing tool such as finger pressure or

pen tilt [21, 31]. Unfortunately, there is no evidence

indicating that there exists a natural relationship between

these device affordances and intended precision. We have

observed, however, that there is a relationship between

drawing speed and intended precision. In accordance with

the speed-accuracy trade-off common to human activity

[28], users instinctively slow down when drawing parts of a

curve where they desire precision and speed up over regions

that are smoother or less precise. We note also that drawing

speed is a user controlled variable independent of the input

device used, be it a finger, mouse, or stylus. Thus, using

speed as a mechanism to control precision simply builds on

users’ inherent sketching behaviour.

A number of approaches that neaten a stroke after its

completion [4, 16, 19, 23] typically fit a curve primitive

such as a cubic spline [4] or optimize a criterion such as

variation of curvature [19], over the entire stroke. Most of

these approaches can be further improved by additionally

exploiting the precision intent conveyed via stroke speed.

These approaches, however, remain ill-suited to real-time

applications, where a neatened curve must be incrementally

committed while the user draws. This was especially noted

by in-between and clean-up artists sketching over scanned

drawings, where the lack of commitment of any part of the

neatened curve until a stroke was completed was visually

frustrating and often required sketching the same stroke

multiple times without guarantee of success. A similar

frustration was voiced by animators wishing to lasso-select

objects in regions contained within neatened strokes.

To perform real-time neatening, however, the evolving end

of a committed curve must differ at times from the current

end of the stroke, which we refer to as stroke inertia or

spatial lag (see waves in Figure 1c and video). We draw

inspiration from the traditional tape drawing technique [5]

used by designers where curves are created by rolling out

tape with one hand and fastening it with the other.

Metaphorically, the hand rolling out the tape defines the

stroke and the hand fastening the tape defines the

committed curve. The tape in-between the two hands is the

spatial lag. In a one-handed sketch-based version of tape

drawing [11], the spatial lag has a fixed length and the

committed curve can be thought of as being drawn by a pen

attached to the user’s hand by an invisible rod. The smaller

the lag (the shorter the rod), the more closely the committed

curve tracks the sketched stroke, and larger lags result in

smoother curves with less detail. This is captured in spirit

by Dynadraw [12], simulating a pen with mass and friction

being physically pulled across the paper. Given that

controlling the amount of lag enables the creation of curves

with different smoothness and detailed variation

characteristics, we propose a novel approach whereby the

lag is directly modulated in real-time by the stroke speed.

The user can select from different curve primitives such as

lines or circular-arcs to model the lag segment, allowing

them to generate near perfect lines or arcs despite drawing

quickly. At the same time, slowly drawn parts of a curve are

tracked precisely without any explicit mode changes.

There exists a continuum of intended curves ranging from

completely free-hand to precise geometric primitives like

lines and circles [10]. A good real-time stroke neatening

algorithm would allow users to move freely within this

continuum over the course of a single stroke. We believe

elasticurves are the first real-time stroke neatening approach

to possess this property.

RELATED WORK

There has been much research in the area of stroke

processing. Broadly one branch looks at the symbolic

processing of strokes for handwriting and other gestural

recognition [3, 17, 22, 24, 25, 34]. Here, the stroke is

classified as an instance of a known set of symbols. This is

typically done by looking for structure within the stroke in

terms of geometric features such as corners or inflections

and then by matching these features to corresponding sets

of examples for each known symbol. The actual geometry

of such strokes serves only to classify and distinguish them.

The second and more relevant branch addresses the

neatening of strokes. An essential aspect of stroke neatening

is determining which parts of the stroke to neaten. The

majority of approaches [4, 19] simply neaten the entire

stroke based on the assumption that smooth curves are

desirable and that sharp corners or high-frequency detail

will explicitly be created by concatenating multiple smooth

strokes [4]. While this is perfectly acceptable for many

applications, sketches such as that in Figure 1c would be

cumbersome to create and require a large number of tiny

strokes. Some approaches relax this assumption by breaking

the stroke into a number of smooth segments connected at

sharp corners [26].

In other approaches users explicitly describe the intended

shape of the curve using templates [10] or French curves

[27] allowing the creation of very precise curve shapes. The

two disadvantages of such approaches are that it is still

difficult to transition through different neatening directives

within the same stroke, and the external template needs to

be invoked explicitly by the user, breaking the desirable

flow of pure modeless sketching [14].

There are many different ways of achieving a desired stroke

neatening directive. For simple stroke smoothing a variety

of techniques exist including Laplacian smoothing [32],

cubic spline fitting [4], clothoid fitting [19] and one-handed

tape drawing [11]. Piecewise clothoid fitting [19] has been

shown to create curves with the most appealing curvature

properties but is hard to combine with point, tangent or

other precise constraints. Some of these techniques such as

Laplacian smoothing and one-handed tape drawing can be

used to smooth and commit a stroke as it is drawn, whereas

the remainder of the approaches are global in nature, based

on optimization or fitting, and require a complete stroke.

Ours is the first approach to propose the principled and

explicit use of stroke dynamics as a neatening directive and

perform this neatening in real-time as the stroke is sketched.

We draw inspiration for this affordance from the kinematics

of drawing [18, 28] and research that relates drawing speed

to curve features such as cusps and corners [25].

There are a number of other approaches to curve creation

and control that are relevant to this work. Fiume [9]

introduced arc-length as a control parameter in conjunction

with typical Bezier constraints. Using physical forces and

dynamics as a control methodology has also been used

extensively [6, 12, 29]. Dynadraw [12], aimed at creating

calligraphic strokes, indirectly correlates stroke speed and

lag by physically simulating a pen pulled across paper.

Cords [7] are 3D curves which wrap around scene objects.

Cords are procedurally generated from user-defined guide

curves and a stiffness parameter that models their pliability.

Our elasticurve framework has a similar mathematical

formulation.

Variants of the above research exist in commercial software

such as Sketchbook-Pro [2], Illustrator [1] and Windows

Journal [20]. We discuss these in relation to Elasticurves in

the comparisons section.

PROBLEM STATEMENT

Given an input stroke segment Q, compute a neatened curve

P that continuously changes from precisely Q to a smooth

approximation of Q with increasing drawing speed (Figure

3). The curve construction must also be incremental: i.e. if

Q is a sub-stroke of a longer stroke Q’, its neatened curve P

is the corresponding sub-stroke of the longer neatened

curve P’ (Figure 2).

Figure 2: Incremental Elasticurve construction: (a) A
partial segment Q of an input stroke. (b) The
elasticurve segment P corresponding to Q. (c) The
continued stroke Q’ and elasticurve P’ (in blue).
Once commited, P is invariant to subsequent input.

ELASTICURVES ALGORITHM

The elasticurve framework is a “pure” sketching interface,

in that all information related to stroke input and neatening

is provided by the user in the stroke itself. We describe a

minimal number of parameters that allow additional control

over the generated curves but in practice users can create

their desired curves predictably with the default settings.

Figure 3: The input stroke (left) is parameterized by
time: the spacing of the green input points indicates
stroke speed. The elasticurve (right) varies with
increasing speed from a precise replica to a smooth
approximation of the input.

Input Stroke

Input strokes from current sketching devices are typically a

sequence of 2D points that are sampled at a small and

regular time interval dt ms (see Appendix A). In practice

this simply parameterizes the input stroke such that the

distance between adjacent point samples is a measure of

stroke speed (Figure 3). We denote this input stroke as Q,

and the i
th

 point on it as qi. Elasticurves grow as a fraction

(called responsiveness) of the spatial lag between the

current elasticurve and stroke. Therefore, in a discrete

setting, they only ever get infinitesimally close to the input

stroke if subsequent points on the stroke are at the same

position. In practice we can replace this converging

progression of elasticurve points with an analytic curve

segment as long as we can detect such a paused stroke state.

Note that while the elasticurve will inertially lag and catch-

up to the stroke as the user draws, the paused state can be

thought of as an explicit catch-up of the elasticurve where

the stroke inertia or lag is reset to zero. In practice, the

curve often enters the paused state at sharp corners and

upon stroke completion. We detect a pause in a stroke at a

point where there is no movement for dtpause milliseconds.

Curve Generation

We define an inertial responsiveness parameter r, which

controls the mapping from stroke speed to the neatness of

the curve. Users typically calibrate r to reflect their drawing

skill or the noise and ergonomic inaccuracy of the input

device (0<r<=1, r=0.5 by default). The elasticurve

precisely matches the input stroke for r=1. Lowering r

increases stroke inertia (for r=0 the elasticurve is a

stationary point) resulting in fairer curves (Figure 6).

We will denote the generated elasticurve as P and its i
th

point as pi. While we can use the metaphor of an

oscillation-free zero-rest-length elastic band to describe the

inertia between pi and qi, this is more to describe its visual

behaviour than to accurately model its dynamics. Indeed in

our case, the points are generated by a generalization of the

formulation in [7], subject to p0=q0.

 (1)

We will refer to the function f as being the connector

between the evolving elasticurve and the input stroke. The

connector locally controls the shape of the elasticurve and

thus models prior knowledge of desirable curve shapes

(such as lines or circles) that would connect pi and qi+1. The

elasticurve segment between pi and pi+1 is simply the

parametric fraction r of this connector (Figure 5). The

overall evolution of the elasticurve for linear and circular-

arc connectors is shown in Figure 4. We explored various

connector shapes and present the mathematical details of

lines and circular-arcs in Appendix A.

Figure 4: Elasticurve construction for 6 points of an
input stroke using linear (top) and circular (bottom)
connectors: the elasticurve evolves over six steps.
At each step the curve grows by a fraction (r=0.5)
along the connector shown by a dashed shape.

Figure 5: Connector shapes: lines, parabolas, arcs
(left to right) with increasing r (top to bottom).

Linear Connectors

Linear elasticurves favour a linear interpretation of the

input stroke. Intuitively, if the user were to provide input

points which were all collinear, the generated curve should

be a straight line. Deviations from this linearity in the input

stroke result in similar deviations in the elasticurve, albeit

dampened by a factor of r. The formulation used is:

Leading to the following recursive formula:

This allows deviations from linearity in Q to be attenuated

in P. As a consequence, P will always be more linear than

Q especially when drawn rapidly (Figure 6), making the

linear formulation ideal for sketching straight lines quickly.

Further, while linear elasticurves seem to be only discrete

polylines, they converge with finer sampling of an input

stroke to a limit curve with the same degree of continuity as

the input stroke (Appendix A).

Circular-arc Connectors

Circles are also a common shape prior that can be captured

as a connector. Circular-arc connectors are defined by the

circle passing through qi+1, pi with the tangent at pi being

the same as the tangent of P at pi. Using this circle, we take

a fraction r of the smaller-arc between pi and qi+1 to find

pi+1. (Figure 5). The first circular-arc connector is defined

by the smaller circular-arc connecting q0,q1,q2. Like linear

elasticurves, circular-arc elasticurves also converge to a

limit curve but are G
1
 continuous (a sequence of tangent

continuous circular-arcs) even in the discrete setting.

Circular-arcs can also represent lines (arcs of infinite

radius) and are thus our default choice of connector.

Figure 6: Responsiveness: At high r, elasticurves

track the input regardless of connector. The impact
of the connector shape is evident at lower r or when

drawing quickly (left). A comparison between linear
and circular-arcs for the same input at low r shows

that circular-arcs handle curved regions better and
can also capture line segments (right).

Alternate Connectors

While we present linear and circular connectors in detail,

the elasticurve framework can accommodate any parametric

connector function f. In particular, cubic Beziers can be

used if curvature continuous elasticurves are desired.

Curves with desired arc-lengths [9] can also be created

using a tangent continuous parabolic connector passing

through pi with an arc length given by .

Figure 7: The elasticurve (connector is shown dashed) naturally catches-up to the input in a slowly drawn section.

Elasticurve Properties

Explicit use of drawing speed

An important property of elasticurves is their embodiment

of stroke dynamics. Regardless of the connector or the

responsiveness, elasticurves naturally match the input

stroke when the user draws slowly and approximates

quickly drawn portions of the stroke, in keeping with the

speed-accuracy trade-off seen in human input actions [28].

Figure 7 shows a circular-arc elasticurve approaching a

slowly drawn section of the input stroke, indicated by the

many input points (sampled at equal time intervals) close to

each other. Since the elasticurve grows by a fraction of the

connector it gets progressively closer to the input where

points are repeated or are close to each other. Within a few

such iterations, the elasticurve becomes visually

indistinguishable from that of the input stroke until an

increase in stroke speed creates visually discernable spatial

lag. If multiple points of an elasticurve are built using the

same input point repeated over time, the elasticurve

converges to the point as an infinite geometric progression

of the responsiveness fraction. We identify this condition as

a pause in sketching to complete the connector. These

pauses occur naturally when drawing sharp corners, cusps

and upon stroke completion.

Figure 8: Curve completion: The elasticurve typically
lags the end-point of a stroke (top). A paused state
causes the curve to grow to the end-point (bottom).

Curve Completion

Once the input stroke is in a paused state, which is to say

the cursor has not changed position for dtpause ms or the

stroke is completed, we complete the curve along its last

connector. Conceptually, this is equivalent to creating an

infinite number of input points at the given end-point. We

implement this by repeating end-points (till the elasticurve

is within a distance threshold to the curve) and then snap to

the end-point, to keep the point distribution of the generated

elasticurves consistent (Figure 8). Using the paused state in

this manner also allows for the easy creation of cusps and

tangent discontinuities, where natural pauses in drawing

allow the elasticurve to catch up to the input at corners.

Incremental generation

The incremental construction of elasticurves makes it

suitable to real-time curve neatening. In contrast most curve

neatening algorithms [4, 19, 26] use a “global” fit to the

current stroke, implying that the overall curve is never

finalized until the input stroke is completed.

While the “global” fit algorithms can produce curves with

nicer mathematical properties such as linear variation in

curvature [19], it comes at the cost of losing the immediacy

of curve creation, a critical affordance in certain scenarios.

Elasticurve Parameters

Elasticurves have three meaningful parameters: sampling

interval (dt), time interval for a pause state to be detected

(dtpause), and responsiveness (r). dt is a function of the

spatio-temporal resolution of the input device and dtpause a

matter of user agility and drawing skill. While we set these

manually in our implementation, both are easy to calibrate:

dt can be set such that the difference between the user input

and the poly-line stroke is below a desired threshold. dtpause

can be inferred by asking users to draw a few sharp corners.

Responsiveness is the one free parameter that relates to the

inertial feel of the curve. While we could attempt to learn a

user-specific default setting for r, we find that users grasp

its behaviour quickly and adjust it often while sketching.

SPATIAL LAG RELATIONSHIPS

As mentioned above, elasticurves possess an inertial

relationship to their input stroke. This spatial lag is a direct

consequence of real-time neatening, where the curve can

drift from the stroke to smoothen the input but must adhere

to it when precision is intended. The spatial lag model used

impacts the nature of curves produced. We classify a few

existing models: stick lag connects the evolving curve and

current input by a conceptual stick, akin to one-handed tape

drawing [11]. String lag models this link as a piece of

string. Points are added to the input stroke only when the

string is taut, creating curves similar to one-handed tape

drawing but allowing sharp corners, by letting the string go

slack to abruptly change directions. Spring lag, akin to

Dynadraw [12], models the link with a zero-rest-length

spring, creating physically plausible trajectories that are

often pleasing but can have undesirable oscillations.

Elasticurves model what can be termed as speed lag, where

the spatial inertia is directly related to stroke speed. Note

that connectors and lag models are complementary and can

be arbitrarily paired.

HUMAN ABILITY TO CONTROL SKETCHING SPEED

An obvious question that follows from wanting to use

dynamics to indicate stroke precision while drawing is: how

naturally and precisely can a user control sketching speed?

Attempting to determine if users had any control over their

drawing speed, we asked 5 participants (aged 24-30, 4

right-handed, 1 left-handed), to continuously draw the same

shape repeatedly, but with decreasing speed. For example, a

participant would begin by drawing a line as fast as they

could, and subsequently draw that same line with

monotonically decreasing speed. This experiment was

performed with lines, Bezier arcs and circles.

The results (Figure 9) illustrate that users do in fact possess

reasonable control over their drawing speed, in that they

can gradually slow down or speed up. The results, like other

sensory controls, tend to follow Weber’s law [33], in that a

user can more aptly distinguish between slower speeds than

fast ones. While a formal investigation of human drawing

speed is worthwhile, this experiment suggests that users do

possess adequate stroke speed control to utilize elasticurves

effectively.

Figure 9: Speed control experiment: plotting average speed
(in pix/ms) versus stroke index (decreasing speed).

CURVATURE AND ELASTICURVES

A well-documented perceptual factor affecting sketching

speed is curvature. As was noted in [18], stroke speed

follows a power law relationship with respect to curvature,

namely:

Where is tangential end-point speed, is the

instantaneous curvature of the path, and is a constant.

This formula entails that sketching speed is lower when

attempting to draw areas of high curvature. However, this

behaviour arises instinctively; there is no active decision to

do so. In other words one might expect that a user intends to

draw a curve with the same degree of smoothing but the

unconscious drop in speed in regions of high curvature

cause them to be drawn more precisely than regions of low

curvature. Elasticurves can be modified to compensate for

this by computing two speeds: vmeasured, the observed speed

of the input stroke, and vexpected, the speed given by the

power law relationship. Discrete curvature is computed at

points by looking one input ahead and computing the angle

between the neighbours. The difference
 thus captures any conscious

variation in stroke speed by the user. We then map vactual to

responsiveness.

While the compensation method described above accounts

for the perceptual effect curvature has on sketching speed,

we found it to have little effect in practice, since the instant

visual feedback from the elasticurve lets users compensate

for this effect in their drawing directly.

USER FEEDBACK

We evaluated our system by distributing it to 6 users and

asking them to try it out and send us their creations. We did

not specify which input method they should use; two used a

tablet computer, one a trackpad and three a mouse. Each

user was aged between 20 and 40, had a familiarity with

computers and drawing ability varying from professional to

completely inexperienced. Notably, the experienced users

used tablets, while the inexperienced ones used a mouse or

trackpad as their input device. Their period of usage ranged

from one to eight hours. Figures 1 and 10 illustrate sketches

created by a user of above-average drawing skill on a pen

and tablet interface. Of particular note in these images is

how elasticurves satisfactorily handle both precise strokes

(such as the arm and book of the character, as well as the

fish and shark) and rapid strokes where precision is of no

concern (such as the waves, ground, and tree foliage).

Figure 11, on the other hand, illustrates how elasticurves

can be used to improve sketching ability. The image was

created by a user with no sketching experience using a

mouse and a background image to trace over.

The ability of elasticurves to allow users to create desirable

primitive shapes (Figures 11-13), with a mouse or trackpad

and little drawing experience, is particularly noteworthy.

Figure 10: Elasticurve sketch created using pen and tablet interface. Stroke input (left), overlaid elasticurves (right).

An experienced user also mentioned how she felt she had to

draw “extra slow” for it to match her exact movements. We

feel this is indicative of how, with experience, skilled artists

will become proficient at making precise strokes quickly.

While increasing responsiveness easily remedies this

problem, it does indicate that parameter calibration is

recommended (if not required) before extended use. Yet

another user complained that the sampling frequency setting

was too coarse for their device, once again hinting that

calibration may be required on different input devices. One

user also complained that the stroke inertia of elasticurves

was distracting. The user felt they had to mentally predict

the curve’s reaction to their future motion. Given that other

users were comfortable with spatial lag, something

professional tape-drawing artists live with, we believe that

experience with the tool would mitigate such discomfort.

Figure 11: Sketches created by a novice user. Tracing
over a background image (top).

Figure 12: Mouse sketches by an intermediate user.

Users described the interface as “cool”, “fluid” or

“physical” and remarked that the system was different from

any sketching applications with which they had prior

experience. One user who sketched with a mouse

mentioned how when using our tool he “drew in a different

way than [he] would using something unassisted” because

“with [something else], [he] would try to draw things as

straight (or circular) as possible, and probably fail, whereas

with [elasticurves], [he] would guide the mouse in the

general direction knowing roughly how the program was

going to correct it”.

Figure 13: Sketches created using a trackpad by an
intermediate user. An oversketch (top). Using the
trackpad as a virtual skating rink (bottom).

Another user mentioned that it felt like “drawing with hair

on bathroom tiles”, which we believe is an allusion to the

inertial and smooth nature of elasticurves.

Figure 14: Additional sketches created by various
users of intermediate drawing experience.

APPLICATIONS

We believe the affordances provided by an elasticurve

sketching system are applicable in many fields. Notable

here are: a front-end to gesture-based interfaces [3, 17, 22,

24, 25, 34], where the real-time mix of smoothness and

sharp corners can provide shape recognizers with improved

input; image tracing for vectorization and cel animation,

where the incremental nature of elasticurves allows visual

evaluation of the result while the user draws; interactive

trajectories for performance animation [30], where in

addition to real-time neatening, the timing along the path is

encoded in elasticurve parameterization.

In general sketching scenarios, responsiveness provides

users a single parameter to control a level of drawing

assistance and to compensate for device and motor noise.

Drawing Assistance

Elasticurves were in part developed as a means to assist

users lacking the control and practice of a professional artist

(Figure 11). Since the responsiveness parameter controls

how closely the input stroke is tracked (Figure 6), it

provides all users with a manner by which to adjust

elasticurves to appropriately augment their personal

sketching ability, in particular for drawing near perfect lines

or circular arcs.

Device and motor ability compensation

The strong approximations elasticurves with low

responsiveness can induce on input strokes make them

viable candidates for sketching tasks on commonly used

devices that are not designed for drawing such as mice,

trackpads, touchscreens and trackballs (Figures 11-13).

Figure 15: An input stroke with jitter is attenuated
using a low responsiveness elasticurve.

A similar argument holds for users lacking fine motor

control. As shown in Figure 15, by lowering responsiveness

to an appropriate level, jitter and noisy input can be

attenuated to create visually appealing strokes.

ELASTICURVE COMPARISONS

The neatening of sketches is a long standing problem with a

large body of research. To evaluate elasticurves relative to

existing research we compare elasticurves to three popular

commercial systems: Windows7 Journal [20], Illustrator

CS5 [1] and Sketchbook-Pro 2010 [2].

Figure 16: Sketch neatening technique comparison
using a trackpad on an image tracing task. The
visually neatest result of 7 trials for each technique
by an intermediate user are shown.

Sketch neatening in Journal and Illustrator are based on

global fitting after stroke completion. Sketchbook-Pro

implements a real-time variant of Dynadraw [12].

Theoretically, a fair comparison with elasticurves is

difficult. Journal and Illustrator have the advantage of

globally optimizing an entire stroke over the real-time local

approach of Sketchbook and Elasticurves. Conversely, the

latter two use speed as a neatening directive. Elasticurves

enable further user control via responsiveness. Despite

these issues, to gain some practical insight, we asked an

intermediate user to trace the outline of a background image

using all four techniques. After a few strokes to gain

familiarity with all systems, the user traced over the image

with a single stroke. The four techniques were used in turn

and repeated overall 7 times. The neatest visual result of

each technique using a trackpad is shown in Figure 16.

Qualitatively, the neatening in Journal is more localized

than Illustrator, resulting in sharp corners but an overall

noisier sketch. Illustrator conversely produces a globally

smooth but wiggly curve that tends to round subtle corners

(the concave corners of the star in Figure 16). Sketchbook is

optimized for local real-time neatening and produces noisy

results visually similar to Journal. Elasticurves, with low

responsiveness, produce the most pleasing result: Corners

are precisely created at pauses in the stroke and the circular-

arc connector captures lines, arcs and smooth curves with

ease. The same task done with a pen produced differences

that were subtler but noticeably similar to the trackpad.

Within the genre of elasticurves we further explored viable

alternatives to the problem of real-time curve neatening. In

both cases we re-parameterized the curve by arc-length and

then used stroke speed to modulate a smoothing approach.

Speed modulated Laplacian Smoothing

Simple neighbour averaging is a popular approach to stroke

smoothing that is trivial to implement. Conceptually,

correlating smoothing strength to stroke speed should result

in neatened curves. In practice (Figure 1b), the locality of

neighbour averaging can create wiggles or pockets of

curvature in curves and varying smoothing strength along

the curve can cause irregular spacing of curve points. It also

lacks the tangent continuity of circular-arc connectors.

Speed modulated responsiveness

Stroke speed can also be inversely related to the

responsiveness of an arc-length parameterized elasticurve.

This provides better results than Laplacian smoothing (see

Figure 17 and video), but both approaches suffer from re-

parameterization artifacts and do not have the convergence

guarantees of elasticurves shown in Appendix A.

Figure 17: Speed modulated responsiveness built
using input points 30 pixels apart. The brightness of
the green input points indicates speed.

CONCLUSION

We explored stroke neatening in real-time, and argued that

in a general scenario, neatening intent along a stroke should

be provided by the user. Motivated by the ergonomics of

sketching, we proposed using stroke speed as a neatening

directive. An experiment where users drew sequences of

strokes while consciously controlling drawing speed led

further credence to this choice

We then developed elasticurves, a stroke neatening

framework explicitly driven by stroke speed. We capture

desirable shapes like lines and circles as connectors along

which the elasticurve evolves. We analyzed the geometric

properties of elasticurves and showed them to be

mathematically stable, robust and convergent with

increasing sampling resolution of the input. They are also

capable of representing precise shapes like lines and circles.

Our evaluation of elasticurves was two-fold. First a free-

form user study with 6 users of varying skills show

elasticurves to be an effective and promising solution to the

real-time neatening of sketch input. Second, we favourably

compared our results with those of three commercial

systems for an image tracing task.

Avenues for improvement and future work on elasticurves

include the automatic adaption of responsiveness to

estimated sketch noise, curvature continuous connectors

and an extension of elasticurves to 3D surface modeling.

REFERENCES

1. Adobe Systems Inc. (2010). Adobe Illustrator CS 5.

http://www.adobe.com/products/illustrator.html

2. Autodesk Inc. (2010). Autodesk Sketchbook Pro 2010.

http://area.autodesk.com/sketchbook

3. Anderson, D., Bailey, C., & Skubic, M. (2004). Hidden

Markov Model Symbol Recognition for Sketch-Based

Interfaces. AAAI Fall Symposium (pp. 15-21). Menlo

Park, CA: AAAI Press.

4. Bae, S.-H., Balakrishnan, R., & Singh, K. (2008).

ILoveSketch:As-Natural-As-Possible System for

Creating 3D Curve Models. Proc. UIST , 151-160.

5. Balakrishnan, R., Fitzmaurice, G., Kurtenbach, G., &

Buxton, W. (1999). Digital Tape Drawing. Proc. UIST,

161-169.

6. Barzel, R. (1997). Faking Dynamics of Ropes and

Strings. IEEE CGA, 3, pp. 31-39.

7. Coleman, P., & Singh, K. (2006). Cords: Geometric

Curve Primitives for Modeling Contact. IEEE CGA, 3,

pp. 72-79.

8. Farin, G., Rein, G., Sapidis, N., & Worsey, A. (1987).

Fairing Cubic B-Spline Curves. Computer Aided

Geometric Design , 91-103.

9. Fiume, E. (1995). Isometric Piecewise Polynomial

Curves. Computer Graphics Forum , 1, pp. 47-58.

10. Fung, R., Lank, E., Terry, M., & Latulipe, C. (2008).

Kinematic Templates: End-User Tools for Content-

Relative Cursor Manipulations. Proc. UIST , 47-56.

11. Grossman, T., Balakrishnan, R., Kurtenbach, G.,

Fitzmaurice, G., Khan, A., & Buxton, B. (2002).

Creating Principal 3D Curves with Digital Tape

Drawing. Proc. CHI , 121-128.

12. Haeberli, P. (1989). DynaDraw. Silicon Graphics

Corporation. Mountain View, California, USA.

http://www.graficaobscura.com/dyna/index.html

13. Igarashi, T., Kadobayashi, R., Mase, K., & Tanaka, H.

(1998). Path Drawing for 3D Walkthrough. Proc. UIST,

(pp. 173-174).

14. Igarashi, T., Kawachiya, S., Matsuoka, S., & Tanaka, H.

(1997). In Search for an Ideal Computer-Assisted

Drawing System. INTERACT, (pp. 104-111).

15. Igarashi, T., Matsuoka, S., & Tanaka, H. (1999). Teddy:

A Sketching Interface for 3D Freeform Design.

SIGGRAPH, (pp. 409-416).

16. Igarashi, T., Matsuoka, S., Kawachiya, S., & Tanaka, H.

(1997). Interactive Beautification: A Technique for

Rapid Geometric Design. Proc. UIST, (pp. 105-114).

http://www.adobe.com/products/illustrator.html
http://area.autodesk.com/sketchbook
http://www.graficaobscura.com/dyna/index.html

17. Labahn, G., MacLean, S., Marzouk, M., Rutherford, I.,

& Tausky, D. (2006). MathBrush: An Experimental

Pen-Based Math System. Dagstuhl Seminar

Proceedings, Challenges in Symbolic Computation.

18. Lacquaniti, F., Terzuolo, C., & Viviani, P. (1983). The

law relating the kinematics and figural aspects of

drawing movements. Acta Psychologica , pp. 115-130.

19. McCrae, J., & Singh, K. (2008). Sketching Piecewise

Clothoid Curves. SBIM, pp. 1-8.

20. Microsoft Corporation (2009). Windows 7 Journal.

21. Ramos, G., Boulos, M., & Balakrishnan, R. (2004).

Pressure Widgets. Proc. CHI, (pp. 487-494).

22. Rubine, D. (1991). Specifying gestures by example.

Proc. SIGGRAPH, (pp. 329-337).

23. Schmidt, R., Khan, A., Singh, K., & Kurtenbach, G.

(2010). Analytic Drawing of 3D Scaffolds. Proc.

SIGGRAPH ASIA (to appear).

24. Sezgin, T., & Davis, R. (2005). HMM-based efficient

sketch recognition. Proc. IUI , 281-283.

25. Sezgin, T., Stahovich, T., & Davis, R. (2001). Sketch

Based Interfaces: Early Processing for Sketch

Understanding. Proc. PUI .

26. Shao, L., & Zhou, H. (1996). Curve Fitting with Bezier

Cubics. Graphical Models and Image Processing , 3, pp.

223-232.

27. Singh, K. (1999). Interactive Curve Design using Digital

French Curves. Proc. I3D, 23-30.

28. Soukoreff, R., & MacKenzie, I. (2009). An informatic

rationale for the speed-accuracy trade-off. Proc. IEEE

SMC, (pp. 2969-2975).

29. Terzopoulos, D., & Qin, H. (1994). Dynamic NURBS

with Geometric Constraints for Interactive Sculpting.

ACM TOG, 2, pp. 103-136.

30. Thorne, M., Burke, D., & van de Panne, M. (2004).

Motion Doodles: An Interface for Sketching Character

Motion. ACM TOG, v.23 n.3.

31. Tian, F., Ao, X., Hongan, W., Setlur, V., & Dai, G.

(2008). Tilt menu: using the 3D orientation information

of pen devices to extend the selection capability of pen-

based user interfaces. Proc. CHI, (pp. 1371-1380).

32. Tsang, S., Balakrishnan, R., Singh, K., & Ranjan, A.

(2004). A suggestive interface for image guided 3d

sketching. Proc. CHI, (pp. 591-598).

33. Weber, E. (1846). Der Tastsinn und das Gemeingefühl.

In Wagner, Handlewörterbuch der Physiologie (Vol.

iii).

34. Wobbrock, J., Wilson, A., & Li., Y. (2007). Gestures

without Libraries, Toolkits or Training: a 1$ Recognizer

for User Interface Prototypes. Proc. UIST. (pp 159-168).

APPENDIX A

We present the computation of linear and circular-arc

connectors. We also show convergence to a continuous

limit elasticurve with increased sampling frequency

Linear Elasticurves

And substituting back into (1), we get:

Writing the responsiveness as s*dt, where we fix s to be

constant and dt is the sampling interval of time we get:

which is a linear first order differential equation, whose

solution is the elasticurve p(t) as dt→0.

Circular-arc Elasticurves

Figure 18 shows the circle passing through qi+1, pi with

tangent ti at pi, where ti and ni are the tangent and normal of

the elasticurve at pi.

Figure 18: Computing the circular-arc connector.

The circle radius R = and the

connector angle , where

 .

As before writing as s*dt we get:

In the limit as dt→0,

which verifies that the curve is tangent continuous and

shows that p(t) converges to the solution of the above

equations as dt→0. It is important to note here that the

vectors and are updated by a rotation of .

