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The human hand is a marvelously useful biomechanical device that has inspired numerous

depictions and models, however its complexity, makes the construction of accurate visual and

physical models an extremely challenging goal. We present, Helping Hand, a realistic skeletal

musculo-tendon model of the human hand and forearm. The model permits direct forward

dynamics simulation, which accurately predicts hand joint orientation given a set of muscle

activations. We also present a solution to the inverse problem of determining an optimal set

of muscle activations to achieve a given pose or motion; muscle fatigue, injury can also be

specified, yielding different control solutions that favor healthy muscle. The model can take

kinematic pose data and predict animation sequences of the hand to fit or indeed physically

improve upon kinematic data. Lastly, we demonstrate ways to isolate and visualize muscle

groups as their effect on hand motion is animated.
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Chapter 1

Introduction

As with many other marvels of evolution, it is easy to ignore the remarkable utility of our

hands–until, that is, we sustain even the smallest injury that inhibits their function. While the

full set of factors affecting its development and function still await explication, it appears that

the evolution of the human hand, with its opposable thumb and its lightweight, dextrous fingers,

was interleaved with the move by our ancestors to bipedalism, their growing use of hand-held

implements, their need to grip variably-sized objects, and the development of verbal, written,

gestural and musical communication. An exquisitely flexible biomechanical device emerged

from such a multiplicity of function [MM00].

The exploration of dynamic hand function, morphology, evolution and pathology requires an

accurate model that is visually, biomechanically and anatomically valid, and not simply physi-

cally based. Because we often make judicious assumptions and simplifications in computer

graphics to keep the focus on visual modeling, we would be quite fortunate if the forces

and torques computed by most physically based models were even to have actual physical

or biomechanical validity. However, as computer graphics works with other disciplines, such

as anatomy, surgery, education, archeology and biology, the outcomes of our physical models

1



CHAPTER 1. INTRODUCTION 2

and simulations will need to be more than visually persuasive. For example, the pathology of

a repetitive stress injury has and will require a visual manifestation; however, predicting an

injury, modeling therapies, or simulating preventative measures, all require a hand model that

attends to anatomical and physical validity.

That said, a hand model need not be an exact physical replica. This is unlikely to be necessary

even if it were possible. Instead we require a synthetic biomechanical model of the hand that

can be used to test hypotheses and to operate in a manner that is consistent with the observable

physical expectations of hand function. Our goal is to choose the simplest model necessary

to meet such task requirements, in addition to our traditional requirement that the model be

suitable for computer animation.

Furthermore, there are bounds to physical modeling. It would be very difficult, for example, to

develop a synthetic hand model that predicts which hand injury is more painful than another.

A strictly physical model is also unlikely to predict the preferred hand position for a guitar

chord, or the accepted fingering of a piano piece. However, we can develop a model that

accurately computes the energy required (or strain induced) for a real human hand to assume a

given posture or to perform a certain task, and to allow domain experts on hand function from

various disciplines to work with these models and draw conclusions based on their expertise

and needs. The ability to simulate and animate biomechanical hand motion, and to compute

the muscle activations needed for a hand to perform tasks is the basis of our contribution.

We cannot model what we do not know, and there is much that is still not understood about the

human hand. Here perhaps our models may help to close the loop with experimental sciences to

improve our overall understanding of hand function through both simulation and visualization.

In this thesis, we address the problem of developing and controlling a biomechanical hand

model that incorporates empirical data from anatomical studies of hand joints, hand tendons

and hand muscles. In contrast to most works in computer graphic hand models that focus
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on controlling joint angles to generate animations of hand movement, instead we use these

animations to discover how the hand functions in the muscular aspect. We also present a

solution to the inverse problem of determining an optimal set of muscle activations to achieve

a given pose or motion. In addition, there is a problem of redundancy associated with the

hand model, since multiple muscles can perform similar functions at a joint, for example, to

flex joint. This redundancy poses a interesting question: if certain muscles are weakened or

removed, is it still possible to produce the same movement? As a matter of fact, muscle fatigue

is a common issue, caused by the physiological and biochemical events. It leads to a decline in

the capacity of a muscle to generate force, and during its recovery, other muscles must be relied

upon. By specifying muscle fatigue, injury or atrophy, we can yield different control solutions

that favor healthy muscle. As there can be many (or no) solutions to this inverse problem, we

demonstrate how the space of possible solutions can be filtered to an optimal representative.

1.1 Motivation

Kinematic and dynamic techniques have traditionally provided character animators with high-

level skeletal control. Used alone, kinematics is insufficient in dealing with hand motion,

since inverse kinematics (IK) algorithms typically deal with constraints along a single chain,

whereas a multi-appendage, limb-like human hand requires complex constraints among joints

of different chains. In dynamics, a character is modeled using a spring-damper system of rigid

bodies and muscles. The control problem associated with dynamics can be resolved using PD

controllers. However this disregards the complex interaction among muscles and joints.

In medical science, computer graphical models are effective tools for visualizing human move-

ment, displaying musculoskeletal configuration, and analyzing forces in motion for educational

and surgical purposes. Combining the principles of mechanics, and measurements from hand

anatomy, biomechanical models are developed to analyze muscle function, study movement
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abnormalities, design new medical products, and guide surgery.

Our goal is to build a skeletal musculo-tendon model of the hand that combines computer

graphics, physical mechanics and anatomical and clinical measurements for unconstrained

hand motion. Such a model would provide forward simulation capabilities for visualization

and pose prediction. This is useful in understanding the functionality of each hand muscle.

We could derive inverse dynamics control solutions for hand animation. This is of particular

interest in a clinical setting to explore biomechanical hand function. To verify our biome-

chanical model, we present the system with both synthetic data from simulation and motion

capture data, and minimize the error between the resulting motion from the solutions with the

presented ones. In addition, through a realistic dynamic model, keyframed animation data can

be evaluated and improved upon by using it as the initial conditions to the inverse dynamics

problem.

1.2 Approach

Helping Hand can be divided into three parts: modeling, animation, and control. In this section,

we present a brief description of each part. In subsequent sections of the document, a detailed

description of the techniques, and the method of implementation are given.

Our hand model consists of a complex 3D musculoskeletal model with parameterized musculo-

tendons accurately attached to skeletal components. It is composed of 16 hand joints, with a

total of 24 degrees of freedom, and 41 musclo-tendon units. The bones are modeled as rigid

bodies connected by joints, and musclo-tendon units are attached to the bones at its origin and

insertion points.

To animate the model, our system incorporates anatomical and biomechanical data to perform

(forward) simulation; given a time sequence of musclo-tendon units activations. We use rigid
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body dynamics subject to control forces of musclo-tendon units. External forces from the

environment are ignored. We wish to keep the system simple enough for real-time simulation,

and the equations of motion simple enough such that its derivative can be found symbolically.

Hand motion is computed by solving the equations of motion and integrating them in time

using a stable implicit integrator. By specifying musclo-tendon unit activations at each discrete

time step, one can observe the functionalities of each musclo-tendon unit in isolation or in

combination.

To effect control over a model, we need to solve the inverse dynamics problem, which recov-

ers muscle activations given a set of desired joint orientations. A way is needed to traverse

the large space of physical control solutions to find biomechanically valid if not optimal solu-

tions. This problem is similar to the common issue of control associated with physical systems.

Several different techniques can be used to address this control issue, for example, using a

constraint-based approach [IC87, PB88, WFB87, WK88], or building hand-crafted controllers

[Mil88, TT94]. Since we can formulate our problem in terms of optimization, we have selected

a constraint-based approach. We minimize the error between the target and output joint angles

subject to inequality constraints on the parameters of the objective function; those parameters

are the muscle activations we seek. Using animations either from simulation or motion cap-

ture data, the target joint angles and muscle effort efficiencies are formulated into objective

functions, which are then minimized to recover contraction values.

1.3 Contribution

To summarize, the contribution of our work is a biomechanical, animated human hand model

containing:

• a comprehensive biomechanically realistic human hand and forearm architecture with
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real-time physical simulation using rigid body dynamics. Control forces from the ac-

tuation of 41 musculo-tendon units around 16 joints produce bone rotation based on

mechanical laws and experimental data from studies of human hand anatomy. Joint in-

terdependence is anatomically modeled.

• a constraint based inverse dynamics solution that recovers muscle actuation values for

the purposes of analyzing muscle function and hand animation.

• a graphical interface for visualizing the complex anatomical layout of the hand, and

the output of the system. Controls are provided for the clinical practitioner to vary the

actuation values of the musculo-tendon units and their strength associated with their

capacity to generate force.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. Chapter 2 presents previous work in

anatomy and biomechanics, in computer graphics, and in dynamics relevant to the human hand.

Chapter 3 and Chapter 4 explores the anatomy and biomechanics of the hand and presents our

biomechanical hand model. Chapter 5 discusses the concepts of rigid bodies dynamics, and

mathematical formulation of the equations of motion for our hand model. Chapter 6 provides

an overview of the constraint-based approach and its application in our hand model. Chap-

ter 7 describes the visualization techniques, and Chapter 8 shows the implementation details,

applications and results. Chapter 9 provides conclusions and possible extensions to our work.

Appendix A collects all relevant data from studies in the anatomy and biomechanics of the

human hand and presents them in tabulated format. Appendix B explains the calculation of the

inertia tensor, and Appendix C illustrates the mathematical formulation of the gradient of the

objective function to the minimization problem.



Chapter 2

Previous Work

Research in biomechanical hand model and hand motion spans several areas of interest, in-

cluding anatomy and biomechanics, character animation techniques including forward/inverse

kinematics, dynamic simulation, and motion capture. The problem of controlling the dynamic

system, so that the system will move toward the desired state, must be dealt with. In this

chapter, we present an overview of the work in these areas as they relate to our work.

2.1 Anatomy and Biomechanics

Studies in the anatomy of hand joints, hand tendons and hand muscles provide the basis for

building biomechanical models of the hand. Computer hand models [AHS03, BY94, GE03,

Moc96, MTA+01] are based on the anatomical structure of the hand consisting of a hierarchi-

cal arrangement of bones, as can be found in illustrated anatomy books [AL99]. Studies in the

musculo-tendon configuration provide joint limits and the degrees of freedom associated with

each joint, and they give insights into joint interdependency. However this interdependency is

still poorly understood, and the prevailing view is that both biomechanical and neurological

7
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issues are at play. Until more information is revealed regarding the the muscular and neurolog-

ical aspects of the hand, a complete hand model cannot be developed.

Extensive studies have been conducted by Brand and Hollister [BH99] to describe hand func-

tion. They explore muscle operation, joint co-ordination, and force transmission via tendons. A

thorough description of hand muscles with information about their average resting fiber length,

tension fraction, and moment arms can be found in Brand et al. [BH99]. Although their book is

directed to surgeons planning a tendon transfer operation, it contains valuable empirical infor-

mation that can be used to parameterize a biomechanical muscle model to capture the features

of a particular muscle.

Ng-Thow-Hing and Fiume [NTH01, NTHF02] described different anatomically-based models

for physical and geometric reconstruction of muscles. Physical representation of the muscles

are mathematical models that compute musculo-tendon forces with parameters that relate to

actual physiological measurements of musclo-tendons. One such model that allows empirical

measurements to be used in order to capture the features of any skeletal muscle is the Hill’s

three-element model [Hil38]. In this model, the musculo-skeleton is composed of a contractile

element, a parallel element and a series element. The series element represents the elastic ef-

fects of the tendon and the restorative forces that the tendons generate when they are stretched.

The parallel element and contractile element represents the passive and the active elastic prop-

erties of muscle respectively. In our model, we used Brand and Hollister’s measurements to

parameterize Hill’s three-element model to represent each individual muscle-tendon unit.

Hoy et al. [HZG90] developed a musculoskeletal model for computer simulation studies of

musculo-tendon function and muscle coordination during movement. Although their work is

for the human lower extremity, similar muscle models can be employed for hand muscles.

Biryukova et al. [BY94] constructed a biomechanical model which include 29 principal mus-

cles and degrees of freedom of the hand. Muscles are simplified to be threads with their origins
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and insertions as points. The model approximates real hand dynamics, and an inverse dynam-

ics approach is used to solve for muscle efforts produced during coordinated hand movements.

Our model differs in that we isolated muscles that extend via tendons to multiple digits as in-

dividual musclo-tendon units. Modeling a muscle as separate musclo-tendon units allows us

to capture the effect of different areas of a muscle being simulated, which plays an important

role in producing the sympathetic motion between digits. Furthermore, instead of concern-

ing with muscle efforts required for a given hand movement, we solve for activation values,

incorporating neurology of the hand into our model.

Delp et al. [DL00, TAD03] developed computational tools to create models of musculoskeletal

system that can be used in combination with experimental studies, to answer questions related

to a variety of research and clinical applications. For example, Software for Interactive Mus-

culoskeletal Modeling (SIMM) [DL00], lets users construct computer models of a variety of

musculoskeletal structures which consist of a set of rigid segments connected by joints. Given

muscle activation, a mathematical model of muscle computes the force and moments that each

muscle generates, and the resulting joint motions.

2.2 Hand Models In Computer Science

Hand models in computer graphics, like most articulated figures, are modeled as a collection of

rigid bodies connected by joints with one or more degrees of rotational freedom. Most of the

effort in computer animation of the human hand is concerned with the ability to grasp objects,

and with the modeling of skin deformation associated with the motion [Moc96, MTLT88]. In

[MTLT88] Joint-dependent Local Deformations(JLD) are proposed for hand deformations.

This model is based on two structural layers: skeleton and geometric skin. JLD operators

define a initial coordinate system relative to the initial skeleton for each point on the geometric

skin, and also define a final coordinate systems relative to the final skeleton. Each point is then
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deformed by a change of reference system, producing a new skin that fits the final skeleton. In

[Moc96] Dirchlet free-form deformations (DFFDs) are tailored for hand deformations. Early

work on grasping [RG91] introduced the commonly used joint angle constraintθDIP = 2
3θPIP

to approximate the interdependence of hand joints. [LK95] proposed a model that included

dependence constraints between DIP and PIP joints of each finger and among MCP joints of

the rest of the fingers; this does not capture the interdependencies that exist among the DIP and

PIP joints of different fingers.

Vision researchers solve the reverse problem of computer graphics, and have employed sim-

plified hand models for image-based gesture recognition. [MTA+01] presents a anatomical

human hand model capable of producing gestures in American Sign Language. They used

a forward kinematic approach with a simple set of interactive controls for the positioning of

fingers.

Recently, motion capture techniques have generated considerable interest [KGP02, PB02].

This work shows how motion capture data can be segmented and used to synthesize new mo-

tion, without the numerical complexity involved in simulation and controlling physical-based

system, and less tedious than keyframeing. Kovar et al. [KGP02] presents a method for man-

aging motion capture data by automatically constructing a directed graph, termed asmotion

graph. The motion graph consists of clips of the original motion and automatically generated

transitions between those motion clips. Thus realistic motion can be synthesized by finding

a path on the graph that meets the user’s specifications. [PB02] describes a technique of en-

hancing keyframed animation with motion captured data. Their technique is comprised of two

processes: texturing and synthesizing. By texturing, details are added to degrees of freedom

that were keyframed, and by synthesize, motion are created for degrees of freedom that are

not keyframed. Motion Capture Data has also been used for hand motion synthesis. Elkoura

and Singh in [GE03], adopt a similar data-driven approach to generate realistic hand motion

by using motion captured data to add sympathetic finger motion to arbitrarily animated hands.
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The most comprehensive computer graphical hand model to date is found in the work of Al-

brecht et al. [AHS03]. They developed a human hand model with an anatomical structure suit-

able for real-time physical simulation of muscles, together with elastic skin properties. They

use a hybrid muscle model consisting of pseudo musculo-tendon units which control bone rota-

tion, and geometric muscles which deform the skin. Our work uses a similar hand and muscle

force model. However, their model does not capture the interdependencies of musculo-tendon

units that belong to the same muscle: for example, the Flexor Digitorum Profundus which has

a strong effect on the interdependencies observed among different fingers. While hand neu-

rophysiology is ill-understood, we attempt to capture the set of possible interdependencies by

aggregating related musculo-tendon units. We have also not yet added a skin tissue layer to

our model and have instead concentrated on building a system capable of mapping contraction

values to bone positions, and the reverse procedure of mapping bone positions to contraction

values using optimization techniques.

2.3 Character Animation Techniques

Character animation techniques includes kinematics and dynamics approaches. We will discuss

briefly how they are used in human model positioning.

2.3.1 Forward Kinematics and Inverse Kinematics

Forward kinematics is a method of controlling an articulated object by explicitly defining its

state vector at a specified time. The state vector is given byS = [S1, ...,Sn], whereS1,...,Sn

describes the orientations and positions of all the joints in the articulated model. The joints

are linked in a hierarchical manner, such that changes in the state of one joint along the chain

get propagated down to the end, known as the end-effector. LetX be the the state of the end-
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effector,X = f (S), and is defined by a functional mapping from the all the transformation

of joints up the hierarchy. This method is used in keyframed animation where the animator

specifies the states at keyframes and the computer interpolates the object’s state between these

keyframes. The interpolation forms a trajectory curve, and research focused on manipulating

the shape of the trajectory for increased smoothness of generated motion. For highly articulated

figures, animating with this technique becomes increasingly difficult. Despite its limitation,

this technique provides an animator full control of the states at the keyframes, and thus its use

is prevalent in the animation community.

Inverse kinematics [ZBLN97] is associated with procedural animation where the kinematics

is determined based on implicit instructions rather than explicit positions. It is the reverse

of forward kinematics, where the user defines the desired state of the end-effector and the

algorithm computes a solution that positions and orients all the joints up the chain. Inverse

Kinematics has difficulties in handling systems with many degrees of freedom. They also

have trouble when the problem becomes under-constrained. This technique allows precise

positioning of the end effector, and has been used in human model positioning [ZBLN97].

2.3.2 Dynamic Simulation

Dynamics simulation is extensively used in robotics, biomechanics and computer animation

[AHS03, BW92, Bar96, BY94, GT95, TT94, Wit01]. In this approach, an object’s motion is

governed by laws of physics. Objects have physical properties such as mass, inertia, and en-

ergy, and their states are found by solving a set of ordinary differential equations at discrete time

step. There are various techniques available for integration of ordinary differential equations,

such as Euler integration, implicit Euler integration, Runge-Kutta Method, etc, [PTVF02] to

recover the states.

Simulating the physical behavior of objects can produce more realistic motion. However this
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approach may involve very complex sets of differential equations that are too computationally

intensive for real-time applications. A considerable research effort has been devoted to the

acceleration of physical simulation. Grzeszczuk et al. [GTH98] proposed a new approach to

creating physically realistic animation that exploits neural networks to emulate physical dy-

namics that are trained off-line through the observation of the physics based model in action.

Fang et al. [FP03] described a method for efficient synthesis of highly dynamic motions by us-

ing a set of objective functions and constraints that lead to linear time analytical first derivatives

resulting in fast per-iteration computation times.

The Control Problem

Associated with dynamic simulation is the issue of controlling the dynamic system. There is

a family of force-based constraints method that compute forces to cancel parts of the applied

forces that act against the constraints. They include:

• Dynamic Constraints: use inverse dynamics to find forces that fulfill the constraints.

• Reaction Constraints: supply reactive forces that offset forces violating constraints and

the add forces that fulfill the constraints.

• Penalty Method: add extra energy terms to the minimization problem that penalize vio-

lations of constraints.

• Augmented Lagrange Multiplers: add differential equations to the system that causes the

systems to fulfill multiple constraints. This approach is more suitable for a flexible model

since often more than one constraints must be satisfied.

Constraints can also be expressed with respect to energy, space, or time. [WFB87] formulated

constraints as energy functions, and a search is performed in the model’s parameter space in

the direction specified by the energy gradient, which is the derivative of the energy function
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with respect to the parameters. Through optimization, a solution is found where the energy

function approaches zero indicating that the constraints are satisfied. Isaacs and Cohen [IC87]

in their system, DYNAMO (for dynamic simulation of linked figures), used inverse dynamics

to determine the forces required to perform a specified motion. Spacetime contraints were

introduced by Witkin and Kass [WK88], where constraints on the motion were specified as:

what the character must do, how the action is performed, the physical structure and properties

of the character, and the resources available to the character. These constraints combined with

Newton’s law can be formulated as a constrained optimization problem, where the solution is

a physically valid motion that satisfies the “what” criteria and optimizes the “how” criteria.

Inverse dynamics, to compute force from noninvasive measurements of body motions (posi-

tion, velocity, and acceleration of each segment), is a heavily researched in the biomechanics

community. Since the number of muscles crossing a joint is greater than the number of de-

grees of freedom specifying joint movement, the force developed by each muscle cannot be

determined uniquely. Most attempts to quantify muscle forces in humans are based on the

application of optimization theory. Static optimization is the most commonly used method to

estimate muscle forces during locomotion [AP01b, TAD03]. This method is time indepen-

dent, solving a different optimization problem at each time instant, and is computationally

inexpensive, even when applied to very detailed models of the body. The main disadvantage

of static optimization is that the results depends on the accuracy of the data recorded during a

motion analysis experiment, specifically the positions, velocities, and accelerations of the body

segments. The difficulty in estimating velocity and acceleration from position measurements,

leads to significant errors in the calculated values of the net joint torques and, therefore, in the

estimates of muscle force. Furthermore, it is difficult to include muscle physiology in the for-

mulation of a static optimization problem because estimates of muscle length and contraction

velocity also depend on the accuracy of the measured data. Whereas, dynamic optimization

[AP01b, AP01a] is time dependent, and solves one optimization problem for one complete

cycle of the movement, and thus more computationally expensive. The system equations are
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integrated forward in time, and so the problem may be formulated independent of experimental

data. Muscle physiology can also be easily incorporated in the formulation of the problem.

[TAD03] investigated the problem of computing of muscle excitation patterns that produce

coordinated movements of muscle-actuated dynamic models. The authors introduced a new

algorithm that uses static optimization along with feedforward and feedback controls to drive

the kinematic trajectory of a musculoskeletal model toward a set of desired kinematics. Their

computed muscle excitations were similar in timing to measured electromyographic patterns,

thus improving the feasibility of using detailed musculoskeletal models to simulate and analyze

movement. In [AP01a], they presented a dynamic optimization solution for normal walking

on level ground. They used experimental gait data to specify the initial and final states of

the simulation, formulating a constrained optimization problem. [AP01b] compared the two

methods of optimization, static and dynamic. They showed that the predicted muscle forces

and joint contact forces of the dynamic and static solutions were remarkably similar.

In general, constraint based approaches formulate the control problem as an optimization prob-

lem with the goal of minimizing or maximizing an objective function over a time interval.

The objective function is nonlinear and requires the use of expensive numerical optimization

techniques. Most efficient numerical optimization techniques require the computation of the

objective function’s gradient to formulate the search direction. Therefore, this optimization

approach is restricted in application to fairly simple physical models such as those where their

objective functions’ gradients can be symbolically computed.

Another method of controlling a dynamic system is by motion synthesis. This requires the con-

struction of controllers to generate control functions for a set of actuators to drive the dynamic

model. For instance, the pattern of muscle actuation of snakes and worms was modeled as

sinusoidal waveforms in [Mil88]. Hand-crafted controllers have been developed for both rigid,

articulated figures, as well as deformable models [TT94]. The process of controller synthesis

is difficult and often tedious. To automate the process, optimization techniques that minimize
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a control objective function through repeated forward dynamic simulation and motion evalu-

ation have been used [GT95, GTH98]. In [GTH98], Grzeszczuk presents the NeuroAnimator

which approximates a physical system with neural networks trained through examples, and

subsequently uses the trained network for control synthesis by adjusting the actuation values

through back-propagation of the network error. The system has the advantage of producing

physically valid motion with less computation cost than integration of equations of motion. In

addition, the neural network is differentiable, thus the effect of control forces on the actions

of the model can be easily computed for controller synthesis. This is useful for complex sys-

tems, where the differentiation of the equations of motion is too difficult or computationally

expensive. The drawback of this system is that large amounts of examples must be provided in

training the network, and the off-line training process can be time consuming.

2.3.3 Visualization

Three-dimensional visualization can present human anatomy information in a form that is vi-

sually pleasing and easily understandable. Computerized anatomic atlases have the advantage

of providing various interactive approaches to anatomical information and education. Direct

interaction allows for a better understanding of anatomical structure in spatial relation to their

surroundings. This is an ideal complement to conventional cadaveric dissections. In addition,

3D reconstruction of anatomical structures provides a virtual environment which can realize

surgical planning, virtual surgery, virtual endoscopy, and training simulations. In [HBR+92]

volume based 3D interactive atlases have been generated from cross-sectional images. These

atlases are based on a two layer model of image volumes linked to a semantic network con-

taining descriptive knowledge. Human anatomy information can be presented as volumetric

data, and many traditional techniques for visualizing the inside of this data involve removing

portions of the data to reveal the interior. However, this approach has the disadvantage of

removing potentially important surrounding contextual information. Transparency, segmenta-
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tion, and deformation are some of the techniques used to display the inside of the volume. In

[MTB03], deformations were used for browsing through data: the user can cut into, open up,

spread apart, or peel away parts of the volume in real time, exposing the interior while still

retaining surrounding context. This approach has the advantage of not removing potentially

important surrounding contextual information.



Chapter 3

Anatomy and Biomechanics of the Hand

To appreciate the dynamics of the real hand, it is important to gain a basic understanding of

the key concepts in anatomy and biomechanics. In this chapter, we explore these two fields of

study - anatomy and biomechanics, focusing on work that is relevant to hand modeling.

3.1 Anatomy

Anatomy is a field of science that deals with the structure of the body [AL99, NTH01]. Bone,

ligaments, tendon, muscles and nerves and connective tissue together define the body’s form

and motion. Bones make up the skeleton that defines the structure of the articulated body.

Ligaments bind the bone-ends together, and guide motion to prevent dislocation and excessive

movement that might cause breakage. Muscles provide forces that are transmitted via tendon

to the bone to generate motion. Finally, nerves are transmitters of nerve impulses that cause

skeletal muscle fibers to contract, thus producing force. In the following subsections, we will

focus in particular on the anatomical layout of hand bones and muscles and the functions of

individual hand muscles.

18
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3.1.1 Hand Bones

The bones in the forearm and hand are arranged in a hierarchy as with most limbs in the

body [AL99]. In the forearm, there are two bones,radius, andulna that are located between

the proximal radioulnar (elbow) joint and distal radioulnar joint (wrist). The palm of the hand

consist of eight carpal bones:hamate, capitate, trapezoid, trapezium, scaphoid, lunate, pisi-

form, andtriquetrum. In additional, the palm has five metacarpal bone for each digit of the

hand. Of particular interest is thetrapeziumthat forms a saddle-shaped joint with the 1st

metacarpal bone, allowing the thumb to be opposed, which is essential to human survival.

From the metacarpal bones, three phalanx bones are attached in this order: proximal, middle,

and distal that form the fingers. For the thumb, there are two phalanx bones, proximal and

distal. Refer to [AL99] for diagrams that illustrate this hierarchical arrangement.

3.1.2 Hand Muscles

Muscles of the hand can be grouped according to their locations and their functions [AL99].

They can be categorized into intrinsic (originate in hand) and extrinsic (originate in forearm).

The intrinsic muscles are responsible for delicate finger movements, and the extrinsic muscles

are responsible for flexing and extending of fingers and stabilizing the wrist.

For the extrinsic muscles, the interosseous membrane that connects the radius and ulna serves

as a separator of muscle groups. The extrinsic muscles on the volar side of the membrane are

said to be in the anterior compartment, and generally flex or pronate the hand. They can be

subdivided into three groups: superficial, middle, and deep. The extrinsic muscles on the dorsal

side of the interosseous membrane are said to be in the posterior compartment, and generally

extend or supinate the hand. Figure 3.1 illustrates this grouping. The intrinsic muscles can

be grouped according to the digit they move. Thenar muscles affect the thumb, hypothenar
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muscles the 5th or little finger, and lumbricals and interossei affect digits 2-5. The main actions

of each muscle is tabulated in Table 3.1, and Table 3.2.

3.2 Biomechanics

From the field of biomechanics, models are available to quantify how muscles and tendons

exert force for locomotion. One such model is thelinear spring-dampermuscle model that

simplifies muscle to be spring-like. Springs which exhibit linear forces in the direction deter-

mined by an origin and an insertion point. The force of the muscle can be calculated by:

f m = ks(lm− lmo )−kd
dlm

dt
, (3.1)

whereks is the stiffness coefficient andkd is the damping coefficient of the spring.lm denotes

the length of the muscle, andlmo is its rest length. This representation has worked well with

periodic motions that are inherently sinusoidal, but they may not be suitable for a larger class

of motions that require sudden changes of velocity and may require more nonlinear elasticity

and damping in the dynamics. Biomechanists need a model that has parameters corresponding

to empirical muscle and tendon measurements to capture the features of any skeletal muscle in

a body.Hill’s three-element modelprovides such a parameterizable representation.

3.2.1 Hill Three-Element Muscle Model

To understand how muscles exert tension, we consider active contraction due to nerve stimu-

lus and the muscle’s elastic behavior, which is independent of nerve stimulus. To model the

way muscles exert tension, Hill’s model has three elements [Hil38, NTH01, Zaj89]: the series

element (SE), the parallel element (PE), and the contractile element. The series element and

the parallel element represent the tension exerted by the muscle’s elasticity, and the contractile



CHAPTER 3. ANATOMY AND BIOMECHANICS OF THEHAND 21

Flexor carpi ulnaris (FCU)

Palmaris longus (PL)

Flexor carpi radialis (FCR)

(a) Superficial Layer

Flexor digitorum
superficialis (FDS)

(b) Middle Layer

Flexor pollicis longus 
(FPL)

Flexor digitorum profundus
(FDP)

(c) Deep Layer

Extensor carpi ulnaris
(ECU)

Extensor carpi radialis 
brevis (ECRB)

Extensor carpi radialis 
longus (ECRL)

(d) Superficial Layer

Extensor digitorum (ED)

Extensor digiti minimi
(EDM)

(e) Middle Layer

Extensor indicis (EI)
Extensor pollicis longus (EPL)

Abductor pollicis longus (APL)

Extensor pollicis brevis (EPB)

(f) Deep Layer

Figure 3.1: Anatomical grouping of forearm muscles: (a) - (c) Muscles on the Anterior Surface

of the Forearm, (d) - (f) Muscles on the Posterior Surface of the Forearm



CHAPTER 3. ANATOMY AND BIOMECHANICS OF THEHAND 22

CE

PE

SE

u(t)

l l

l
Hill three-element model

m t

mt

Figure 3.2: the Hill three-element model consisting of the contractile element (CE), parallel

element (PE), and series element (SE).

element represents the tension exerted by active contraction. In the following subsections, each

of the elements will be further discussed in detail.

Series Element

The series element, in series with the contractile element, captures the series elasticity of the

muscle. Series elasticity refers to the elastic effects of the tendon and the small adaptability that

allow sarcomeres to shorten slightly during isometric contraction of the muscle. The tension

produced by the series element can be approximated with a simple quadratic function that is

more suitable for simulation purposes than other more complex forms:

f SE(lSE) =


k · (lSE− lSE

o )2, lSE≥ lSE
o

0, lSE < lSE
o .

(3.2)
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The descriptor SE refers to the series element.lSE, andlSE
o is the length of the tendon and the

slack length of the tendon respectively. Notice that tendon only produce tension when they are

stretched. Since tendon only lengthen to a small extent as the muscle is shortened, such that its

length is fairly constant, we neglect the tension from the series element in our biomechanical

hand muscle model.

Parallel Element

The parallel element, in parallel with the contractile element, captures the parallel elasticity

of the muscle.Parallel elasticityrefers to the elastic tissue that stretches when the muscle

elongates and recoils when the muscle shortens. Tension is produced when the muscle is

stretched beyond its rest length, referred to aspassive contraction, which is independent of

nerve stimulus. The length-tension curve for passive recoil is shown in Figure 3.3.

We approximate the length-tension curve for passive contraction by a simple quadratic func-

tion, wherelm denotes the length of the muscle, andlmo is its rest length:

f PE(lm) =


k · (lm/lmo −1)2, lm≥ lmo

0, lm < lmo .

(3.3)

Contractile Element

The contractile element is associated with force generation from active contraction controlled

by neural control signal. In this paper, we refer to this time-varying neural control signal as the

contraction/actuation valueof the muscle, denoted byc(t). In active contraction of a muscle,

the highest tension is produced when the muscle is at its resting length or isometric length. By

combining the two curves for passive contraction and active contraction, we get theBlix curve

as shown in Figure 3.3.
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Figure 3.3:Blix curveThe normalized version of the muscle’s force-length curve for passive

and active contraction

Through experiments, the force exerted by the contractile element can be summarized by two

important properties:force-lengthandforce-velocity. Force-length property relates the muscle

force to its length. The force-length function is given by:

fCE(lm) = f m
o ·

[
1− lm− lmo

W

2]
. (3.4)

The parameterW controls the width of the concave parabolic curve. The lower ranges of

the curve at which force is zero, are where the normalized length (lm
lmo

) is equal to 0.5 and

1.5. Again,lm denotes the length of the muscle, andlmo is its rest length or isometric length.

The maximum isometric force is denoted byf m
o . Isometric contraction happens when there is

tension on the muscle but no movement is made, causing the length of the muscle to remain the

same.f m
o is different for each muscle, since muscles are capable of exerting varying amount of

tension depending on the density and length of the fibers.f m
o can be estimated as the relative

potential excursion of muscles, and is documented in [BBT81]. Potential excursion is the

distance through which a muscle can contract actively, and if a muscle length is shortened past

this distance, it can no longer exert any tension. The potential excursion is proportional to the

mean fiber length, and the work capacity of a muscle is proportional to its volume of muscle
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fibers. Thus, by dividing the volume by fiber length, the physiological cross-sectional area

(PCSA) of the muscle is determined, which is proportional to the relative tension.

f m
o = 25

N
cm2 ·PCSA. (3.5)

The force-velocity property is the relationship between muscle force and its velocity of short-

ening. The velocity of muscle contraction is inversely proportional to the force. A large force

cannot be exerted in very rapid movements, and that greatest velocities are attained under con-

ditions of low loading. Hill’s hyperbolic equation is as follows, wherevm is the velocity of

muscle shortening:

f m =
f m
o b−avm

b+vm (3.6)

Inversely, we can calculate the velocity from the measured tension:

vm = b
f m
o − f m

f m+a
, (3.7)

vm
o = b

f m
o

a
. (3.8)

vm
o is the maximum velocity of shortening and is experienced when there is no load on the

muscle. The muscle exerts maximal force when it is isometric such thatvm is zero. The

coefficients, a and b represents the effects of temperature and the type of the muscle (slow, fast

or mixed fibers) respectively.

Combining the elements

By combine the effects of all the elements (ignoring the series element), the force generated is

computing by adding the contribution from the parallel and contractile elements:

f m = fPE + fCE. (3.9)
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3.2.2 Muscle line of action

Hill’s three-element model only computes the magnitude of the muscle’s force, and not its

direction. Force direction is computed along its line of action, which can be represented as

a sequence of piecewise linear segments as it extends through one or more joints via tendon.

This introduces some possible inaccuracies. One is that real insertion and origin attachment

regions are areas, not points. This is adequate when the real attachment region is small, as

in the thread-like tendons through the wrist and fingers. The muscle origins on the forearm,

however, are larger. In principle, we should distribute the lines of action over the insertion

area. However, there is no experimental data available on the distribution of muscle effort

within an area of muscle attachment. A piecewise linear approximation also neglects inter-

muscle collision forces as adjacent muscles exert force on one other. The pennation angle,

which relates the orientation of muscle fibers to tendon tissue can also be used to approximate

the force applied to the tendon by the muscle.

In light of the lack of experimental justification for a more complex model, we adopted the

piecewise linear model. To estimate the location of origin and insertion attachment points,

we manually fit digitized muscle fibers and tendon data to our 3D skeleton model using the

production software system calledMaya. Then we estimated the origins and insertions to be

the centers of the muscle or tendon attachments to the bones (see Figure 3.4).

In Chapters 4 and 5 we will discuss how the force-length relationship and the piecewise line

segment approach are used to compute the muscles’ force magnitudes and directions.
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origin wrist (ED2-5)

insertion wrist/origin MCP5 (ED5)
insertion wrist/origin MCP4 (ED4)
insertion wrist/origin MCP3 (ED3)
insertion wrist/origin MCP2 (ED2)

insertion MCP5/origin PIP5 (ED5)
insertion MCP4/origin PIP5 (ED4)
insertion MCP3/origin PIP3 (ED3)
insertion MCP2/origin PIP2 (ED2)

insertion PIP5/origin DIP5 (ED5)
insertion PIP4/origin DIP4 (ED4)
insertion PIP3/origin DIP3 (ED3)
insertion PIP2/origin DIP2 (ED2)

insertion DIP5(ED5)
insertion DIP4 (ED4)
insertion DIP2 (ED2)
insertion DIP3 (ED3)

Figure 3.4: Extensor Digitorum forking into multiple tendons spanning multiple joints.
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Table 3.1: Functions of Extrinsic Muscles

Muscle of Anterior Compartment Main Actions

Pronator teres (PT) Pronates forearm and flexes it

Flexor carpi radialis (FCR) Flexes hand and abducts it

Palmaris longus (PL) Flexes wrist and adducts it

Flexor carpi ulnaris Flexes wrist and adducts it

Flexor digitorum superficialis (FDS) Flexes middle phalanges of medial four digits; acting

more strongly, it flexes proximal phalanges and wrist

Flexor digitorum profundus (FDP) Flexes distal phalanges of medial four digits; assists

with flexion of wrist

Flexor pollicis longus (FPL) Pronates forearm

Pronator quadratus (PQ) Pronate forearm

Muscle of Posterior Compartment Main Actions

Brachioradialis flexes forearm

Extensor carpi radialis longus (ECRL)Extend and abduct wrist

Extensor carpi radialis brevis (ECRB)Extend and abduct wrist

Extensor digitorum (ED) Extends medial four digits at metacarpophalangeal

joints; extends wrist

Extensor digiti minimi (EDM) Extends fifth digit at metacarpohalangeal joints;

and interphalangeal joints

Extensor carpi ulnaris (ECU) Extends and adducts hand at wrist

Abductor pollicis longus (APL) Abduct thumb and extends it at carpometacarpal

joint

Extensor pollicis brevis (EPB) Extends proximal phalanx of thumb at

carpometacarpal joint

Extensor pollicis longus (EPL) Extends distal phalanx of thumb at

metacarpophalangeal and interphalangeal joints

Extensor indicis (EI) Extends second digit and helps to extend wrist
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Table 3.2: Functions of Intrinsic Muscles

Muscle of Hand Main Actions

Abductor pollicis brevis (APB) Abducts thumb and help oppose it

Flexor pollicis brevis (FPB) Flexes thumb

Opponens pollicis (OP) Opposes thumb toward center of palm and

rotates it medially

Adductor pollicis (AP) Adducts thumb toward middle digits

Abductor digiti minimi (ADM) Abducts digits 5

Flexor digiti minimi brevis (FDMB) Flexes proximal phalanx of digit 5

Opponens digiti minimi (ODM) Draws fifth metacarpal bone anteriorly and rotates it,

bringing digit 5 into opposition with thumb

Lumbricals 1 (LUMB I) Flex digit 2 at metacarpophalangeal joint and extend

interphalangeal joint

Lumbricals 2 (LUMB II) Flex digit 3 at metacarpophalangeal joint and extend

interphalangeal joint

Lumbricals 3 (LUMB III) Flex digit 4 at metacarpophalangeal joint and extend

interphalangeal joint

Lumbricals 4 (LUMB IV) Flex digit 5 at metacarpophalangeal joint and extend

interphalangeal joint

Dorsal interossei 1 (DI I) Adducts digit 2 and assist Lumbrical 2

Dorsal interossei 2 (DI II) Adducts digit 3 and assist Lumbrical 3

Dorsal interossei 3 (DI III) Adducts digit 3 and assist Lumbrical 3

Dorsal interossei 4 (DI IV) Adducts digit 4 and assist Lumbrical 4

Palmar interoessei 1 (PI I) Adducts digits 2 and assist Lumbrical 2

Palmar interoessei 2 (PI II) Adducts digits 4 and assist Lumbrical 4

Palmar interoessei 3 (PI III) Adducts digits 5 and assist Lumbrical 5



Chapter 4

Anatomical Hand Model

We have seen that there has been considerable research into the depiction of hand motion. How-

ever, there to date are no computer-animated, biomechanically valid skeletal musculo-tendon

models that can support arbitrary joint interdependencies, forward and inverse dynamics, and

aggregate musculo-tendon strain computation. The components of our hand model are: a joint

hierarchy, a skeleton consisting of 29 bone meshes, and a set of 41 musculo-tendon units at-

tached to this skeleton. In this chapter, we will elaborate on these components.

4.1 Models of Joints

There are 16 joints in our hand model. Joints are modeled as hinges that are capable of rotation

around the principal axes of its right handed co-ordinate systems. In the local co-ordinate

system of a joint, thex-axis is always aligned with the bone that is linking it to its child joint.

We define the thex-y plane as thesagittalplane, in which a rotation around thez-axis is pure

flexion and extension. Thex-z plane is thecoronal plane, where rotations around the y-axis

produce pure abduction (moving away middle finger) and adduction (moving toward middle

30
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Figure 4.1: Hand joint nomenclature

finger). They-z plane is thetraverseplane, and rotating around the x-axis produces internal

and external rotations, similar to twisting the bone.

Referring to Figure 4.1, there are 23 degrees of freedom in the joint system. Each finger has

four, with two DOF for the MCP joint for flexion/extension and adduction/abduction, and one

DOF each for the PIP and DIP of joints for flexion/extension. The thumb has five: one for the

MCP joint, one for the IP joint, and three for the CMC joint. Finally there are two DOF for the

rotation of the wrist. We introduced an extra degree of freedom for the CMC joint of the thumb

because the two axes of rotations are not orthogonal. The flexion/extension of the CMC joint

occurs in the trapezium, and its abduction/adduction occurs in the first metacarpal bone. See

[BH99] for a much more extensive discussion. Table A.1 shows the average ranges of motion

for the joints.
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4.2 Models of Bones

There are 29 bone meshes in total in our hand model. The bones in the forearm and hand are

arranged hierarchically, as are most limbs in the body. As with [BY94], we group bones into 16

different links that join the 16 joints in the articulated hand model (Figure 4.1). The sizes and

masses of each link were gathered from biomechanical sources [BH99, BY94] and measured

from a 3D hand skeleton model, the data is tabulated in Appendix A.

4.3 Models of Muscles

There are in total 41 hand and forearm musclo-tendon units in our hand model. They are

simplified as piecewise line segments having origins and insertion points instead of areas of

attachments. To estimate these points, we manually fit digitized muscle fibers and tendon data

to our 3D skeleton model using Maya(tm). Then we estimate the origins and insertions to be

the center of the muscle’s or tension’s attachments to the bones. These points are tabulated

in Table A.5. It should be noted that these values are relative to our hand skeleton, and thus

not to be taken as valid anatomical data. The points are used for the purpose of calculating

the direction of force exerted on the joint by a muscle or tendon crossing it. Although a more

accurate model would model these points as areas, there is no experimental work available

concerning the distribution of muscle effort inside the areas of muscle attachment. Despite this

simplification, apart from the muscle origins located on forearm, the muscles insertions located

on the wrists and fingers are very much thread-like.

To understand the distinction between muscle and musculo-tendon unit, consider the Flexor

Digitorum Superficialis (FDS), Flexor Digitorum Profundus (FDP), and Extensor Digitorum

(ED)(See Figure 3.4). These muscles originate near the proximal radiocarpal joint (elbow)

and the tendons pass through the MCP and PIP joints of the digits 2-5 (index finger through to
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pinky). Each muscle thus containsfour musculo-tendon units corresponding to each tendon.

The interdependency of related musculo-tendon units of each such muscle produces sympa-

thetic finger motion. This interdependency is ill-understood; it may vary among individuals

and thus cannot be easily quantified. After consultation with anatomists, we discovered that in

general, the musculo-tendon units of FDS can be contracted more independently than FDP and

ED, which are deep muscles. Thus, we coupled the four musculo-tendons units of FPD and

ED so that they are contracted simultaneously, while the four musculo-tendons of FPS units

can be contracted independently.

In chapter 3 we discussed how muscle exerts force. Adopting from [AHS03], we used the same

quadratic curves that they have fitted to the two length-tension curves to calculate the magni-

tude of the force exerted by a muscle. The current fiber length is given byl ∈ [0.6lo,1.6lo], its

resting length is given bylo, and contraction value is given byc∈ [0,1]. Fmax is the maximum

isometric force that can be exerted by a muscle. The contraction force term, corresponds to the

contractile element in Hill’s model, is:

Fc(l) =
[
1−4· (l/lo−1.1)2] ·Fmax. (4.1)

The stretch force term, corresponds to the parallel element in Hill’s model, is:

Fs(l) =


2.77· (l/lo−1)2 ·Fmax, l ≥ lo

0, l < lo.

(4.2)

The total force is thus

F(l) = c·Fc(l)+Fs(l). (4.3)

Fmax can be thought of as relative maximum strength of the muscle, and can be taken from

Brand’s paper [BBT81], in which a muscle’s tension is compared to the total tension of all
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studied muscles, and the ratio of strength from muscle to muscle within the same limb are quan-

tified. These figures are useful for emulating different strengths of muscles in our physically-

based hand model. We should emphasize that these values are relative and involve no numerical

statement of tension. For example, a muscle with a tension fraction of 3 is capable of 50% more

tension than a muscle with a tension fraction of 2. These values do allow us to easily capture

the differences in the relative capabilities of the muscles.

Now that we can easily compute the magnitude of the force exerted, we address how these

forces moves bones and joints. We called the point where the tendon attaches to the bone from

the joint’s center of rotation, thelever arm. Table A.4 tabulates the lever arms of the muscles as

they cross the affected joints. These numbers are taken from graphs and tables from [BH99].

The total effect of a muscle at a joint is given by the torque, which is the cross product of

the lever arm and the force. The magnitude of this cross product is the perpendicular distance

between the axis of the joint and the tendon as it crosses the joint, called the moment arm.

The moment arm determines the effectiveness of the muscle tension at a joint. As a tendon

crosses multiple joints, it may change direction after crossing one joint on its way to another.

However, the tension is the same along the length of the tendon, and is not shared or divided

between joints. At each joint, the moment arm will be different, determining the relative effect

of a muscle at each joint.

In Chapter 5 we will discuss how we use the force directions, and lever arms in the calculation

of torques for simulation.



Chapter 5

Dynamic Simulation

In this chapter we will describe simulation of an unconstrained rigid-body system, and dis-

cuss techniques in integrating equations of motion. Finally, we explain the dynamics of our

physically-based hand model, and the approach we took to perform simulation.

5.1 An Unconstrained Rigid-Body System

A rigid body is composed of particles, and its behaviour can be modelled using particles. In

fact, most of the equations for a system of particles are usable in the dynamics of a rigid body.

The main difference is of course that in the body, such that there is no migration of mass within

a rigid body. As a result, the relative positions among the particles composing a rigid body do

not change. This will further simplify the equations obtained from a system of particles.

In an unconstrained rigid-body system, the motion of the bodies are not constrained by contact

forces that prevent inter-penetration. In a realistic physical system, non-penetration constraints

should be enforced by computing appropriate contact forces between contacting bodies. How-

ever, computing these forces are demanding, as they involve collision detection, calculation

35
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of colliding contact forces and resting contact forces. Thus, in our hand system, we used an

unconstrained rigid-body system in order to keep the system simple enough for real-time simu-

lation and the mathematics simple enough for the constraint-based approach where the gradient

of the objective function needs to be symbolically derived. It should be noted that in our sys-

tem there are limits placed on the rotation angles of the joints (Table A.1) and on the length

of the muscles as they stretch or contract. This is to prevent the joints from rotating past their

physical limits, and likewise, to prevent the muscles from stretching or contracting past their

physical limits.

We now present a brief a overview of simulating a physical system ofn rigid bodies. Let~Si

be the state vector for a single rigid bodyi at timet, where~xi is position,~θi is rotation,~vi is

velocity, and~ωi is angular velocity. We write the state vector as

~Si(t) =



~xi(t)

~θi(t)

~vi(t)

~ωi(t).


(5.1)

For a system with n rigid bodies, the system’s state vector is

~S(t) =


~S1(t)

...

~Sn(t).

 (5.2)

To simulate the motion of rigid bodies, the forces and torques at any given time need to be

computed. Let~F(t) be the force, and~T(t) be the torque acting on our system at timet. They

are both vectors of length 3n. Let M be the 3n by 3n diagonal mass matrix whose off-diagonal
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elements are zero, and whose diagonal elements are [m1,m1,m1,m2,m2,m2, . . . ,mn,mn,mn].

Similarly let I be the inertia tensor matrix, with dimension of 3n by 3n, with the diagonal

elements are [I1, I2, . . . , In], whereIi is the 3 by 3 inertia tensor for rigid body i. The equations

of motion are as follows:
d
dt

~v(t) = M−1~F(t), (5.3)

d
dt

~ω(t) = I−1 ~T(t). (5.4)

Using these equations, we can write first order differential equations for the state vector at time

t:

d
dt

~S(t) =
d
dt



~x(t)

~θ(t)

~v(t)

~ω(t)


=



~v(t)

~ω(t)

M−1~F(t)

I−1~T(t).


(5.5)

To simulate the system, we need to solve a problem involving ordinary differential equations.

The next section highlights some of the methods in accomplishing this.

5.2 Integration of Ordinary Differential Equations

Problems involving ordinary differential equations can be to decompose to a set of first-order

differential equation. The following is a typical second-order equation of motion:

m
d2x
dt

+k
dx
dt

= F(t), (5.6)

can be rewritten as two first order equations

v(t) =
dx
dt

, (5.7)

d2x
dt

=
F(t)−kv(t)

m
. (5.8)
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There are many methods of solving ordinary differential equations (ODE). They differ in their

computational complexity and stability. For example, explicit euler integrator is the simplest.

However, the time-step taken must be small or else the system will become unstable. In con-

trast, implicit euler integrator is more complex, but a larger time-step can be taken in simula-

tion. In this section will discuss the following types of integrators:

• Explicit Euler method,

• Implicit Euler method,

• Runge-Kutta method.

A deeper treatment of this material can be found in a textbook on scientific computation, such

as [PTVF02].

5.2.1 Explicit Euler Method

The formula forExplicit Eulermethod is

yn+1 = yn +h f(yn) (5.9)

Note that the derivative information is only used at the beginning of that interval, and by power

series expansion, it can be observed that it is only first order accurate.

yn+1 = yn +h f(yn)+
h2

2
ḟ (yn)+ . . . (5.10)

Explicit Eulermethod is very simple but not recommended for practical use, since it is not very

accurate, and unstable.
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5.2.2 Implicit Euler Method

The formula forImplicit Euler method is

yn+1 = yn +h f(yn+1) (5.11)

This requires the function be evaluated at a future time step, thus,f (yn+1) is approximated as

f (yn+1) = f (yn)+
∂ f
∂y
|yn(yn+1−yn) (5.12)

Implicit euler method is also only first order accurate but it is stable, and is thus a more suitable

method for ODE integration.

5.2.3 Runga-Kutta Method

Runga-Kuttaor midpoint methods propagate a solution over an interval by combining the

derivative information from several Explicit Euler steps. Instead of taking one complete step,

we take steps to the midpoint of the interval as illustrated below

k1 = h f(yn) (5.13)

k2 = h f

(
yn +

1
2

k1

)
(5.14)

yn+1 = yn +k2 (5.15)

This method is second order accurate, but it is not fast unless the computation of derivatives

happens to be cheap. More steps can be used, as in the fourth-order Runge-Kutta method. The

step-size can also be adaptive for gains in efficiency so that smaller steps are used for areas

where the function changes rapidly, and larger steps only for areas where the function is fairly

flat.
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5.3 Dynamic Simulation of Hand Model

In this section we explain the equations of motion of our hand model. Joints have degrees of

freedom only in orientation and not in position, since they cannot be translated unless they are

skeletally dislocated. Let~Si be the state vector for a single rigid bodyi at timet. We let~θi be

its spatial rotation and let~ωi be its angular velocity. The state of jointi is represented by

~Si(t) =

 ~θi(t)

~ωi(t)

 . (5.16)

To compute the total torque at jointi, we need to sum up all the contribution of torques from

every muscle that crosses jointi. Let ~r j denote the lever arm and~Fi, j denote the force of the

muscle j on joint i. We also introduce a set of weights,~α=[α1,α2, . . . ,αM], to control the

amount of contribution to the total tension that a muscle can exert at timet. These weights

have a value between zero and one, and model the effect of muscle fatigue. For instance, a

muscle with a weight value of zero cannot exert any tension at all, whereas a muscle with a

weight value of one exerts tension as in normal operation. If an arbitrary number ofmmuscles

crosses jointi, then its total torque,~Ti at timet is given by

~Ti(t) =
m

∑
j=1

~r i, j ×α j(t)~Fi, j(t) . (5.17)

We defineF̂i, j to be a unit vector indicating force direction, and leti i, j andoi, j be respectively

the insertion and origin points for musclej at joint i. The force~Fi, j can be computed by

~Fi, j(t) = [c jFc, j(l j)+Fs, j(l j)]F̂i, j , (5.18)

where

F̂i, j =
i i, j −oi, j

||i i, j −oi, j ||
. (5.19)

Let I i be a 3×3 inertia tensor for jointi, and kµ be the coefficient of friction. The second-order

ordinary differential equation of motion for jointi is given by

~Ti(t) = I i(t)
d
dt

~ωi(t)+kµ~ωi(t) . (5.20)



CHAPTER 5. DYNAMIC SIMULATION 41

and can be rewritten as two first-order ordinary differential equations:

d
dt

~θi(t) =~ωi(t),

d
dt

~ωi(t) =I−1
i (t)

(
~Ti(t)−kµ~ωi(t)

)
= f (~ωi(t)) .

(5.21)

Now we extend to a system ofn joints, where~θ , ~ω, ~T are 3n×1 vectors,I is a 3n×3n matrix.

Using theImplicit Euler method for integration,

~ωt+1 =~ωt +∆t f (~ωt+1)

=~ωt +∆t

(
f (~ωt)+

∂ f
∂~ω

|~ωn
(~ωt+1−~ωt)

)
.

(5.22)

Expressing~ωt+1−~ωt as∆~ω,

∆~ω =∆t f (~ωt)+∆t
∂ f
∂~ω

|~ωn
∆~ω

f (~ωt) =∆~ω

(
1
∆t
− ∂ f

∂~ω
|~ωn

)
.

(5.23)

Substituting Equation 5.21 forf (~ωt) and differentiating with respect to~ω to obtain ∂ f
∂~ω
|~ωn

=

−kµ I−1
t ,

I−1
t

(
~Tt −kµ~ωt

)
=∆~ω

(
1
∆t

+kµ I−1
t

)
~Tt −kµ~ωt =∆~ω

(
I t

∆t
+kµ

)
.

(5.24)

The system of equations are in the form ofA~x=~b, where

~x =∆~ω,

A =
I t

∆t
+kµ ,

~b =~Tt −kµ~ωt .

(5.25)

We can solve the above for∆~ω by LU decomposition. Once∆~ω is found we can update the

state vector as follows:
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~ωt+1 = ~ωt +∆~ω, (5.26)

∆~θ = ~ωt+1∆t, (5.27)

~θt+1 = ~θt +∆~θ . (5.28)

We also compute the new length of musclej as

l j = l j −
n

∑
i=1

∆~θ ·~r i, j (5.29)

where,

l j =


1.5· lo , l ≥ 1.5· lo

0.5· lo , l ≤ 0.5· lo,
(5.30)

to clamp the length of the muscle is its upper and lower limits of 1.5· lo and 1.5· lo respectively.

To computeI effectively, we need to look to the geometry of the hand. For the purposes of

computing moments, all joints but the radiocarpal joint (wrist) can be approximated as a se-

quence of one or more rigid cylinders or rods of constant circular cross-section. This reduces

the inertia tensor to a moment of inertia with an analytic solution for each joint approximated

in this fashion. For the wrist, we assume a constant inertia tensor and compute it once prior to

simulation. The tensor is approximated by distributing points on the surface of the joint, calcu-

lating moments of inertia in a pointwise fashion and accumulating the result. The mathematics

for inertia tensor computation is in Appendix B.



Chapter 6

Control: Constraint-based approach

The technique of using energy constraints on parameterized models was introduced in [WFB87].

Constraints are expressed asenergy functionson the model’s parameter space, which are non-

negative functions with zeroes at the points satisfying the constraints. A scalar function over

the parameters is obtained by summing these energy functions, and the objective is to find a set

of model parameters that minimizes the scalar function. In this chapter we describe the control

of our system using energy constraints. First, an explanation of the concept behind energy con-

straints is presented, followed by the formulation of the constraints functions for our system.

Subsequently, the process of minimizing these function is described.

6.1 Energy Constraints of Hand Model

In a forward physical simulation, the model predicts the motion given a set of forces as inputs.

The forward model’s outputs are the rotation angles and the angular velocities forn joints, and

the inputs aremmuscle contraction values. Our control algorithm is to recover the contraction

values given a sequence of desired rotation angles and angular velocities, which could originate
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from keyframed animation or motion-capture data. With the recovered contraction values, we

can forward simulate the model to produce animated joint movements that closely match target

poses. Thus consider the forward simulation as a functionf that maps a set ofm contraction

values to 3n rotation angles,~θi , and 3n angular velocities~ωi :

~y = f (~c) =



~θ1

~ω1

...

~θn

~ωn


, (6.1)

where the contraction values form muscles are~c = (c1,c2, . . . ,cm), and the function output~y,

is a 6n×1 vector, since~θi , ~ωi are each 3×1 vectors. Let the targets be~t = (t1, t2, . . . , t6n) over

n joints. We formulate theenergy functionor theobjective functionas

E( f (~c)) = ws
1
2

Es(~y)+wc
1
2

Ec(~c)+wm
1
2

Em(~c) . (6.2)

This is a weighted sum with scalar weightsws, wc, andwm of the termsEs, Ec, andEm which

respectively evaluate the motion, the controller, and the number of muscles contracted. By

minimizing the motion evaluation termEs, we seek to minimize the distance to the desired

goals. Minimizing the controller evaluation termEc promotes a preference for contraction

values with lower amplitudes. Finally, minimizing the number of muscles contracted using

Em prefers a solution that uses the fewest number of muscles. Mathematically, these energy

function terms are expressed as

Es(~y) = ||~t− f (~c)||22 , (6.3)

Ec(~c) =
1
2
||~c||22 , (6.4)

Em(~c) =
||U(~c−co)||1

m
, (6.5)
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where|| · ||2 denotes 2-norm of a vector, and|| · ||1 denotes the 1-norm.U(c− co) denotes a

unit step function withco chosen to be close to zero:

U(t− to) =


1 t ≥ co,

0 t < co.

(6.6)

Thus we see thatEs constrains the states of the model by measuring the error between the output

of the simulator and the target.Ec maximizes the efficiency of the controller by summing the

amplitudes of the contraction values.Em minimizes the number of muscles contracted by

counting all the contraction values greater thanco.

Since the energy function and its gradient are the weighted sum of its constraints, adding more

constraints to the system is simple. The energy function is solved by minimizing the sum of

the nonnegative objective functions associated with all the goals

E(~c) = ∑
i

wiEi . (6.7)

6.2 Minimization of Function

The constraint-based approach poses an optimization problem such that given a function with

one or more independent parameters, we want to find values for those parameters wheref

takes on a minimum or maximum value. There are various plausible optimization algorithms.

Some only involve evaluations of the function, and others also require the evaluations of the

the function’s partial derivatives with respect to all parameters. In general, the cost of opti-

mization involves evaluatingf and perhaps also its gradient multiple times. Algorithms that

use derivative information are more powerful but more computationally intensive.

Recall from Eq. 6.1 that the forward dynamics operationf is a nonlinear function ofmmuscle

contraction values that are all in [0,1]. L-BFGS-B, a limited memory algorithm for solving
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large nonlinear constrained or unconstrained optimization problem [?] is used for optimization.

At each iteration, the optimizer requires a scalar value of the function evaluated at the current

point in parameter space, and its vector gradient. For more details regarding the algorithm, refer

to [BLN95]. A thorough description of the calculation of the gradient is found in Appendix D.

6.3 The Constrained Simulation Loop

The simulation of the constrained system is similar to the unconstrained case. At each discrete

time-step, evaluations of the function are performed by solving the ordinary differential equa-

tions as in the unconstrained case, with the addition of derivative evaluations. There will be

multiples of these evaluations per time-step until convergence of the optimization algorithm is

reached.

A routine problem in optimization is that of finding a local optimum that is globally subopti-

mal. A global extremum optimizes the function. A local extremum is the highest or lowest

value of the function within an interval. The quality of the result of the optimization algorithm

is dependent on the initialization of the global parameters. If the initial guess is good, then

convergence is quick, and the value of the energy function is small enough, indicating that the

goals are satisfied. However, if the initial guess is bad, that the output of the algorithm is a poor

local minimum, and the value of the energy function may be too large. To avoid bad initial-

ization, we first define a threshold on the value of the energy function,energyThreshold, and

define the maximum number of trials,maxTrial. Then we repeat the optimization procedure

until the value of energy function is less thanerrorThresholdor the number of trials exceeds

maxTrial. At each iteration we use the local minimum found in the previous iteration as initial

parameters. The set of parameters that produced the lowest energy function value is kept. To

summarize, the steps in the simulation loop is shown:
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While (energy≥ energyThreshold or trial≤ maxTrial){

1. Initialize parameters,~c

2. Optimize parameters:

(a) Evaluate energy function

(b) Evaluate gradient energy function

(c) Perform a LBFGS approximation to the Hessian Matrix

(d) Compute search direction

(e) Perform line search in the direction computed

(f) Repeat steps (a) to (e) until one of the LBFGS stopping conditions is reached

(g) Return energy’

3. If (energy’≤ energy) energy = energy’, and save parameters,~c

}

Once a stopping conditions is met, the system is simulated with the saved parameters, and we

proceed to next time-step in the animation. At the end of the animation, the result would be a

set of parameters key-framed at each time-step.

More than twenty tendons cross the wrist joint. This makes it difficult to search efficiently

for a control solution that simultaneously minimizes all joint errors. We thus first minimize

the objective function by omitting the wrist joint. Once a solution for all joints except the

wrist is found, we invoke the equations of motion with the candidate joint contraction values to

evaluate the resulting error in the wrist joint relative to the target values. We then formulate the

objective function to minimize this error similar to the procedure we just described; however,

we only include as degrees of freedom a restricted set of seven muscles that only affect the

wrist joint. Specifically, these muscles are FCR, PL, FCU, ECRL, ECRB, ECU, and APL,

which act as wrist stabilizers. Finally, we combine the resulting seven joint contraction values

with the previously solved ones and forward simulate the system. The way that muscles of

the hand actually work together is still unknown; that is, it is not known if our nervous system
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activates the finger muscles to induce the desired motion and then activates the wrist muscles

to stabilize the wrist. It is thus possible that our method of isolating the wrist joint may not be

biologically valid and future work will be needed to validate this approach.

6.4 Exploring the Solution Space

Computing an inverse dynamics solution is a challenging problem due to the redundancy of

muscles that allow different set of muscles to be used to give similar motion. We used various

clinically motivated heuristics for repetitive strain injury (R.S.I.) diagnosis to explore the solu-

tion space by simulating muscle fatigue by means of setting musclo-tendon unit weights, and

solving once again for an alternative solution.

User-controlled. The weight attached to musculotendon units can be manipulated by the user

to selectively disable musclo-tendon units from the solution by assigning weights of zero, or

to lessen theirc a with smaller weights. Figure 6.1(a) and (b) shows animation curves of the

inverse solutions to the forward simulated motion of flexing the MCP index joint. Comparing

the results of performing inverse simulation with all of the musclo-tendon units, and with only

the active musclo-tendon units plus a small subset enabled, the latter approach gives a more

accurate match to the target motion.

Top-usage. This approach makes use of previous solutions to find the musclo-tendon units

that are mostly used by summing up their contraction values throughout the entire animation

sequence. Thus, the primary muscles will be assigned a weakened weight in the inverse simu-

lation. Figure 6.1(d) shows the results of this approach.

Threshold. This approach also makes use of previous solutions to find fatigued muscles by

searching for musclo-tendon units with their contractions or lengths exceeding the set thresh-

olds. Thus, musculo-tendon units that are stretched or pulled or contracted past their thresholds
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are assigned a weakened weight. Figure 6.1(e) shows the results of this approach.

Random Combination. In this approach we randomly select an user-defined number of

musclo-tendon units and assign a weakened weight to them. Figure 6.1(f) shows the results of

this approach.

Figure 6.1 shows the results using the various techniques for simulating muscle fatigue out-

lined above. The results are worse compared to the best fit solution, as would be expected.

This approach to the musculoskeletal hand control problem is the first we have seen in the lit-

erature, and it has some useful properties. First, it recognizes that while the forward simulation

problem is deterministic, the inverse problem is more complicated: there can be many different

control solutions to achieve the same motion. While this is true of most inverse problems in

animation, the solution space for our control system is of extremely high dimensionality. Our

two-step approach has to date given us very good results. Second, as we will describe shortly,

because it is possible to create different affinities for muscle activations, our control method is

able to search for quite different solutions in the case, for example, of muscle fatigue, pathol-

ogy or atrophy. Third, because our physical model captures captures crosstalk across muscles

and joints, the control solutions will naturally exhibit this effect. Our model reflects the fact

that the human hand is not composed of a set of fully independently adjustable actuators.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.1: Exploring inverse solution space: (a) Animation curve of inverse solution for MCP2

using all muscles, (b) Animation curve of inverse solution for MCP2 using a superset of ac-

tive muscles, (c) Best Fit Solution (d) Solution without primary muscles, (e) Solution without

fatigued muscles, (f) Randomly weighted solution.



Chapter 7

Visualization

This chapter describes the visualization techniques used to present the intricate anatomical data

of the hand in a comprehensible manner.

7.1 Visualization Techniques

Due to the complexity of the anatomical information of the hand, it is a challenging task to

present it in a form that is visually pleasing, and easily understandable. We have implemented

a variety of visualization techniques to depict hand animation. Our goal through these vi-

sualization techniques is to present the architecture and motion of the hand to clinicians and

animators in ways that illuminate hand function. Our techniques are inspired from anatomi-

cal atlas [AL99], plastination techniques (Figure 7.3a), and existing techniques of visualizing

volumetric data [MTB03].
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7.1.1 Transparency

We demonstrate muscle activity through the use of opacity (see Figure 7.1.1) producing less

obscured view of actively contracting muscles. The transparency of the muscle-tendon units

changes linearly with its contraction value, such that they are semi-transparent when there is

no contraction and become fully opaque when fully contracted.

(a) (b)

Figure 7.1: Muscle contraction controlling transparency: (a) No muscle activated (b) One

muscle activated

7.1.2 Muscle Deformation

Muscles also bulge under tension. See Figure 7.1.2 which is visually easier to perceive

than variations in lengths, providing compelling feedback on muscle contraction. To accom-



CHAPTER 7. VISUALIZATION 53

plish this, for each musculo-tendon unit, two blend shapes are created for the contracted and

stretched appearance. The musculo-tendon unit’s length attribute controls the factor of blend-

ing between these shapes.

(a) (b)

Figure 7.2: Muscles bulge under tension: (a) Muscle at rest length (b) Muscle at contracted

length.

7.1.3 Spreading

The complex and compacted muscle architecture of the hand makes it difficult to visualize the

deep structures. Adopting from [AL99], we categorized the forearm musculo-tendon units into

6 groups. Referring to Figure 3.1, three groups for the anterior aspect and three groups for

the posterior aspect of the forearm, and those three group are divided based on depth. Each

group can be “spread” by positioning the associated controller objects. The visibility of each
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group can also be changed by controlling thevisibility attribute of the controller objects. The

“spreading” of muscle is inspired by Gunther Von Hagen’s plastination works [Hag]. His

plastination technique on real human body specimens, including whole bodies, healthy and

unhealthy organs, body parts and slices, reveals significant insights about human anatomy,

physiology and health. To display the anatomical structure of the human hand, muscles can be

peeled, individually or as a group, from their attachment. To keep the attachment information

in context as the muscle is being spread, we attach a cylindrical polygon from the muscle’s end

to its attachment point. Figure 7.3 shows the exploration of hand musculoskeletal architecture

by spreading out muscles, with the selected muscle highlighted and annotated.

(a) (b) (c)

Figure 7.3: Exploring hand musculoskeletal architecture by fanning out muscles, highlighting

and annotating selected musculotendons. Figure (a) shows the motivational plastinated hand

c©Gunther Von Hagen
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7.1.4 Ghosting

We use the technique of ghosting to present the error in the inverse solution, see Figure 7.4. A

ghosted hand (a semi-transparent hand), moving with respect to the targeted motion, is overlaid

on the hand with the inverse solution. The animations of these hands are played simultaneously

to observe the error between the inverse solution and the desired hand configuration. The

ghosted hand’s visibility can be switched on or off according to user’s preference.

Figure 7.4: Ghosted skeleton, highlighted in red, indicates simulation error



Chapter 8

Implementation and Results

This chapter presents the implementation details of the system we callHelping Handand its

clinical and animation applications.

8.1 Modularity of the System

Helping Hand is composed of three modules: the forward simulator, the inverse simulator, and

the muscle’s force model as shown in Figure 8.1. Figure 8.2 shows a screenshot of the Helping

Hand scene implemented inMaya’s animation platform.

The forward simulator takes the muscle activation values and weights as input, which are de-

fined by the user by keyframing the musclo-tendon units’ attributes using theMaya interface.

Figure 8.3 shows the interface for keyframing musclo-tendon units’ contractions. It performs

implicit integration of the equation of motions (described in Chapter 5) for each user defined

time step. Typically, by using a time step no larger than 0.5 seconds, or equivalently 12 frame

step, for a frame rate of 24 frames per sec, allows for stable integration. Using a time step too

large, will yield large fluctuations in rotations and angular velocities. The forward simulator
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UPDATE CURRENT STATE USER INPUTS
- contractions
- muscle weights

PHYSICAL MODEL
- mass
- geometry
- connectivity
- joint DOF
- joint constraintsMUSCLE MODEL

FORWARD
SIMULATOR

FORWARD SYSTEM

(a)

INVERSE SYSTEM

UPDATE CURRENT STATE USER INPUTS
- target data
- muscle weights

PHYSICAL MODEL
- mass
- geometry
- connectivity
- joint DOF
- joint constraints

MUSCLE MODEL

INVERSE
SIMULATOR

SOLVED CONTRACTIONS

FORWARD
SIMULATOR

(b)

Figure 8.1: System architecture of Helping Hand: (a) the forward simulator, (b) the inverse

simulator
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Figure 8.2: Screenshot of the Helping Hand scene implemented inMaya’s animation platform.

To the left is the hand for forward simulation, to the middle is the hand for inverse simulation,

and to the right is the hand for loading in target motion data
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produces finger configurations each frame step, and the resulting animation can be playback

by advancing the time slider in theMaya interface.

The inverse simulator takes finger configurations as input, which are joint rotations, and as an

option angular velocities can also be used. It solves for muscle activation values, producing

finger configurations that conform to the input for each time step. The time step is defined by

the user, and should be chosen according to the number of frames that separate the keyframed

target data. Sources of target data include keyframed animation, motion captured data, or

animation from the forward simulator.

The muscle’s force model defines the computation of the force exerted by the muscle on each

joint. The input to the module is the activation value and the output is the resulting torques at

each affected joint. The modularity of our architecture allows for replacement of the muscle’s

physical model with a more sophisticated one.

8.2 Application and Results

8.2.1 Clinical Application

Helping Hand provides anatomists with tools for visualizing the anatomical structure of hand

muscles and exploring muscles’ functions. Using the forward simulation component, they can

manipulate activation values to obtain the resulting motion for contracting particular muscles.

Figure 8.4 depicts the result from forward dynamics simulation with FDS2 having an activation

of 1 throughout 100 frames of animation. Figure 8.5 depicts the result of the same simulation,

now with FDS2 having a weakened muscle weight of 0.2.

With the inverse simulation component, anatomists can examine which muscles are utilized to

produce unconstrained hand motion. The redundancy of muscles allows different sets of mus-
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Figure 8.3: Interface for keyframing musclo-tendon units’ contractions.



CHAPTER 8. IMPLEMENTATION AND RESULTS 61

(a) (b) (c)

Figure 8.4: Forward simulation sequence due to contraction of non-weakened musclo-tendon

units FDS2.

(a) (b) (c)

Figure 8.5: Forward simulation sequence due to contraction of weakened musclo-tendon units

FDS2.
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cles to be used to give similar motion. This redundancy is essential since in the case of muscle

fatigue or failure, other muscles can be used as temporary replacement or reinforcement. Hand

surgeons are also concerned with the inability of patients to move certain joints, which may be

the result, for example, of either muscle failure or a psychological issue. Thus, anatomists can

manipulate muscle weights using various clinically motivated heuristics for R.S.I diagnosis for

exploring the solution space, as described in Chapter 6, to cause the system to optimize to a

solution that favors the use of muscles with higher weights.

To validate our model against realistic unconstrained hand motion, we recorded a male and

female subject performing various gestures as input to our inverse simulation component. This

data is obtained with a optical motion capture system, by tracking the position of circular

markers, placed at the 16 joints. Using this data, we can validate and, in the future, calibrate

our hand model by observing the errors in the inverse solution. Figure 8.6 shows the result of

the inverse simulation fitted to hand motion capture data. The errors for the digits were quite

small, while, the error for the wrist was the largest, since wrist stabilization is an challenging

biomechanical problem.

8.2.2 Animation Application

Helping Hand can also be used to validate and improve the quality synthesized hand anima-

tion. Keyframed hand poses were linearly interpolated producing hand animation which ig-

nores hand dynamics, since biological motion is nonlinear in nature. Using this data as target

motion data, we obtained an inverse solution that matches every frame of the keyframed mo-

tion. This results in a jittery hand animation due to the difficulty of the hand model to match the

nonrealistic, linear motion. We then performed another inverse simulation matching only the

keyframed postures, producing hand animation that is less robotic and more realistic than the

keyframed animation. The motion curves for the flexion/extension of MCP index joint using
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(a) (b)

(c) (d) (e)

Figure 8.6:Clinical application: (a) and (b) show inverse simulation solutions to motion drills.

Animation application: (c)-(e) show an inverse solution to the motion capture of the letters

”A”,”S”,”L” performed in A.S.L. A ghosted hand shows the fitting error.
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both approaches are shown in Figure 8.7 for comparsion.
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(a)

(b)

(c)

Figure 8.7: Simulating a hand keyframed using motion capture based IK postures. (a) Han-

drix animation, (b) Simulating a hand keyframed using motion capture based IK postures, (c)

Simulation matching only the keyframed postures
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Conclusion

This work is an exploration of the human hand in an anatomical context. We have constructed

a complete anatomically based hand model incorporating the hand and forearm’s muscles, ten-

dons, and bones. A time-varying neural control signal is used to stimulate a musclo-tendon unit

to produce tension according to the Hill three-element model, which allows for a parameteriz-

able representation to capture the individual characteristics of muscles and tendons. The system

takes as input a set of muscle activations and output the resulting finger joint configuration by

(forward) simulation. In addition, we present a solver that can calculate the muscle activations

necessary to achieve a given pose or motion. The strength of a muscle is also parameterizable

to model muscle fatigue, injury or atrophy, thereby yielding different control solutions that

favor healthy muscles. Since the inverse problem can have many (or no) solutions, we demon-

strate how the space of possible solutions can be explored by filtering this space using clinically

motivated heuristics for R.S.I. diagnosis. The resulting motion from both forward and inverse

simulation accounts for joint interdependency as a product of coupling nerve stimuli, muscle

and tendon configurations. The system can take kinematic pose data such as motion capture

or keyframed data as input, and it can predict animation sequences of the hand to fit or indeed

physically improve upon kinematic data. Finally, we explore various visualization techniques
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to present complex anatomical information of the hand in a form that is visually pleasing, and

easily understandable, as inspired by plastination work of Dr. Gunther Von Hagen.

9.1 Future Work

In presenting the first skeletal musculo-tendon hand model with forward and inverse dynamics,

we feel have we accomplished a small first step toward the realistic depiction of hand function.

However, there is much that is still not understood about the human hand, leading to simplifi-

cations of our hand model. Thus, there is much that remains to be done for a construction of a

more accurate anatomically based hand model.

9.1.1 A More Sophisticated Hand Model

In this work, there are simplifications made to the complex anatomy and biomechanics of the

hand. Our model did not incorporate the nerve endings that activate a certain area of a muscle,

thus neglecting the effects of having different areas on the muscle being stimulated. Instead,

we assume that whole muscle contracts evenly and tendon is produced along its line of action,

which are modeled as sequences of piecewise linear segments as it extends through one or

more joints via tendon. This introduces inaccuracies since real insertion and origin attachment

regions are not points, but areas. While this may be adequate when the real attachment region is

small, as in the thread-like tendons through the wrist and fingers, the muscles’ attachments on

the forearm, however, are larger. In principle, we should distribute the lines of action over the

insertion area. However, there is no experimental data available on the distribution of muscle

effort within an area of muscle attachment. A piecewise linear approximation also neglects

inter-muscle collision forces as adjacent muscles exert force on one other. The pennation angle,

which relates the orientation of muscle fibers to tendon tissue can also be used to approximate
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the force applied to the tendon by the muscle.

For muscles that extend to tendons that spans over several digits, such as Flexor Digitorum

Superficialis (FDS), Flexor Digitorum Profundus (FDP), and Extensor Digitorum (ED, the

assumption that the whole muscle contracts evenly is inadequate. Thus, we introduced the

notion of musculo-tendon unit, such that each of such muscle containsfour musculo-tendon

units corresponding to each tendon. The neurology of how these muscles contracts is ill-

understood and differs among individuals. The contraction of related musculo-tendon units

are interdependent, in which different areas of these muscles are more correlated and will

stimulate simultaneously, resulting in the sympathetic joint motion. For example, the activation

sites for the index finger is less correlated than between the other fingers, thus in general we

can move our index finger more independently. Given our musculo-tendon unit model, we

can model these muscles as each having 4 different activation sites. To produce sympathetic

joint motion, we couple the four musculo-tendons units of the FPD and ED so that they are

contracted simultaneously, while the four musculo-tendons of FPS units can be contracted

independently. We are limited to such a simplistic approach until the interdependency can be

somewhat quantified.

This interdependency introduces interesting areas of future work. Since interdependency varies

amongst individuals, we could potentially motion capture different subjects performing a set of

motion drills, and have the solver learn the parameters that best describes the interdependency

for that particular individual. As a result, different hand models can be learnt for different

subjects, including those suffering from hand problems, which will give insights on the reason

why some people are more dexterous than others. There is also considerable room for optimism

that our hand model can be run backward to develop families of hand models and morphologies

for our ancestors, given fossil evidence.

In our model, external forces such as gravity are ignored for the sake of simplicity, allowing

for real-time interactive performance, and for the computation the gradient of the objective



CHAPTER 9. CONCLUSION 69

function. This can be added to get a more realistic representation of the physical environment.

In additional, collision forces between muscles and bones can also be integrated to prevent

interpenetration between digits.

The fundamental challenge of building any anatomically based model, whether for the hand or

other body parts, is that it is impossible to create a generic model that fits all, since anatomical

measurements vary greatly between individuals. Furthermore, there is much still unknown

about the human body, especially the neurological aspect, to be able to create a complete

anatomic model.

9.1.2 Validation and Calibration of Hand Model

The model requires validation against clinical data. To measure the activity of muscles, elec-

tromyography (EMG), a test that assesses the health of the muscles and the nerves controlling

the muscles. A book by J.V. Basmajian [Bas79] contains a rich amount of information about

EMG and hand muscles. For an EMG, a needle electrode is inserted through the skin into the

muscle, and the electrical activity detected by this electrode is displayed on an oscilloscope,

and may be heard through a speaker. Provided that such a test on human subjects is possible,

we can record the muscle activities of subjects as we motion capture them performing motion

drills. Then we can use the recorded data to validate the muscles activations from the inverse

solution. Another approach in validation is to use the measured muscle activity levels as input

to the forward simulation, and then measure the difference in the resulting motion from the

motion captured.

Another improvement to our hand model is to measure the physical lengths of muscles tendons

and moments, and bones of a real subject from MRI scans as done in [KM04]. This will

generate more accurate results than using the average values obtained from cadavers, since

individuals have varying muscles lengths and bone lengths.
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The parameters of the muscles such as their strength, that are captured by Hill’s three element

model, are currently based on averaged values. Thus, these parameters needs to be calibrate

against real data. One approach is to measure the error between the forward simulation motion

when using generic muscle parameters, with the motion captured. Then we tweak the relative

strength of the muscles, thereby, changing the amplitude of the blix curves, to see if are more

accurate match is achieved.

9.1.3 Visualization

Better visualization techniques can be developed for better bone/muscle/joint interactions. For

example, muscle and tendon can cause deformation to adjacent tissues such as other muscles

and the overlying skin. As in [AHS03, Moc96, MTLT88], our hand can be augmented with a

skin model for the deformation of the skin associated with the motion.



Appendix A

Hand Data

This appendix accumulates all relevant data from [AL99, BY94, BBT81, BH99] for the hand

model.

A.1 Hand Joints and Bones Data

The limitations of the joints’ rotations in our model are listed in Table A.1. The local coordinate

systems of the joints have flexion/extension about the z-axis, and abduction/adduction about

the y-axis. Opposition combines flexion and abduction, so that the thumb is folded over the

palm, with its tips touching the pads of the fingers. Reposition is the reverse of opposition.

Table A.2 lists the length, radius, thickness and mass of the links described in Section 3. The

values are shown in both unnormalized and normalized form. To normalize the length, we

divided the measured length of the link by length of the hand, which is measured as the distance

from the center of the radiocarpal joint to the tip of the third digit. The link’s radius, width and

thickness are normalized by dividing by the link’s length. The mass of a link is assumed to

be equal to the masses of corresponding bones plus all adjoining muscles, and divided by the
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mass of the whole hand. These mass ratios are from [BY94].
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Table A.1: Average Range of Motion for Hand Joints

Joint/DOF Motion Range (degree)

Distal Radiocarpal (Wrist) Extension 0–70

Flexion 0–80

Radial Deviation 0–20

Ulnar Deviation 0–30

Carpometacarpal (CMC) Thumb Extension 0–20

Flexion 0–15

Abduction 0–70

Adduction 0–20

Opposition Tip of thumb to

pad of fifth digit

Metacarpophalangeal (MCP) ThumbFlexion 0–50

Interphalangeal (IP) Thumb Flexion 0–80

Metacarpophalangeal (MCP) Extension 0–10

Flexion 0–90

Index Abduction 0–20

Adduction 0–20

Middle Abduction 0–10

Adduction 0–10

Ring Abduction 0–15

Adduction 0–5

Pinky Abduction 0–20

Adduction 0–5

Proximal Interphalangeal (PIP) Flexion 0–100

Distal Interphalangeal (DIP) Extension 0–10

Flexion 0–90
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Table A.2: Lengths, Radius, Thickness, and Mass of Hand Bones

Joint/DOF length (x) radius (z) thickness (y) mass

l (cm) l
L r (cm) r

l t (cm) t
l

m
M

Wrist 19.77 0.451 6.575 0.333 3.445 0.174 0.662

CMC Thumb 11.396 0.26 1.766 0.155 1.856 0.163 0.121

MCP Thumb 7.588 0.173 1.52 0.200 1.837 0.242 0.22

IP Thumb 6.57 0.150 1.06 0.192 0.919 0.161 0.014

MCP Index 10.38 0.237 1.516 0.146 1.75 0.168 0.030

PIP Index 6.57 0.150 1.103 0.192 1.38 0.240 0.014

DIP Index 5.29 0.121 0.605 0.190 0.863 0.271 0.007

MCP Middle 11.12 0.254 1.534 0.136 2.10 0.190 0.033

PIP Middle 7.446 0.173 1.243 0.167 1.80 0.242 0.016

DIP Middle 5.29 0.121 0.724 0.190 1.12 0.294 0.007

MCP Ring 10.65 0.243 1.27 0.119 2.055 0.193 0.022

PIP Ring 7.35 0.168 1.165 0.172 1.750 0.258 0.015

DIP Ring 5.29 0.121 0.621 0.190 0.956 0.292 0.007

MCP Pinky 8.58 0.196 1.158 0.147 1.21 0.155 0.018

PIP Pinky 5.29 0.121 0.985 0.190 1.181 0.228 0.007

DIP Pinky 5.0 0.116 0.401 0.150 0.91 0.341 0.004

L=length of hand=43.83076923cm M=mass of hand
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A.2 Hand Muscles Data

Table A.3 shows the relative strength and the resting fiber lengths for principal hand muscles.
These values are from Brand’s study of relative muscle strength for the purpose of tendon
transfer in [BBT81]

Table A.3: Hand Muscles Fiber Lengths and Tension Fractions
Muscle Name Resting fiber length (cm) Tension Fraction (%)

Flexor Carpi Radialis 5.2 4.1
Palmaris Longus 5.0 1.2
Flexor Digitorum Superficialis Index 7.2 2.0
Flexor Digitorum Superficialis Middle 7.0 3.4
Flexor Digitorum Superficialis Ring 7.3 2.0
Flexor Digitorum Superficialis Pinky 7.0 0.9
Flexor Carpi Ulnaris 6.7 4.2
Flexor Digitorum Profundus Index 6.6 2.7
Flexor Digitorum Profundus Middle 6.6 3.4
Flexor Digitorum Profundus Ring 6.8 3.0
Flexor Digitorum Profundus Pinky 6.2 2.8
Flexor Pollicis Longus 5.9 2.7
Extensor Carpi Radialis Longus 9.3 3.5
Extensor Carpi Radialis Brevis 6.1 4.2
Extensor Digitorum Index 5.5 1.0
Extensor Digitorum Middle 6.0 1.9
Extensor Digitorum Ring 5.8 1.7
Extensor Digitorum Pinky 5.9 0.9
Extensor Digiti Minimi 5.9 1.0
Extensor Carpi Ulnaris 4.5 4.5
Abductor Pollicis Longus 5.7 1.3
Extensor Indicis 5.5 1.0
Abductor Pollicis 4.6 3.1
Extensor Pollicis Brevis 4.3 0.8
Abductor Digiti Minimi 4.0 1.4
Flexor Digiti Minimi Brevis 3.4 0.4
Abductor Pollicis Brevis 3.7 1.1
Flexor Pollicis Brevis 3.6 1.3
Opponens Pollicis 2.4 1.9
Adductor Pollicis 3.6 3.0
Lumbrical I 5.5 0.2
Lumbrical II 6.6 0.2
Lumbrical III 6.0 0.1
Lumbrical IV 4.9 0.1
Palmar Interosseus 1.5 1.3
Palmar Interosseus II 1.7 1.2
Palmar Interosseus III 1.5 1.0
Dorsal Interosseus I 3.2 2.5
Dorsal Interosseus II 2.5 1.4
Dorsal Interosseus III 2.0 1.5
Dorsal Interosseus IV 1.7 1.5
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Table A.4 lists the principal muscles of our system with the affected joints and the lever arms at

the joint. The lever arm measurements can be found in [BH99]. Consider the configuration of

the hand with the palm faced down, for the finger joints, the x-axis of the joint local co-ordinate

is in the direction along the bone, the y-axis is pointing down, and the z-axis is pointing towards

the 5th digit. Therefore, a positive lever arm in the y-axis produces extension, while a negative

value produces flexion. Abduction/adduction is more complicated since abduction at the 2nd

digit rotates in the same direction as adduction at the 4th and 5th digit. A positive lever arm in

the z-axis produces adduction for the 2nd digit and abduction of the 4th and 5th digit. Likewise,

a negative lever arm in the z-axis produces abduction for the 2nd digit and adduction of the 4th

and 5th digit.

Table A.4: Hand Muscles Lever Arms
Muscle Name Affecting Joint(s)/DOF Lever Arm (cm)

x y z

FCR wrist 0 1.75 -1.05
PL wrist 0 2.1 -0.15
FDS II wrist 0 1.5 0.3

MCP Index 0 1.19 0.17
PIP Index 0 0.62 0

FDS III wrist 0 1.5 -0.15
MCP Middle 0 1.19 0
PIP Middle 0 0.62 0

FDS IV wrist 0 1.5 0.52
MCP Ring 0 1.19 -0.17
PIP Ring 0 0.62 0

FDS V wrist 0 1.5 0.75
MCP Pinky 0 1.19 -0.17
PIP Pinky 0 0.62 0

FCU wrist 0 1.85 0.15
FDP II wrist 0 0.6 -0.32

MCP Index 0 1.11 0.6
PIP Index 0 0.79 0
DIP Index 0 0.41 0

FDP III wrist 0 0.6 0.15
MCP Middle 0 1.11 0
PIP Middle 0 0.79 0
DIP Middle 0 0.41 0

FDP IV wrist 0 0.6 0.32
MCP Ring 0 1.11 -0.6
PIP Ring 0 0.79 0
DIP Ring 0 0.41 0

FDP V wrist 0 0.6 0.5
MCP Pinky 0 1.11 -0.6
PIP Pinky 0 0.79 0
DIP Pinky 0 0.41 0
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Muscle Name Affecting Joint(s)/DOF Lever Arm (cm)
x y z

FPL wrist 0 1.3 -0.5
CMC Thumb 0 1.0 1.0
MCP Thumb 0 0.75 0

IP Thumb 0 0.55 0
ECRL wrist 0 -1.0 -2.1
ECRB wrist 0 -1.3 -1.2
ED II wrist 0 -1.3 -0.55

MCP Index 0 -0.86 -0.02
PIP Index 0 -0.28 0
DIP Index 0 -0.22 0

ED III wrist 0 -1.3 0
MCP Middle 0 -0.86 -0.02
PIP Middle 0 -0.28 0
DIP Middle 0 -0.22 0

ED IV wrist 0 -1.3 0.75
MCP Ring 0 -0.86 -0.02
PIP Ring 0 -0.28 0
DIP Ring 0 -0.22 0

ED V wrist 0 -1.3 1.0
MCP Pinky 0 -0.86 -0.02
PIP Pinky 0 -0.28 0
DIP Pinky 0 -0.22 0

EDM wrist 0 -1.3 0.75
MCP Pinky 0 -0.86 0
PIP Pinky 0 -0.26 0
DIP Pinky 0 -0.19 0

ECU wrist 0 -0.6 2.5
EPL wrist 0 -0.9 -1.05

CMC Thumb 0 -0.5 1.0
MCP Thumb 0 -0.25 0

IP Thumb 0 -0.2 0
EI wrist 0 0.14 -0.04

MCP Index 0 -0.9 0.13
PIP Index 0 -0.26 0
DIP Index 0 -0.19 0

APL wrist 0 0.74 -2.4
CMC Thumb 0 -0.5 0

EPB wrist 0 -0.32 -2.3
CMC Thumb 0 -0.45 -0.3
MCP Thumb 0 -0.3 0

ADM MCP Pinky 0 0 0.4
PIP Pinky 0 -0.25 0
DIP Pinky 0 0.2 0
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Muscle Name Affecting Joint(s)/DOF Lever Arm (cm)
x y z

FDMB MCP Pinky 0 0.4 0.4
APB CMC Thumb 0 0.35 -0.75

MCP Thumb 0 0.1 0
FPB CMC Thumb 0 0.9 0.1

MCP Thumb 0 0.7 0
OP CMC Thumb 0 0.4 0.85
AP CMC Thumb 0 0.45 0.9

MCP Thumb 0 0.7 0
Lumb I MCP Index 0 0.5 -0.48

DIP Index 0 -0.18 0
PIP Index 0 -0.07 0

Lumb II MCP Middle 0 0.5 -0.48
DIP Middle 0 -0.18 0
PIP Middle 0 -0.07 0

Lumb III MCP Ring 0 0.5 -0.48
DIP Ring 0 -0.18 0
PIP Ring 0 -0.07 0

Lumb IV MCP Pinky 0 0.5 -0.48
DIP Pinky 0 -0.18 0
PIP Pinky 0 -0.07 0

PI I MCP Index 0 0.66 0.58
DIP Index 0 -0.26 0
PIP Index 0 -0.16 0

PI II MCP Ring 0 0.66 -0.58
DIP Ring 0 -0.26 0
PIP Ring 0 -0.16 0

PI III MCP Pinky 0 0.66 -0.58
DIP Pinky 0 -0.26 0
PIP Pinky 0 -0.16 0

DI I MCP Index 0 0.37 -0.61
DIP Index 0 -0.26 0
PIP Index 0 -0.16 0

DI II MCP Middle 0 0.37 -0.61
DIP Middle 0 -0.26 0
PIP Middle 0 -0.16 0

DI III MCP Middle 0 0.37 0.61
DIP Middle 0 -0.26 0
PIP Middle 0 -0.16 0

DI IV MCP Pinky 0 0.37 0.61
DIP Pinky 0 -0.26 0
PIP Pinky 0 -0.16 0
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Table A.5 shows the origins and insertions of the hand muscles. These points are measured

from our 3D skeleton model with fitted digitalized muscle fibers and tendon data, by estimating

the center of the area of attachments. These points are relative to our hand skeleton, and thus

not to be taken as valid anatomical data. For each joint that the muscle or tendon passes

through, we define origin and insertion points in the local co-ordinate system of its parent and

itself respectively. The co-ordinates are normalized by dividing by the link’s length, radius,

and thickness (See Table A.2), for the x-axis, z-axis, and y-axis, respectively.

Table A.5: Muscles Origins and Insertions co-ordinates
Muscle Affecting Origin (cm) Insertion (cm)
Name Joint(s) Joint x y z Joint x y z

FCR wrist elbow -0.04 0.11 0.34 wrist 0.37 0.47 -0.64
PL wrist elbow 0.04 0.76 2.07 wrist 0.51 0.60 0
FDS II wrist elbow 0.240 0.26 0.021 wrist 0 1.12 -0.15

MCP II wrist 0 1.12 -0.15 MCP II 0 1.02 0
PIP II MCP II 0 1.02 0 PIP II 0 0.58 0

FDS III wrist elbow 0.02 0.67 1.68 wrist 0 1.09 0.01
MCP III wrist 0 1.0 -0.25 MCP III 0 0.85 0
PIP III MCP III 0 0.85 0 PIP III 0 0.94 0

FDS IV wrist elbow -0.08 0.77 2.35 wrist 0 0.9 0.21
MCP IV wrist 0 0.9 0.48 MCP IV 0 0.87 0
PIP IV MCP IV 0 0.87 0 PIP IV 0 0.73 0

FDS V wrist elbow -0.08 0.77 2.35 wrist 0 0.88 0.38
MCP V wrist 0 0.88 0.71 MCP V 0 1.40 0
PIP V MCP V 0 1.40 0 PIP V 0 0.79 0

FCU wrist elbow -0.04 0.78 2.39 wrist 0.24 0.77 0.59
FDP II wrist elbow 0.36 0.31 -0.28 wrist 0 0.91 -0.25

MCP II wrist 0 0.91 -0.54 MCP II 0 1.02 0
PIP II MCP II 0 1.02 0 PIP II 0 0.58 0
DIP II PIP II 0 0.58 0 DIP II 0 1.44 0

FDP III wrist elbow 0.41 0.31 0.75 wrist 0 1.03 0
MCP III wrist 0 1.09 -0.25 MCP III 0 0.85 0
PIP III MCP II 0 0.85 0 PIP III 0 0.94 0
DIP III PIP II 0 0.94 0 DIP III 0 1.04 0

FDP IV wrist elbow 0.41 0.31 0.75 wrist 0 0.84 0.22
MCP IV wrist 0 0.84 0.48 MCP IV 0 0.87 0
PIP IV MCP IV 0 0.87 0 PIP IV 0 0.73 0
DIP IV PIP IV 0 0.73 0 DIP IV 0 1.27 0
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Muscle Affecting Origin (cm) Insertion (cm)
Name Joint(s) Joint x y z Joint x y z

FDP V wrist elbow 0.41 0.31 0.75 wrist 0 0.80 0.38
MCP V wrist 0 0.80 0.71 MCP V 0 1.40 0
PIP V MCP V 0 1.40 0 PIP V 0 0.79 0
DIP V PIP V 0 0.79 0 DIP V 0 1.27 0

FPL wrist elbow 0.62 0.09 0.23 wrist 0 1.03 -0.42
CMC I wrist 0.16 0.52 -0.73 CMC I -0.03 1.37 1.25
MCP I CMC I -0.03 1.37 1.25 MCP I 0 1.22 0

IP I MCP I 0 1.22 0 IP I 0 1.73 0
ECRL wrist elbow -0.01 0.62 -0.81 wrist 0.39 -0.65 -0.70
ECRB wrist elbow 0.08 -0.25 -0.41 wrist 0.35 -0.65 -0.70
ED II wrist elbow -0.01 -0.32 -0.22 wrist 0 -0.97 -0.35

MCP II wrist 0 -0.65 -0.246 MCP II 0 -0.6x 0
PIP II MCP II 0 -0.65 0 PIP II 0 -0.77 0
DIP II PIP II 0 -0.77 0 DIP II 0 -0.98 0

ED III wrist elbow -0.01 0.32 -0.22 wrist 0 -1.05 -0.21
MCP III wrist 0 -1.05 -0.25 MCP III 0 -0.93 0
PIP III MCP III 0 -0.93 0 PIP III 0 -0.53 0
DIP III PIP III 0 -0.53 0 DIP III 0 -0.76 0

ED IV wrist elbow -0.01 0.32 -0.22 wrist 0 -1.13 -0.07
MCP IV wrist 0 -1.13 0.38 MCP IV 0 -0.89 0
PIP IV MCP IV 0 -0.89 0 PIP IV 0 -0.61 0
DIP IV PIP IV 0 -0.61 0 DIP IV 0 -0.80 0

ED V wrist elbow -0.01 0.32 -0.22 wrist 0 -1.17 -0.01
MCP V wrist 0 -1.17 0.79 MCP V 0 -1.56 0
PIP V MCP V 0 -1.56 0 PIP V 0 -0.86 0
DIP V PIP V 0 -0.87 0 DIP V 0 -0.82 0

EDM wrist elbow -0.01 -0.32 -0.22 wrist 0 -1.15 -0.23
MCP III wrist 0 -0.65 0 MCP III 0 -1.56 0
PIP III MCP III 0 -1.56 0 PIP III 0 -0.86 0
DIP III PIP III 0 -0.86 0 DIP III 0 -0.82 0

ECU wrist elbow 0 -0.44 -0.15 wrist 0.08 -0.410 0.68
EPL wrist elbow 0.60 -0.42 0.12 wrist 0 -0.81 -0.4

CMC I wrist 0.16 -0.45 -0.7 CMC I 0 -0.64 1.17
MCP I CMC I 0 -0.64 1.17 MCP I 0 -0.97 0

IP I MCP I 0 -0.97 0 IP I 0 -1.48 0
EI wrist elbow 0.63 -0.13 0.29 wrist 0 -1.12 -0.24

MCP II wrist 0 -1.12 -0.24 MCP II 0 -0.65 0
PIP II MCP II 0 -0.65 0 PIP II 0 -0.77 0
DIP II PIP II 0 -0.77 0 DIP II 0 -0.98 0

APL wrist elbow 0.51 -0.35 -0.07 wrist 0 0.29 -1.24
CMC I wrist 0 0.29 -1.24 CMC I 0 -1.29 -0.51

EPB wrist elbow 0.79 -0.34 0.26 wrist 0 -0.35 -0.80
CMC I wrist 0 -0.35 -0.80 CMC I 0 -1.18 -0.12
MCP I CMC I 0 -1.18 -0.12 MCP I 0 -0.89 0

ADM MCP V wrist 0.28 0.49 0.56 MCP V 0 0 1.05
FDMB MCP V wrist 0.38 0.58 0.56 MCP V 0 0 1.05
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Muscle Affecting Origin (cm) Insertion (cm)
Name Joint(s) Joint x y z Joint x y z

APB CMC I wrist 0.20 1.12 -0.45 CMC I 0 0.63 -0.41
MCP I CMC I 0 0.63 -0.41 MCP I 0 0.66 -1.24

FPB CMC I wrist 0.29 0.47 0.07 CMC I 0 1.5 0
MCP I CMC I 0 1.5 0 MCP I 0 0.67 -1.25

OP CMC I wrist 0.20 0.59 -0.22 CMC I 0 1.0 0
AP CMC I wrist 0.76 0.35 0 CMC I 0 1.99 1.94

wrist 0.37 0.470 0
MCP I CMC I 0.46 0.50 0.89 MCP I 0 0 1.10

Lumb I MCP II wrist 0.43 0.43 -0.55 MCP II 0 0.80 -1.13
PIP II MCP II 0.12 -0.84 0 PIP II 0 -0.65 0
DIP II PIP II 0 -0.65 0 DIP II 0 -0.71 0

Lumb II MCP III wrist 0.43 0.43 0 MCP III 0 0.80 -0.83
PIP III MCP III 0.14 -0.87 0 PIP III 0 -0.54 0
DIP III PIP III 0 -0.54 0 DIP III 0 -0.76 0

Lumb III MCP IV wrist 0.43 0.43 0 MCP IV 0 0.76 -1.08
wrist 0.43 0.43 0.38

PIP IV MCP IV 0.15 -1.54 0 PIP IV 0 -0.61 0
DIP IV PIP IV 0 -0.61 0 DIP IV 0 -0.80 0

Lumb IV MCP V wrist 0.43 0.43 0.38 MCP V 0 0.84 -1.21
wrist 0.43 0.43 0.76

PIP V MCP V 0.15 -1.07 0 PIP V 0 -0.87 0
DIP V PIP V 0 -0.87 0 DIP V 0 -0.82 0

PI I MCP II wrist 0.55 0.43 -0.40 MCP II 0 0 1.25
PIP II MCP II 0.12 -0.84 0 PIP II 0 -0.65 0
DIP II PIP II 0 -0.65 0 DIP II 0 -0.71 0

PI II MCP IV wrist 0.56 0.43 0.23 MCP IV 0 0 -1.40
PIP IV MCP II 0.15 -1.54 0 PIP IV 0 -0.61 0
DIP IV PIP II 0 -0.61 0 DIP IV 0 -0.8 0

PI III MCP V wrist 0.56 0.43 0.74 MCP V 0 0 1.40
PIP V MCP V 0.15 -1.07 0 PIP V 0 -0.87 0
DIP V PIP V 0 -0.87 0 DIP V 0 -0.82 0

DI I MCP II wrist 0.56 0 -0.79 MCP II 0.05 0 -1.45
CMC I 0.07 0.80 0

PIP II MCP II 0.12 -0.84 0 PIP II 0 -0.65 0
DIP II PIP II 0 -0.65 0 DIP II 0 -0.71 0

DI II MCP III wrist 0.56 0 -0.40 MCP II 0.09 0 -1.33
wrist 0.56 0 -0.26

PIP III MCP III 0.14 -0.87 0 PIP III 0 -0.53 0
DIP III PIP III 0 -0.53 0 DIP III 0 -0.76 0

DI III MCP III wrist 0.56 0 0.09 MCP II 0.09 0 -1.33
wrist 0.56 0 0.22

PIP III MCP III 0.14 -0.87 0 PIP III 0 -0.53 0
DIP III PIP III 0 -0.53 0 DIP III 0 -0.76 0

DI IV MCP IV wrist 0.56 0 0.56 MCP II 0.09 0 1.40
wrist 0.56 0 0.74

PIP IV MCP II 0.15 -1.54 0 PIP IV 0 -0.61 0
DIP IV PIP II 0 -0.61 0 DIP IV 0 -0.80 0



Appendix B

Inertia

B.1 The Inertia Tensor

Newton’s first law of motion states”A body maintains the current state of motion unless acted

upon by an external force.”This measure of the inertia in linear motion is the mass of the

system and in angular motion is the moment of inertia. The moment of inertia of a body

deals with how the mass is distributed throughout the body, thus bodies of the equal mass may

possess different moments of inertia. The moment of inertia of a single particle is given by:

I = mr2, (B.1)

wherem is the mass of the particle, andr is the perpendicular distance from the axis of rotation

to the particle.

A rigid body can be thought of as a system of particles in which the relative positions of the

particles do not change. Let~r i be the displacement from the origin of the local coordinate

system, then the inertia tensor rotating about an axis passing through the origin of the local

reference frame is:

82
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I =


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 = ∑
i


mi(r2

iy + r2
iz) −mir ixr iy −mir ixr iz

−mir iyr ix mi(r2
ix + r2

iz) −mir iyr iz

−mir izr ix −mir izr iy mi(r2
ix + r2

iy)

 .

The inertia tensor,I , relates the angular momentum (~L) of a rigid body to its angular velocity

(~ω),analogous to how mass,M , relates linear momentum (~P) and velocity (~v),

I =
L̃
ω̃

M =
P̃
ṽ
.

The diagonal elements in the inertia tensor,Ixx, Iyy, andIzz, are called the moments of inertia

while the rest of the elements are called the products of inertia. Note that the inertia tensor is

symmetrical.

B.2 The Transformation of Inertia Tensor

What happens when the rigid body’s orientation changes during the simulation? Recomputing

inertia tensor is expensive unless the body’s shape is simple. By using the inertia tensor trans-

formation properties and a pre-computed inertia tensor in the local coordinates space, we can

compute the inertia tensor for an arbitrary rotation and translation.

B.2.1 Rotation

Let us first consider the effect of rotation. Suppose that the rotation matrixR is applied to

the rigid body. Let~pi be the position of particlei in the local coordinates space, and~c be the

position of the center of mass. Then the position of particlei in world coordinates becomes

~xi=R~pi+~c. The displacement from the center of mass is~r i=R~pi . We can rewriteI as:
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I = ∑
i

mi
(
r2
ix + r2

iy + r2
iz

)


1 0 0

0 1 0

0 0 1

−


mir2
ix mir ixr iy −mir ixr iz

mir iyr ix mir2
iy mir iyr iz

mir izr ix mir izr iy mir2
iz

 . (B.2)

Simplifying the above equation with the inner-product,~rT
i ~r i and outer-product,~r i~rT

i , and the

identity matrix,e, we get

I =∑
i

mi
(
~rT

i ~r ie−~r i~r
T
i

)
. (B.3)

Recall that the displacement from the center of mass is~r i=R~pi , we further rewriteI as:

I =∑
i

mi
[
(R~pi)T(R~pi)e− (R~pi)(R~pi)T]

=∑
i

mi
[
~pT

i ~pie−R~pi~p
T
i RT]

=∑
i

mi
[
R~pT

i ~piRTe−R~pi~p
T
i RT]

=R∑
i

mi
[
~pT

i ~pie−~pi~p
T
i

]
RT .

(B.4)

DefiningIbody to be inertia tensor in the local coordinate system of the body,

Ibody=∑
i

mi
(
~pT

i ~pie−~pi~p
T
i

)
. (B.5)

We can easily compute the inertia tensor,I , rotated byR, from Ibody by theSimilarity Trans-

formation:

I = RIbodyR
T . (B.6)

B.2.2 Translation

Now, let’s look at of translation. Consider two reference frames,OXYZ system and the

O′X′Y′Z′ system. TheOXYZsystem is the local reference frame fixed to the body with its

origin at the body’s center of mass. TheO′X′Y′Z′ system, is parallel to theOXYZsystem with
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a different origin. We want to find the inertia tensor by translating the center of mass from the

origin of OXYZsystem to the origin ofO′X′Y′Z′ system. Let~a = ~O− ~O′ be that translation.

The position of particlei in OXYZsystem is~pi , thus its position inO′X′Y′Z′ system can be

written as~r i = ~pi +~a. The inertia tensor of the body about theO′X′Y′Z′ system is

I =∑
i


mi(r2

iy + r2
iz) −mir ixr iy −mir ixr iz

−mir iyr ix mi(r2
ix + r2

iz) −mir iyr iz

−mir izr ix −mir izr iy mi(r2
ix + r2

iy)



=∑
i

mi


p2

iy + p2
iz −pixpiy −pixpiz

−piypix p2
ix + p2

iz −piypiz

−pizpix −pizpiy p2
ix + p2

iy

+M


a2

y +a2
z −axay −axaz

ayax a2
x +a2

z −ayaz

−azax −azay a2
x +a2

y


=∑

i
mi(~pT

i ~pie−~pi~p
T
i )+M(~aT

i ~aie−~ai~a
T
i )

=Ibody+ I t

(B.7)

whereM is the mass of the body.Ibody is the inertia tensor of the body about its center of mass,

andI t is the additional moment of inertia due to the translation of the reference frame.

B.3 The Inertia Tensor of Joints

The inertia tensor for all joints except the radiocarpal joint is approximated as one or a chain

of cylinder(s). The bone at the end of the segment, i.e., one of the distal phalanges, is simply

a cylinder of length l, radius r and mass m, rotated about an axis orthogonal to its length axis

(x-axis) and passing through one of its ends. The inertia tensor of the body,Ibody, with the

center of rotation at the origin of its local co-ordinate system is:
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Ibody=


1
2mr2 0 0

0 1
4mr2 + 1

3ml2 0

0 0 1
4mr2 + 1

3ml2

 . (B.8)

Denote a hierarchy of cylinders asci ,ci+1 corresponding to a hierarchy of joints asj i , j i+1,

such thatj i+1 is the child of j i . When rotating aboutj i , the total inertia tensor is composed

of inertia tensors fromci , andci+1 in the local co-ordinates of the parent jointj i . We denote

the inertia tensor of theci in the local co-ordinates ofj i to be,I i
i , where the subscript indicates

the co-ordinate system that the inertia tensor is in, and the superscript denotes the cylinder of

interest. For cylinderci , the inertia tensor is simply a direct application of equation B.8,

I i
i = I i

body. (B.9)

However, for cylinderci+1 the axis of rotation does not pass through it, and thus its inertia

tensor is not equal toIbody given in equation B.8. Instead, the inertia tensor is computed by

using the rotation and translation properties described in the previous sections. We first apply

a rotation,R, so that the axis of rotation in the child’s co-ordinate system aligns to the axis of

rotation in the parent’s co-ordinate system. Now that the co-ordinate systems are parallel, we

can apply the translation property to translate the origin of the child’s co-ordinate system to the

origin of the parent’s co-ordinate system.

Suppose we want to find the inertia tensor of inertia tensor ofci+1 in the local co-ordinates of

j i . To find the change of basis matrix for theSimilarity Transformation, we define the basis

to beβ = {~rx,~ry,~rz}, where~rn is the direction of the child’s n-axis in the parent’s co-ordinate

system. Thus, the change of basis or the rotation matrix in Equation B.6 is

R =


rxx ryx rzx

rxy ryy rzy

rxz ryz rzz

 , (B.10)
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where,

~rx =


rxx

rxy

rxz

 , ~ry =


ryx

ryy

ryz

 , ~rz =


rzx

rzy

rzz

 . (B.11)

Using equation B.6 and equation B.7, we compute the inertia tensor of cylinderci+1 in the

co-ordinate system of parent to be,

I i+1
i = Ri+1I i+1

body

(
Ri+1)T

+ I i+1
t . (B.12)

The first term corresponds to the rotation of the frame of reference, and the second term corre-

sponds to the translation of the frame of reference. The inertia tensor atj i is found by summing

up the inertia tensor from cylinderci and of the cylinders of its n children,

I i = I i
i +

n

∑
j=1

I i+ j
i . (B.13)

For the radiocarpal joint, a constant inertia tensor is assumed. This is pre-computed before

simulation by using equation 7.1, by taking~r i to be distances from the bone mesh vertices to

the origin of the radiocarpal joint.



Appendix C

Gradient Calculation

In this section we illustrate the symbolic derivation of the gradient of the energy function,~g

described in Chapter 6. The gradient is a m-dimensional vector for m parameters.

C.1 Gradients of Energy Functions

According to Chapter 6, our system has three energy functions from the state constraint, control

constraint, number of muscle constraint. Using thesum rulewe can separate the gradient into

three terms,~gs for the gradient of the motion evaluation termEs, ~gc for the gradient of the

controller evaluation termEc,~gm for the gradient of the number of muscle evaluation termEm

~g =~gs+~gc +~gm, (C.1)

gc is a m-dimensional vector that can be easily computed, sinceEc is just the sum of the

contractions values squared,

~gc = wc


c1

...

cm

 . (C.2)
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gm is also a m-dimensional vector that can be easily computed. The derivative of a unit step

function is a unit impulse function (also known as the dirac delta function):

dU(c−co)
dt

= δ (c−co) =


limε→0

1
ε
, co− ε

2 ≤ c≤ co + ε

2

0, otherwise

.

(C.3)

Therefore,gm is as follows, whereco andε are small positive number near zero:

~gm =
wm

m


δ (c1−co)

...

δ (cm−co)

 . (C.4)

The computation ofgs is more involved. Using thechain rule, we can write thegs as:

~gs =ws∆~cE( f (~c))

=ws
∂ f (~c)

∂c

T

·∆ f (c)E( f (~c))
(C.5)

The first term in Equation C.5 is a Jacobian matrix, containing the partial derivatives of the

function with respect to its m parameters. Sincef :ℜm → ℜ3n, the matrix has a dimension of

6n by m as shown below:

J(~c) =
∂ f (~c)

∂c

=
(

∂ f
∂c1

. . . ∂ f
∂cm

)

=


∂ f1
∂c1

. . . ∂ f1
∂cm

...
...

...

∂ f6n
∂c1

. . . ∂ f6n
∂cm


(C.6)

To find the partial derivative off, using equations of motion from Chapter 5, we expressfi for

joint i as:

fi(~Ti) =

 rt +∆t[ωt +∆t(Ii(t)+∆tkµ)−1(~Ti(t)−kµωt)]

ωt +∆t(Ii(t)+∆tkµ)−1(~Ti(t)−kµωt)


~Ti(t) =

m

∑
j=1

~r i, j × (α jc jFc, j(l j)+α jFs, j(l j))F̂i, j

(C.7)
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Since only the torque,~Ti(t), is a function of~c, thus the partial derivative offi with respect to~c

can be rewritten using thechain rule:

∂ fi
∂~c

=
∂ fi
∂~Ti

· ∂Ti

∂~c
, (C.8)

where the partial derivative of the torque for joint i with respect to~c is a 3 by m matrix com-

posed of cross products of the lever arm and the contraction force term:

∂Ti

∂~c
=

(
α1Fc,1(l1)

[
~r i,1× F̂i,1

]
. . . αmFc,m(lm)

[
~r i,m× F̂i,m

] )
. (C.9)

The partial derivative of thefi with respect to~c is a 6 by m matrix, corresponding to the(6∗k)th

to (6∗k+5)th rows for k=0,. . .,n-1 of the Jacobian matrix in Equation C.6,

∂ fi
∂~c

=

 ∆t2
(
Ii(t)+∆tkµ

)−1 ∂Ti
∂~c

∆t
(
Ii(t)+∆tkµ

)−1 ∂Ti
∂~c

 . (C.10)

The next step after the computation of the Jacobian matrix is to find the second term in C.5.

The partial derivative of the energy function with respect to the functionf (~c) is a 6n by 1

vector,

∆ f (c)E( f (~c)) =


t1−y1

...

t6n−y6n

 . (C.11)

Finally, combining Equation C.2 and C.5, the gradient of the energy function is:

~g =wc


c1

...

cm

+wsJ(~c)T


t1−y1

...

t6n−y6n

 . (C.12)

This gradient,~g, along with the values of the energy functions,Es, andEc is compute multiple

times per one time-step in the simulation of constrained system.
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