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Abstract

This paper presents an approach for determining stroke thickness
in computer-generated illustrations of smooth surfaces. We as-
sume that dark strokes are drawn to approximate the dark regions
of the shaded surface. This assumption leads to a simple formula
for thickness of contours and suggestive contours; this formula de-
pends on depth, radial curvature, and light direction in a manner
that reproduces aspects of thickness observed in hand-made draw-
ings. These strokes convey local shape and depth relationships, and
produce appealing imagery. Our method is simple to implement,
provides temporally-coherent strokes, and runs at interactive rates.

1 Introduction

Stroke width and style are key features of art, comics, and techni-
cal illustration. Line style adds life and clarity to drawings [Mc-
Cloud 2006], and provides cues to 3D shape [Guptill 1997; Hodges
2003]. The effects of stroke thickness are subtle but important: al-
though viewers may not pay much attention to line quality, a draw-
ing with a plain or inappropriate stroke style can be lifeless or con-
fusing. Current methods in Non-Photorealistic Rendering (NPR)
typically use constant-thickness strokes or simple tapering rules
that do not capture the liveliness of hand-made drawings and il-
lustration. Hence, determining artistic stroke thickness remains an
open problem. How do artists choose stroke thickness, and how can
this be modeled in a computational framework?

In this paper, we propose simple, effective rules for determining
stroke thicknesses for computer-generated paintings and illustra-
tions. We introduce a quantity called isophote distance that rep-
resents the thickness of a rim shadow at a contour or suggestive
contour. Our basic observation is that hand-drawn stroke thick-
nesses often have the qualitative properties of isophote distance.
This leads to a rule for determining stroke thickness: namely, thick-
ness can be determined as a function of how quickly the shading
“falls off” from the curve. Based on these observations, we de-
scribe algorithms for rendering thick strokes.

Several other approaches to stroke thickness appear in the literature,
but previous methods have provided little or no concrete justifica-
tion in terms of hand-made artwork. In general, the distinctions are
subtle, and evaluating stroke thickness is quite tricky; how should
we choose among different thickness formulae? In this paper, we
identify several qualitative properties of drawings shared by hand-
made artwork and our algorithm; no previous method captures these
properties. This provides support for our method as a theory of how
artists determine stroke thickness. The theory is incomplete — it
does not precisely reproduce any particular artwork — but it does
provide a parsimonious explanation for many qualitative properties
of hand-made artworks, and also points the way to better theories
in the future. Because our framework is relatively simple, there are

very few “tuning” parameters. Our method is currently designed to
work only for smooth surfaces without creases or boundaries, al-
though we believe that it could be generalized to these cases in the
future.

1.1 Relation to Previous Work

Most NPR systems employ strokes of some kind to convey shape.
Commonly-used strokes include contours, creases, hatching, and
suggestive contours [DeCarlo et al. 2003; DeCarlo et al. 2004; El-
ber and Cohen 1990; Gooch et al. 1999; Grabli et al. 2004; Hertz-
mann and Zorin 2000; Markosian et al. 1997; Saito and Takahashi
1990; Sousa and Prusinkiewicz 2003; Winkenbach and Salesin
1994]. While these strokes provide effective choices of lines to
draw, less is known about how to determine stroke thickness. One
approach is to employ constant thickness, which yields a some-
what mechanical appearance. Simple 2D functions, such as taper-
ing at endpoints, can be very pleasing visually; Grabli et al. [2004]
demonstrate several such functions. However, 2D functions do not
convey 3D shape information.

Existing methods provide several options for determining stroke
thickness based on 3D shape. Gooch et al. [1999] suggest mak-
ing thickness inversely proportional to object depth. Depth-based
thickness conveys overall depth relationships between parts of a
scene, but not detailed local shape. Sousa and Prusinkiewicz [2003]
make contour line thickness proportional to mean curvature or
maximum curvature. On the other hand, Bremer and Hughes [1998]
suggest placing strokes near contours with spacing inversely pro-
portional to radial curvature (they do not discuss stroke thickness
directly). A few authors suggest using thicker strokes in shad-
owed regions [Grabli et al. 2004; Schlechtweg et al. 1998; Sousa
and Prusinkiewicz 2003], although few details are given. There
is little existing evaluation or basis for choosing among these meth-
ods. These methods each provide some desirable properties and not
others; to what extent do these choices correspond to hand-made
styles? As we will show, isophote distance is related to each of
these methods, and captures a superset of the properties of real art-
work present in previous methods. Our framework also determines
thicknesses for suggestive contours, where simple curvature-based
methods would be unreliable.

Methods for hatching on surfaces normally use shading to deter-
mine hatch density (e.g., [Hertzmann and Zorin 2000; Saito and
Takahashi 1990; Winkenbach and Salesin 1994]). Our method
bears some similarity to the isophote hatching directions employed
by Markosian et al. [1997]. The environment mapping approach
to rendering contours produces renderings very similar to our ap-
proach [Gooch et al. 1999], which draws in black all surface points
for which the dot product of the surface normal and the view vec-
tor is below a threshold. However, varying thickness has gener-
ally been viewed as a defect [Kindlmann et al. 2003]; this may be
because the pure thresholding approach does not produce identifi-
able strokes (e.g., stroke thickness cannot easily be thresholded to
a range of valid widths).

2 Isophote Distance

Our work begins with the following basic intuition for drawing
strokes to represent surfaces. Consider a smooth, white, Lambertian
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Figure 1: The idea of our work is to use isophote distance for stroke thickness, in order for the strokes to approximate the dark regions of a
surface. An isophote is a curve consisting of all surface points with a specific intensity.

Figure 2: Cylinders rendered using isophote distance strokes. The
stroke thickness depends both on curvature and depth.

object viewed by a perspective camera, and lit by a headlight, i.e.,
a point light source at the focal center. As can be seen in Figure 1,
contours represent global minima of the reflected intensity (i.e., the
contours are the set of points with intensity zero), and the suggestive
contours represent local minima of intensity [DeCarlo et al. 2003].
Thresholding the image creates dark rim shadows near the contours
and suggestive contours. (These rim shadows are essentially the in-
verse of rim lighting, often used by photographers and cinematog-
raphers.) (This shading model is roughly equivalent to rim lighting
with a ring of distant light sources perpendicular to the camera axis,
but with inverted intensities. With enough light sources, points near
the contours and suggestive contours will be dramatically brighter
than the rest of the surface, leading to a natural thresholding effect
when the image is rendered to a normal dynamic range.) Suppose
we wish to illustrate this thresholded rendering by painting a few
black brush strokes on a white background. A natural solution is to
draw strokes along the contours of the object (since they are black
curves in the rendering), and along suggestive contours (since they
are curves that lie in dark regions as well). Moreover, the thick-
nesses of the brush strokes should match the shading of the object:
we do not want the black paint to cover any surface point with in-
tensity less than some threshold r0. Hence, the stroke should fill the
space between the contour (or suggestive contour) and the nearest
isophote of r0. (An isophote is a curve on the surface with con-
stant intensity). In other words, the stroke thickness at a point on
the surface should be equal to the image-space distance to the near-
est isophote in image space. These thicknesses depend both on the
depth of the object and the local shape of the object. For example,
a large cylinder will have relatively thick rim shadows, and large
distances between the contours and the isophotes, and, as a result,
will be drawn with thick strokes (Figure 2). A small cylinder, or
a cylinder far in the distance, will have thin rim shadows in image
space, and be drawn with thin strokes. The stroke thickness will be
clamped to the limited range of thicknesses possible with the brush
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Figure 3: The radial plane at a surface point p is the plane con-
taining the normal direction n(p) and the camera c. The radial
curve is the intersection of the surface with the radial plane. The
radial curvature κ(p) is the curvature of the radial curve at p. The
isophote is the set of points with reflected intensity r0. The isophote
distance is the image-space distance between p and q.

or pen.

This is essentially a theory of how line drawing works: line draw-
ings simulate the appearance of an object under specific shading
conditions. We will not attempt to prove or disprove the theory
here; we only note that it provides a unified (though incomplete)
explanation for strokes and their thicknesses.

2.1 Definition and Approximations

We now formalize the intuition above. We denote the camera focal
center c, and the light source position s. The reflected intensity
of a point p on the surface is given by r(p) = n(p) · `(p), where
n(p) is the outward-facing surface normal at point p, and `(p) is
the unit vector to the light source: `(p) = (s−p)/||s−p||. For each
point p on a contour or suggestive contour, we define a quantity
called isophote distance, denoted d(p). The normalized view vector
is v(p) = (c− p)/||c− p||. Following DeCarlo et al. [2003], we
define the radial plane of a point p as the plane that contains p and
has normal n(p)×v(p). The radial curve is the intersection of the
surface with the radial plane (Figure 3).

The isophote distance at a point p is defined as the image-space
distance from p to the nearest surface point q that satisfies the fol-
lowing three conditions. First, q must satisfy r(q) = r0, where r0 is
a user-defined constant. Second, q must lie in the radial plane of p.
This requirement is made because our stroke rendering algorithm
uses the projected surface normal as the stroke’s spine). In other
words, these first two requirements state that q lies at the intersec-
tion of the radial curve and an isophote. Third, q must lie on the
“near part” of the radial curve with respect to p. Specifically, sup-



pose we find q by traversing the mesh along the radial curve. There
are two possible directions we could traverse along this curve, one
towards the camera and one away from it; we require that q can
be found by tracing toward the camera. If we were to trace away
from the camera from a contour point p, then we would be tracing
over a hidden region of the surface. However, for simplicity, we do
not require that q be visible, or that the entire curve from p to q be
visible.

Given these definitions, our basic rule for stroke thickness is simple:
stroke thickness is equal to isophote distance, clamped to the range
[Tmin,Tmax], where Tmin and Tmax are user-defined limits.

In order to understand the properties of isophote distance, we can
derive an approximation that uses local surface properties. Let the
radial curvature κ(p) be the normal curvature in the radial plane at
p, and f be the camera focal length. Then, at any contour point p
with κ(p) > 0 and c = s, the isophote distance can be approximated
by:

dC(p) =
f

κ(p)||p− c||

(

r2
0

2(1− r2
0)

)

(1)

This approximation makes explicit the relationship of isophote dis-
tance to depth, focal length, and radial curvature.

In the more general case of an arbitrary light position s, we have

dC(p) =
f

κ(p)||p− c||

(

a2

2

)

(2)

where:

c = `(p) ·n(p)

b = `(p) ·v(p)

a =
r0

√

b2 + c2 − r2
0 −bc

b2 − r2
0

These approximations are derived in Appendix A. The cases b2 +
c2 < r2

0 and a < 0 are handled by setting dC(p) = Tmax and dC(p) =
Tmin, respectively.

2.2 Computing Thick Strokes

In this section, we describe an algorithm to render strokes using
isophote distance, given a polygonal mesh as input. The algorithm
has the following steps:

1. Compute visible contours and suggestive contours.

Piecewise-linear approximations to these curves are computed as
in Hertzmann and Zorin [2000] and DeCarlo et al. [2003; 2004]

2. Compute isophote distances. Isophote distance is computed
for each point on each curve, providing a target thickness for each
point.

The most general procedure for determining the isophote distance is
to traverse the radial curve from p until a point q on the isophote is
found. This traversal begins in the direction along the radial curve
toward the viewer, ensuring that a visible portion of the curve is
used. As with contours and suggestive contours, the radial curve
and isophote are represented as piecewise-linear approximations to
zero sets. The point q is the intersection of these zero sets. The
image-space distance between q and p is denoted dT (p).

An alternative method for computing isophote distance is to employ
the approximations in Equations 1 or 2; this approach, as it requires

only local computations, is potentially much faster. However, since
radial curvature appears in the denominator, the approximations
cannot be used directly for suggestive contours (where κ(p) = 0),
or for contour points with small κ(p). In these regions, the radial
curve is nearly flat, and both approximations give poor estimates of
isophote distance; stroke thickness will frequently saturate at Tmax.
We can alleviate this effect by replacing the radial curvature κ(p)
with κ(p) + ε (for some small constant ε), and employing mesh
traversal for very small κ(p). In order for the thickness to vary
smoothly, we linearly interpolate between dT (p) and the approxi-
mations dC(p) when κ is between two small thresholds κmin and
κmax.

These computation strategies are compared in Figure 8. All other
figures in the paper employ mesh traversal.

3. Generate thick strokes. Thick strokes are generated for each
contour and suggestive contour. Stroke thickness is determined
as a function of isophote distance for each point. The isophote
distance at a point directly specifies a desired thickness for that
point. However, typical drawings restrict strokes to a specific range
(e.g., as limited by the thickness of the brush or pen); shading be-
yond this range will typically be conveyed some other way, such
as with hatching or washes. The stroke thickness T (p) is com-
puted by clamping the isophote distance to a user-specified range
[Tmin,Tmax], and then scaling it by a tapering factor w. The tapering
factor is used to taper suggestive contours in lighter regions where
their thickness would otherwise become unstable. We compute w as
defined by DeCarlo et al. [2004]. For all contour points, we define
w = 1.

A stroke can be defined in terms of a spine and a thickness at each
point, and rendered by a sequence of quadrilaterals [Strassmann
1986]. Given a curve (contour or suggestive contour) and specified
stroke thicknesses, an obvious choice is to use the curve itself as the
spine of the stroke. This method is effective when strokes are very
thin. However, for thicker strokes, this method gives a poor approx-
imation to the shading of the surface: when the thickness is large,
bulges appear that distort the apparent silhouette of the surface. We
could imagine simply filling the region bounded by the curve on
one side, and an isophote on the other. However, this is essentially
equivalent to toon shading, and does not simulate brush strokes. For
example, the stroke thickness may vary wildly, sometimes surpass-
ing the maximum thickness. Moreover, the two boundaries of the
stroke will usually have very different shapes: typically, the con-
tour is relatively smooth, whereas the isophote curve may be very
“wiggly,” a mismatch that would not normally occur with a brush
stroke drawn between the two curves.

Instead, we create brush strokes as follows (Figure 4). Let f(p) be
the camera projection of the inward-facing surface normal, normal-
ized to unit length, and let p̂ be the camera projection of p. Then, a
spine point is created by extending a vector from p̂ in the direction
f(p) (Figure 4):

s(p) = p̂+α T (p) f(p) (3)

where α is a constant. Setting α = .5 places the stroke to fill the
region between the contour and the isophote. However, we no-
tice that doing so slightly “shrinks” the appearance of the surface;
in practice, we use α = .4 instead (although the difference is ex-
tremely subtle). The stroke is then drawn with spine points s(p),
and with thicknesses T (p). This produces a smooth, “brush-like”
curve that follows the contour or suggestive contour, with thickness
determined by the isophote distance. Additional stylization can be
added by smoothing the spines and/or the thicknesses, or by adding
procedural noise.

A key feature of our approach is the use of a consistent definition
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Figure 4: Left: Each point on a contour and suggestive contour
has a corresponding isophote point q. The distance between them is
d(p). Right: A stroke spine is created between the contour and the
isophote. This ensures that the stroke lies between the two curves,
rather than bulging out of the contour.

of isophote distance and stroke shape for both contours and sugges-
tive contours. Doing so ensures that contours seamlessly blend into
suggestive contours at cusps. For example, one alternative would
be to compute isophote distance for suggestive contours by travers-
ing the surface in both directions from the curve, and summing the
distances to determine stroke thickness. However, stroke thickness
would then double between contours and suggestive at cusps. Sim-
ilarly, when the surface rotates and a suggestive contour becomes
a contour, a temporal discontinuity would occur in the curve thick-
ness; our scheme ensures temporal coherence in stroke thickness.

3 Qualitative Properties

In this section, we examine some of the qualitative properties of
our approach, and compare them with images from a variety of
sources. One goal of our work is to understand and explain the
choices that artists make with regard to stroke thickness. However,
artists draw strokes in many different ways [McCloud 2006], and
may often be inconsistent — or even deliberately random — in their
style. Hence, isophote distance does not provide a full explanation
for any existing artwork (nor could any single theory), but, rather,
provides a very simple explanation for many qualitative properties
observed in some artworks. Nonetheless, the fact that all of the
properties listed below arise from the simple concept of isophote
distance suggest its value in generating imagery. This suggests that
isophote distance could be a useful ingredient in designing many
rendering styles (e.g., as a primitive provided by a procedural NPR
shader [Grabli et al. 2004]). We will also consider some instruction
from art texts and websites. In general, such sources provide coarse,
qualitative descriptions and do not tell us how to build algorithms
— this is not surprising, as it is often quite difficult to articulate
precisely how these choices are made.

Our method for determinining stroke thickness from isophote dis-
tance has the following features. (Unfortunately, we are not able to
reproduce most of the source artwork to which we compared these
observations, due to copyright restrictions.)

1. An object has thicker strokes when it is near the viewer

than when it is distant. This follows from the inverse depen-
dence on depth in Equations 1 and 2. This is a widely-observed
trait of drawings; Gooch et al. [1999] propose determining stroke
thickness solely based on depth. Many illustrations and cartoons
with significant depth variations shows examples of this property.
This effect may be seen in Figure 2, and between the elephant’s
front and back legs in Figure 6.

2. Dependence on radial curvature. The following properties
follow from the inverse dependence of isophote distance on radial
curvature in Equations 1 and 2.

(a) Large cylindrical objects have thicker strokes than small
objects. This property often manifests as fingers having thin-
ner strokes than arms, which have thinner strokes than legs,
which have thinner strokes than torsos, etc., for example, in
Figure 11.

(b) Strokes are thicker at “bulges.” This effect sometimes man-
ifests as biceps being thicker than wrists. Another commonly-
seen example is that the upper-cheekbone of a face is typically
thinner than the cheek.

(c) Foreshortened objects are thicker than non-foreshortened
objects. It is difficult to find examples of this property that
factor out the confounding effect of depth on thickness.

Note that these examples support the use of an inverse dependence
of thickness on curvature, rather than the proportional dependence
proposed by Sousa and Prusinkiewicz [2003]; in fact, their hand-
drawn French horn example (Figure 2 in their paper) uses thick-
nesses suggestive of inverse curvature. Rawson [1969] (pp. 109–
113) also describes contour shading in medieval European drawing
in a manner suggestive of radial curvature: “... the dark of the con-
tour is accepted symbolically as the ultimate degree of the form’s
recession from the eye, the limit of its turning away...”

3. Selective stroke tapering. Current NPR algorithms that taper
strokes at the ends do so in 2D (e.g., [Grabli et al. 2004; Hertzmann
and Zorin 2000]), without regard to 3D geometry. In our method,
tapering occurs only at the ends of suggestive contours; contours
are not tapered. This is important when contours become occluded,
and is often observed; in both Figures 11 and 12, the hand-drawn
contours do not taper when they become occluded.

4. Strokes are limited in size. Artists draw strokes with a lim-
ited range of thicknesses. This range is often determined by the
media, e.g., pens provide a very limited range of stroke thickness; a
brush cannot make strokes thicker than the width of the brush. For
example, despite the significant range of curvatures in Figure 12,
the technical illustration uses a very narrow range of thickness.

5. Lighting modulates stroke thickness: highlight regions

have thinner strokes and shadowed regions have thicker

strokes. Contours towards the bottom of objects are frequently
thicker, suggesting shadows. This is noticeable in Figure 12, on
the right side of the beetle’s horn; Hodges [2003] uses this example
(and the shadowed regions beneath the body) to illustrate the use of
thicker strokes in shadows. Examples of thicker strokes in shadows
in NPR algorithms are shown by Grabli et al. [2004].

6. Interior vs. exterior curves. Suggestive contours fall into two
classes, anticipation and extension [DeCarlo et al. 2003]. The ex-
tension contours extend real contours, whereas anticipation con-
tours live entirely “within” the surface. We often observe that
anticipation contours have thinner strokes in drawings, and Scott
Ruggels, in his online “Inking Tutorial,” seems to suggest this1.
This arises in our algorithm because isophote distance is typically
small in the interior of the surface, when the light source is at the
camera position and v ·n is nonzero. An example is in the cow’s
eye in Figure 6.

1http://www.rdwarf.com/users/ruggels/inks/inks01d.gif; see also

http://www.rdwarf.com/users/ruggels/inks/inks01.html.



3.1 Features Not Captured

In this section, we list a few features of thickness that we observe
in hand-made drawings that our not handled by our method.

1. Compressed dynamic range. Renderings purely based on
isophote distance often reach maximum or minimum thickness in
many regions, thereby reaching a constant thickness in these re-
gions. However, hand-made drawings often show thickness varia-
tion even in the thickness and thinnest regions.

2. Boundaries and creases. It may be possible to generalize
our approach to surface boundaries and creases (e.g., the sides of a
building), which we do not currently handle. We do observe that,
for example, more distant buildings typically have thinner strokes,
and windows have thinner strokes than the silhouette of a building.

4 Styles

In order to demonstrate the value of our approach, we demonstrate
its use in several different rendering styles in Figures 6. One style
is a basic black-paint style, as outlined in the previous section. We
also define a pen overdraw style, simulating the appearance of an
illustration with many strokes overdrawn over each edge. In this
style, strokes follow the contours and suggestive contours, but a
procedural offset is added to the curve (based on a sine function
with random phase) that varies the shape of the strokes. The am-
plitude of this offset is proportional to T (p), so that the overdrawn
strokes will produce wider regions in areas with larger T (p). A
third style simulates a simple brushed ink style. Each stroke is
composed of many partially overlapping substrokes; the number
of which is proportional to T (p). The sub-strokes are also offset by
procedural noise to achieve a more hand-painted appearance.

Our system renders the cow model (92864 polygons) at 13 fps on a
3.4 GHz dual-core Intel Xeon; the system is written in C++. How-
ever, most of the computation time is spent on line intersection and
visibility testing, and we believe that better performance could be
achieved with acceleration of these steps.

5 Discussion and Future Work

We have presented an interpretation of artistic strokes based on
shading, and demonstrated how it can be used to create artistic
imagery that conveys 3D surface shape through stroke thickness.
These types of variations can be employed in various artistic styles
that make use of strokes. Our main focus has been to show the value
of isophote distance in artistic renderings. We have not attempted
to fully explore the space of possible styles using isophote distance.
For example, our approach could be combined with the stroke styl-
izations of Grabli et al. [2004] and Sousa and Prusinkiewicz [2003]
to produce a much broader space of appealing styles.

We do not currently address thickness for surface boundaries and
creases. One possible approach would be to consider to rim shad-
ows observed under finite (area) light sources, rather than infinites-
imal point light sources. In some situations, artists also use line
thickness to convey shading for multiple light sources, as well as
cast shadows [Guptill 1997; Hodges 2003]. It is possible that our
method could be generalize to account for both.

Computing isophote distance is potentially expensive, particularly
when traversal is required. A variety of possible approaches suggest
themself. (We have experimented with a higher-order local surface
approximation based on a cubic approximation to third derivatives
of the surface, but found it to be too unstable.) Image-space and

GPU-based approaches may offer significant speed-ups, but at a
possible penalty in accuracy and stylistic control.
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A Isophote distance approximation

We now derive an approximation to isophote distance at a point p.
We locally approximate the radial curve with a parabola p(t). We
establish a coordinate system for the radial plane, with origin at p,
Z-axis pointing toward the camera center c (that is, coinciding with
v(p), and X-axis aligned with n(p) (Figure 5). The radial curve is
parameterized as q(t) = (x,z) = (g(t), t) for some quadratic g(t).
The unit normal to the parabola is

h(t) =

(

1
√

1−g′2(t)
,−

g′(t)
√

1−g′2(t)

)

(4)

This parabola passes through p at t = 0:

g(0) = 0 (5)

The parabola has normal n(p) at t = 0:

g′(0) = 0 (6)

The curvature of the parabola must be κ(p) at t = 0:

g′′(0) = −κ(p) (7)

These constraints are sufficient to define the quadratic:

g(t) =
1

2
g′′(0)t2 (8)

The isophote distance is the image-space distance to the point q(t)
that satisfies:

h(t) · l = r0 (9)

where
l = (`(p) ·n(p), `(p) ·v(p)) (10)

is the projection of the normalized light vector `(p) to the radial
plane. We will assume that the light is sufficiently distant that l

is constant over the neighborhood of p. Solving Equation 9 for t
gives:

t =





lzlx − r0

√

l2z + l2x − r2
0

l2z − r2
0



/g′′(0) (11)

Given t, we can compute the x-coordinate of q(t):

qx =
1

2
g′′(0)t2 (12)

The projected distance between q and p is then:

d(p) ≈
f

pz
px −

f

pz
qx (13)

where we have assumed that qz ≈ pz. Moreover, we have pz = ||p−
c|| and px = 0. Simplifying the above expression yields Equation
2. Substituting in `(p) ·n(p) = 0 yields Equation 1.

Non-contour points. The same derivation can be applied to non-
contour points, yielding:

dC(p) =
f

κ(p)||p− c||

(

a2 − e2

2
(

1+ e2
)3/2

)

(14)

where:

e =
n(p) ·v(p)

√

1− (n(p) ·v(p))2

c =
`(p) ·n(p)− (n(p) ·v(p))(`(p) ·v(p))

√

1− (n(p) ·v(p))2

b = `(p) ·v(p)

a =
r0

√

b2 + c2 − r2
0 −bc

b2 − r2
0

The cases b2 + c2 < r2
0 and a < e are handled by setting dC(p) =

Tmax and dC(p) = Tmin, respectively.



Ink Overdraw Sumi-e Detail

Figure 6: Left: Three rendering styles using isophote distance strokes. Right: Corresponding stroke details.

Lambertian 1−n · ` Isophote distance

Figure 7: Moving the light source. The middle column shows stroke thickness set to 1−n · ` and clamped; note that the surface has an
“embossed” look, e.g., at the horns. The right column shows our method. The isophote distance thickness conveys more of the local variation
of shape, similar to rim shadows.

Mesh traversal (dT ) Approximation (dC) κ + ε Blending

Figure 8: Different algorithms for computing isophote distance. Mesh traversal is nearly exact, but may be slow. The radial curvature
approximation dC is potentially much faster, but inaccurate for small values of κ . Replacing κ with κ + ε yields a smoother result. Using dT

for points with small κ , dC (with κ + ε) for large κ , and linearly blending in-between yields both accuracy and speed.



r0 = .2 r0 = .3 r0 = .4 r0 = .5

Figure 9: Effect of varying the r0 parameter, which selects the isophote.

Constant 2D tapering Depth Mean curvature (proportional)

Figure 10: Comparison with existing methods for stroke thickness. Constant thickness strokes appear plain. 2D tapering ignores local
surface shape, and tapers without regard to stroke occlusion. Thickness proportional to mean curvature yields fat strokes for thin regions.
(For these surfaces, thickness proportional to max curvature appears nearly identical.)



Hand-Drawn Lambertian Isophote distance Composite

Figure 11: Rendering based on a comic illustration from “Bone” [Smith 1998]. Based on the drawing, we constructed a 3D model by hand,
and then rendered the model using our algorithm. Our result is qualitatively similar to the original drawing. We also show a rendering of the
surface rotated slightly. (BONE R© is Copyright c© 2007 Jeff Smith; image used with permission.)

Figure 12: Left: A tonal drawing of a dung beetle, and a hand-drawn technical illustration based on the same image. The illustration shows
a strong dependence of line thickness on shading. Center: Based on the drawings, we constructed a 3D model by hand, and then rendered
the model using our algorithm. Our result is qualitatively similar to the original drawing. Right: We also show a rendering of the surface
rotated slightly. (Drawings by William L. Brudon, from University of Michigan Museum of Zoology, Misc. Publication No. 54; images used
by permission).



Figure 13: Hippos rendered in brush, overdraw, and ink styles.

Figure 14: Elephant rendered in an overdraw style.


