
Προσοµοιώσεις Εξέλιξης Φωτιάς σε

Κατανεµηµένα Συστήµατα µε

Χρήση Πρακτόρων

Thomas Diamantis

Grid Computing for
Fire Evolution Simulation

University of Thessaly
Volos

Thomas Diamantis
Department of Computer &
Communication Engineering
University of Thessaly

Thesis supervisors:
Vis. Assist. Prof. Panagiota Tsompanopoulou
Prof. Elias Houstis

Volos, 15 July 2005

Typesetted by the author in LaTEX2ε.

Contents

List of Figures iii

List of Tables v

1 Grid Overview 1
1.1 Definitions . 1
1.2 Why use computational grids? . 2
1.3 Architecture . 3

1.3.1 Components . 3
1.4 Future Work and Research for the Grid 4
1.5 DEISA - A grid example . 6

1.5.1 DEISA Architecture . 7
1.5.2 Operation and services . 10

2 Middleware 13
2.1 Agents . 13

2.1.1 Agents and grids . 14
2.1.2 Agent platforms . 14

2.2 Actors . 17
2.2.1 Ptolemy . 18

2.3 gLite . 19
2.3.1 Components . 19

3 Fire Dynamics Simulator 23
3.1 Overview . 23

3.1.1 Step 1: The input file . 24
3.1.2 Step 2: Simulation . 26
3.1.3 Step 3: Results . 27

3.2 FDS Variations . 27

4 Experiments and Results 31
4.1 Machinery nostrum . 31

4.1.1 Cyclone Cluster . 31
4.1.2 Local grid . 31

4.2 Experiments . 32
4.2.1 Performance measurements . 33

i

4.2.2 Validation of results . 36

Bibliography 41

ii

List of Figures

1.1 Five-layered grid architecture . 4
1.2 Grid components . 5
1.3 DEISA Architecture . 8
1.4 Cluster file system . 9
1.5 Grid filesystem . 9

2.1 Agent schematic representation . 13
2.2 JADE Architecture . 16
2.3 General representation of models of computation 19
2.4 gLite security architecture . 22

3.1 FDS data files and programs . 24
3.2 The two room example . 27
3.3 Dynamic data visualization . 28
3.4 Large fire simulation . 28
3.5 Example dataflow in agentised version of FDS 30
3.6 Code wrappers . 30

4.1 Cyclone network infrastructure . 32
4.2 Summary of maximum times . 36
4.3 Summary of sum of times . 37

iii

iv

List of Tables

2.1 Some agent platforms . 15
2.2 Overall ratings of agent platforms . 17

4.1 Timings for the serial version . 34
4.2 Timings for the MPI version . 34
4.3 Timings for the agent version . 35
4.4 Percentage difference between Serial and MPI version 38
4.5 Percentage difference between Serial and Agent version 39
4.6 Percentage difference between MPI and Agent version 40

v

vi

Abstract

This work deals with Fire Evolution Simulator (FDS), a software package developed
by NIST, USA, and especially with the efforts to grid-enable the original code using
agents.

Chapter 1 contains a brief overview of the term ‘‘Grid Computing’’. In this chapter,
we try to give various definitions of the above term, specify the architectures used
and outline current as well as with future trends of the research conducted on the
area. We finally present as an example the DEISA project, a european effort on grid
computing.

Chapter 2 is devoted to middleware. In this chapter we try to define two entities
similar to each other, agents and actors and give some examples of platforms used
to develop each one. Finally, there is a description of gLite, a grid middleware alse
developed in Europe.

Having finished with the theoretical backround, we examine FDS itself in Chapter 3.
Namely, we present its structure (input - output files) and the technologies used for
its various versions (original code in Fortran with MPI extensions, wrapped with C
and Java code for the agentised case).

Finally, in Chapter 4 we examine the results gathered from the experiments performed
in our cluster and our local ‘‘grid’’. These experiments intend to measure the
performance of FDS and proove the validity of the agentised code.

vii

viii

Chapter 1

Grid Overview

Computational grids as an idea is not something novel. It began as ‘‘networked
operating systems’’, in the 70s, returned as ‘‘distributed operating systems’’ in the
late 80s and early 90s, then became ‘‘heterogeneous computing’’, ‘‘parallel distributed
computing’’, ‘‘metacomputing’’ and finally ‘‘computing on the Grid’’ [38].

All these terms are not necessarily antonyms, but still there exists several
differences between today’s understanding of grids and older distributed networking:
grids focus on site autonomy, involve heterogeneity and are a more generalized
concept than just computers and networks. Ian Foster proposed [25] a three-
checkpoint list to identify whether a system should be called a grid or not:

1. a grid should coordinate resources that are not subject to centralized control.

2. such a coordination should be done using standard, open, general-purpose
protocols and interfaces.

3. the purpose of the above should be to deliver nontrivial qualities of service.

1.1 Definitions

Various definitions have been proposed to describe the term ‘‘The Grid’’. During the
mid 90s, ‘‘the grid’’ was used to denote

• a distributed computing infrastructure for advanced science and engineering [26].

In 1998, Carl Kesselman and Ian Foster attempted another definition in the book
‘‘The Grid: Blueprint for a New Computing Infrastructure’’:

• A computational grid is a hardware and software infrastructure that provides
dependable, consistent, pervasive, and inexpensive access to high-end
computational capabilities [25].

Others [17] claim - in a more simple way - that grids are

• collections of computational and data storage resources linked by communication
channels for shared use.

1

2 CHAPTER 1. GRID OVERVIEW

Yet another definition [29] is that a grid is

• a set of tools and technologies that allow users ‘‘easy’’ access to resources and
applications

Of course, all the definitions mentioned above are rather complementary than
competitive.

If we now try to examine grids from an end-user perspective, they are used
to provide various types of services such as computational services (execution of
applications on distributed computational resources), data services (scalable storage
and access to data sets stored in different locations accumulating in petabytes of
mass storage), application services (application management and transparent access
to remote software and libraries) and information services (extraction and human
readable representation of data using the services above) [18].

Generally speaking, computational grids are a lot analogous to electrical power
grids [28]. The latter provide lowcost and reliable access to a standardized
service (electricity), allowing both individuals and industries to take for granted the
availability of cheap and reliable power. Similarly, computational grids do almost the
same for computational power.

1.2 Why use computational grids?

Considering the continuous - and sometimes astonishing - progress that has been
made on computer performance during the last decades, one could raise the question:
‘‘What do we need computational grids for? Why should we connect together machines
which are powerful enough on their own?’’.

At first glance, such a concern would look rational. Today, the PC owned by a 10-
year-old child is stronger and faster than a 10-year-old supercomputer. Nevertheless,
such a PC is still far from adequate for computing the results of complex models
in real time. A well-known example of such kind is weather forecasting. Given
the intricacy of the predicting model, one would aquire tomorrow the results for
yesterday’s conditions.

Computational power is believed to increase even more through revolutionary
breakthroughs in a wide range of areas [28]:

Technology innovations in terms of VLSI technology and microprocessor
architecture. Moore’s law is still holding, remember? [12]

Increase in demand-driven access to computational power Given the existence of
high-end systems in coordinance with - hypothetical - mechanisms allowing
reliable and transparent access to them, an increase in computational power is
a realistic prediction.

Increased utilization of idle capacity A lot of efforts have been made these days
towards full utilization of PCs and workstations resulting to an increase in
peak computational capacity. See SETIHome [14] for instance, which is a

1.3. ARCHITECTURE 3

scientific experiment that uses Internet-connected computers in the Search for
Extraterrestrial Intelligence.

Greater sharing of computational results Effective sharing is limited in our days
but in the future it may be not, as more and more scientists are trying to adopt
a more holistic approach to computation.

New problem-solving techniques and tools New approaches and techniques allow
for a more efficient - in terms of computation - problem solving.

This is where grids join the game. They will provide the infrastructure to make the
innovations mentioned above feasible, at first, and then available to more and more
people around the globe.

1.3 Architecture

Grid computing assumes that any potential participants should be able to establish
communication and sharing relationships. The essential condition for this is
interoperability, which, in a networked environment such as grids, is further
translated to common protocols. Thus, grid architecture is mainly a protocol
architecture, with protocols defining the basic mechanisms by which users and
resources negotiate, establish, manage, and exploit sharing relationships [26].

1.3.1 Components

Foster and others suggest [26] a five-layered protocol architecture for grids (see Figure
1.1):

Fabric this layer provides the resources to be shared. These resources can vary from
a logical entity, such as a distributed file system, a single PC or a computer
cluster, to storage devices and database or even special scientific instruments
such as a radio telescope or heat sensors [26, 18].

Connectivity this layer offers core communication and authentication services.
Communication involves transport, routing and naming. It is assumed that
grids use the existent protocols (i.e., TCP for transport, DNS for naming), but
this does not mean that in the future the need for new protocols will not emerge.

Resource based on the protocols defined by the previous layer, Resource layer offers
services such as information registration and discovery (negotiation, initiation),
remote process management (monitoring, control) and aspects of Quality of
Service (QoS) like accounting and payment of sharing operations.

Collective this is the user-level layer which includes directory services that allow
participants to discover the existence and/or properties of resources, co-
allocation, scheduling, and brokering services that allow participants to request

4 CHAPTER 1. GRID OVERVIEW

the allocation of one or more resources and perform the scheduling of tasks,
monitoring and diagnostics services, data replication services whose purpose
is to support the management of storage resources to maximize data access
performance, grid-enabled programming systems, workload management
systems and collaboration frameworks, software discovery services and others.

Application the final layer consists of the user applications that operate on grids.
These applications are often developed using grid-enabled languages and
utilities such as HPC++ or MPI.

Fabric

Connectivity

Resource

Collective

Application

G
r
id

P
r
o
t
o
c
o
l

A
r
c
h
it

e
c
t
u
r
e

Figure 1.1: Five-layered grid architecture.

One can further tie the Connectivity and Resource layers in one and construct a
shorter list of essential grid components (see Figure 1.2): [18]

• Grid fabric

• Core grid middleware

• User-level grid middleware

• Grid applications

1.4 Future Work and Research for the Grid

It is obvious that in a field of rapid progress such as informatics it is difficult to ‘‘predict
the future’’, thus foreseeing what will become the ruling Grid approach in a few years
is not an easy task. However, one can distinguish some tendencies, one of which is
the growing interest in the use of Java and Web services [18]. This happens because
the language itself incorporates some of the most important demands of grids such
as heterogeneity and security, not to mention that it was designed from the beginning
as ‘‘a language for the internet’’.

Of course there are still issues to be addressed, problems to be solved before grids
can evolve to a next level. Some of those challenges include [28]:

1.4. FUTURE WORK AND RESEARCH FOR THE GRID 5

Figure 1.2: Grid components.

The Nature of applications History has taught us that changes in capabilities (i.e.,
from a workstation to a grid) may lead to new ways of using computers. Hence,
research is required to explore what is possible to be done, not only in the
‘‘traditional’’ scientific and engineering domains but in other areas as well, such
as business art and entertainment.

Programming models and tools Grids introduce new models and architectures. As
a consequence, new techniques are required for mapping existing or new
algorithms on grid environments.

System architecture Systems supporting grid environments have to be scalable
and often have to comply with contradicting requirements such as simplicity
(in order to achieve broad deployment) as well as with complexity (so that
a wide variety of complicated and performance-sensitive applications can be
supported). All the above are not yet satisfied by existing technologies.

Algorithms and problem solving methods New algorithms are needed as grids
differ considerably from single and even multiprocessor and parallel computing
systems.

Resource management One of the key issues of grid systems is sharing of common
resources. Therefore, the problem of managing these resources effectively,
arises.

6 CHAPTER 1. GRID OVERVIEW

Security Current network security usually gives more emphasis on traditional client-
server interactions. Grids, however, involve more entities and more complex
activities, introducing new challenging security problems.

Instrumentation and performance analysis Performance is many times critical to
grid applications and this makes technologies for collecting, analyzing and
explaining performance data of vital importance.

End systems Today’s end systems are designed to operate with interfaces and
operating systems developed to read and write on slow disks. Grids call for
next-generation high-performance networking, emerging to new approaches to
both low level (operating system, network interface) and higher level areas (new
applications for networked computers).

Network protocols and infrastructure Last but not least, high bandwidths and
performance assurances that grid applications require are likely to render
current network protocols and infrastructure insufficient, thus making the
proposal of new technologies for transport, switch, route, and manage network
flows essential.

1.5 DEISA - A grid example

DEISA - Distributed European Infrastructure for Supercomputing Applications [3]
is a european effort (still under development) to connect several supercomputers
operating in Europe to an intercontinental grid. Leading national supercomputing
centers have formed this consortium that currently deploys and operates a persistent,
production quality, distributed supercomputing environment with continental scope.
The purpose of this research infrastructure is to enable scientific discovery across a
broad spectrum of science and technology, by enhancing and reinforcing European
capabilities in the area of high performance computing. This becomes possible
through a deep integration of existing national high-end platforms, tightly coupled
by a dedicated network and supported by innovative system and grid software.

Indeed, DEISA is structured as a layer on top of the national supercomputing
services, and coexists with them. This infrastructure addresses the computational
challenges that require the coordinated action of the different national
supercomputing environments and services for both efficiency and performance.

DEISA provides leading scientific users with transparent access to a European pool
of computing resources. The coordinated operation of this environment is tailored to
enable new, ground breaking applications in computational sciences.

The DEISA Consortium follows a top-bottom strategic approach for the deployment
and the evolution of the infrastructure. The Consortium does not commit ‘‘a priori’’ to
any specific technology. Its technology choices are fully open, and they follow from the
strategic requirements and the operational model of the DEISA virtual organization. A
few very basic strategic requirements have determined the major initial choices made
for the deployment of the infrastructure:

1.5. DEISA - A GRID EXAMPLE 7

• The necessity of fast deployment of a persistent, production quality
supercomputing infrastructure with continental scope.

• The coexistence of the European infrastructure with the national services, which
requires reliability and non-disruptive behavior.

• User transparency (users should not be aware of complex grid technologies) and
applications transparency (minimal intrusion on applications, which, being part
of the corporate wealth of research organizations, should not be strongly tied to
an IT infrastructure).

1.5.1 DEISA Architecture

The integration of national resources inside the DEISA supercomputing grid operates
at two levels (see Figure 1.3):

• An inner level, dealing with the deep integration and strongly coupled operation
of similar, homogeneous platforms. Here, national IBM AIX clusters are glued
together to constitute a distributed European supercomputer, called ‘‘the AIX
super-cluster’’.

• An outer level, dealing with a looser federation of heterogeneous supercomputing
resources. This constitutes a heterogeneous grid of supercomputers and super-
clusters. Indeed, this heterogeneous supercomputing grid includes all the
leading platforms in Europe exhibiting different technologies from different
vendors (IBM, SGI, NEC). In this context, the AIX super-cluster is seen as a
single platform.

The DEISA network

DEISA uses an internal network provided by GEANT1 and the National research
networks(NRNs) that connects the supercomputers and offers reserved bandwidth,
This internal network exists, of course, in addition to the standard Internet
connectivity that each national supercomputer centre offers.

The AIX super-cluster

The phase 1 of the AIX super-cluster involves four IBM Power4 platforms:

• FZJ-Julich (Germany) P690 (32 processor nodes) architecture, incorporating
1312 processors. Peak performance is 8.9 Teraflops.

• IDRIS-CNRS (France) Mixed P60 and P655+ (4 processor nodes) architecture,
incorporating 1024 processors. Peak performance is 6.7 Teraflops.

1GEANT is an effort to create a multi-gigabit pan-European data communications network, reserved
specifically for research and education use [6].

8 CHAPTER 1. GRID OVERVIEW

Figure 1.3: DEISA Architecture.

• RZG{Garching (Germany) P690 architecture incorporating 896 processors.
Peak performance is 4.6 Teraflops.

• CINECA (Italy) P690 architecture incorporating 512 processors. Peak
performance is 2.6 Teraflops.

• CSC (Finland) P P690 architecture incorporating 512 processors. Peak
performance is 2.2 Teraflops.

The fundamental integration concept in this area is transparent access to remote
data files via a global distributed file system. This is a natural wide area network
extension of standard cluster architectures, and this is why we speak of a super-
cluster. Each one of the national supercomputers listed above is a cluster of several
autonomous computing nodes, linked by a high performance network. Data files
are not replicated on each computing node, they are unique and shared by them all
(see Figure 1.4). A data file in a global file system is ‘‘symmetric’’ with respect to
all computing nodes, and can be accessed with equal performance from all of them.
Therefore, a user does not need to know (and does not know in practice) on which set
of nodes his application is executed.

The IBM AIX systems listed above are running IBM’s GPFS (Global Parallel File
System) [7] as a cluster file system. Recently, IBM has incorporated wide area network
functionality in GPFS, enabling the deployment of distributed global file systems (see
Figure 1.5). This is the basic integration technology of the AIX super-cluster.

An application running on one site can access data files previously ‘‘exported’’
from other sites as if they were local files. Therefore, it does not matter in which site

1.5. DEISA - A GRID EXAMPLE 9

Figure 1.4: Cluster file system.

Figure 1.5: Grid filesystem.

10 CHAPTER 1. GRID OVERVIEW

the application is executed, and applications can be moved across sites transparently
to the user.

It is important to emphasize that the main issue here is high performance remote
access needed for high performance computing, and this is what GPFS is supposed
to provide. On the DEISA infrastructure applications are observed to utilize the full 1
Gb/s bandwidth of the underlying network when accessing remote data via GPFS. As
another example, on the 30 Gb/s TeraGrid network in the USA, GPFS runs at 27 Gb/s
in remote file accesses. This software is therefore capable of taking full advantage of
underlying high performance networks. The ultimate performance of the AIX super-
cluster is therefore strongly linked to the performance of the next generation network
infrastructures in Europe.

The full heterogeneous supercomputing grid

The DEISA Supercomputing Grid involves a number of DEISA partners that contribute
a significant amount of the national supercomputing resources (of the order of 10%
or more) to a globally managed European resource pool. The leading supercomputing
platforms in Europe participating to the DEISA resource pool are:

• The AIX super-cluster (FZJ, RZG, IDRIS, CINECA, CSC) discussed above, with
an aggregated computing power close to 25 Teraflops.

• BSC (Barcelona, Spain): 4564 Power PC processor IBM Linux system, 9 TB
memory space, 233 TB disk space. Peak performance is 40 Teraflops.

• HLRS (Germany): NEC SX8 vector supercomputer, 576 processors, 9.2 TB
memory space, 180 TB disk space. Peak performance is12.67 Teraflops.

• LRZ (Germany): Linux cluster with more than 500 CPUs (above 2.7 Teraflops
peak performance) (see below for the planned evolution of this platform)

• SARA (The Netherlands): SGI Altix 3700 Linux system, 416 Itanium-2
processors , 832 GB main memory, peak performance 2.2 teraflops.

• ECMWF (International organization): Two 690+ clusters with 68 32-way nodes
each, with an aggregated performance of 33 Teraflops peak.

At this level, the objective is to federate supercomputing environments in a
supercomputing grid that will include, in addition to the supercomputing platforms
mentioned above, a number of data management facilities and auxiliary servers of all
kinds. The DEISA Supercomputing Grid can be seen as a global architecture for a
virtual European supercomputing centre.

1.5.2 Operation and services

The AIX super-cluster is supposed to run bigger and more demanding applications
than the ones that can be run today on each national cluster. A common approach of

1.5. DEISA - A GRID EXAMPLE 11

doing this would be to ‘‘grid enable’’ the application so that it can run on more than
one platform. However, this strategy - that requires a modification of the application
- does not really work for tightly coupled parallel applications.

DEISA adopts a different strategy, based on load balancing the computational
workload across national borders. Huge, demanding applications are run by
reorganizing the global operation in order to allocate substantial resources in one
site. They are therefore runs ‘‘as such’’ with no modification. This strategy only relies
on network bandwidths, which will keep improving in the years to come.

The other benefit of the AIX super-cluster comes from the possibility of
transparently sharing data through GPFS. European data repositories that require
frequent updates - like bio-informatics databases, for example - can be established in
one site and accessed by all the others.

As a result, the AIX super-cluster provides to end users most of the benefits of a
unique, 20 teraflops supercomputer, in a transparent way.

Additionally, the DEISA grid provides services like support for workflow operations
(those that need to ‘‘visit’’ successively different computing resources to accomplish
a complex simulation) and portal and web interfaces (in order to enhance the user
adoption of sophisticated supercomputing infrastructures).

Finally, as an exception to the ‘‘do-not-grid-enable-the-applications’’ strategy
mentioned before, there is an implementation of a co-scheduling service on the
supercomputing grid for those sophisticated multi-scale, multi-physics applications
composed of loosely coupled independent software modules that need to exchange
information in real time with limited communications overhead. Classical examples
are ocean-atmosphere or fluid-structure coupled codes.

Altogether, the DEISA grid has deployed activities on various modern and
challenging areas such as material sciences, cosmology, plasma physics, life sciences,
and industry.

12 CHAPTER 1. GRID OVERVIEW

Chapter 2

Middleware

As mentioned in Section 1.3, in order to realize a grid it is necessary, among others
to deploy both low- and user-level middleware. The first is needed to provide a secure
and transparent access to resources while the latter is used – in coordinance with
other tools – to provide the essential infrastructure for application development and
the aggregation of distributed resources [18].

2.1 Agents

Similar to grids, there is no universally accepted definition of the term agent. There is
a general opinion that autonomy is essential, but beyond this, there is little agreement.
Part of the difficulty in defining an agent is that many of its attributes are of different
significance for different applications. For instance, some times the ability of an agent
to learn by experience is crucial and some times not only is it trivial, but it may be
unwanted as well; nobody would like an agent-based air-traffic control system whose
agents would modify their behavior at run time.

A definition adopted by Wooldridge and Jennings [39] states that

• an agent is a computer system that is situated in some environment and that
is capable of autonomous action in this environment in order to meet its design
objectives

Yet another definition focusing on agent attributes describes agents as [19]

• a software component that is autonomous (has a degree of control over its own
actions), proactive (does not only react in response to external events but also
exhibits a goal-directed behavior and, where appropriate, is able to take initiative)

Agent

Environment

Action
(output)

Sensor
(input)

Figure 2.1: Agent schematic representation.

13

14 CHAPTER 2. MIDDLEWARE

and social (it is able to, and need to, interact with other agents in order to
accomplish its task)

An agent will typically sense its environment (by physical sensors in the case of
agents situated in part of the real world or by software sensors in case of software
agents) and decide what to do from a specific repertoire of actions available to it. Of
course the agent has not overall control of the environment. Given the environment’s
non-deterministic nature, the action performed by the agent will probably modify it
but it will not necessarily have the desired effect.

Recognizable entities that can be viewed as agents are control systems (like a
thermostat controlling the temperature of a room) and daemons (i.e., background
Unix processes) which monitor a software system and perform actions accordingly.

A special category of agents are mobile agents. These are agents which can move
around an electronic network [34] just like a robot would move around in real world.
For example, programs roaming a network to collect business-related data in order
to help users to buy goods, or implement platform-independent code-on-demand can
be viewed as mobile agents [33].

2.1.1 Agents and grids

Traditionally, grid development focuses on interoperable infrastructure and tools for
secure and reliable resource sharing within dynamic and geographically distributed
virtual organizations [27]. On the contrary, agent communities have focused more
on ‘‘brains’’, trying to develop autonomous problem solvers that can act flexibly
in a dynamic environment [27]. Nevertheless, as the scale and ambition of both
communities rises, their interests are starting to overlap; grids are trying to become
more flexible and agents are trying to be based on a more robust infrastructure which
will provide more scalability and security.

Examples (random and non-representative) of using agent-oriented techniques
in grid environments are [23], [22] and [30]. The first describes a methodology
of resource management for grid computing consisting of agents who are capable
of cooperating with other agents to provide service advertisement and discovery
to schedule applications that need to utilize grid resources. The second paper
introduces a mechanism which provides agent-based self-organization in order to
perform complementary load balancing for batch jobs with no explicit execution
deadlines. Finally, the third paper proposes a way of constructing a grid from scratch
based on mobile agents.

2.1.2 Agent platforms

Numerous agent-oriented platforms have been developed. Five of them are mentioned
below. Additionally, these platforms are rated in terms of security issues, development
and standards compliance1. The overall rating is shown in Table 2.2.

1Project ratings is a work conducted in 2003 by John Michopoulos, Naval Research Laboratory,
USA, (personal communication)

2.1. AGENTS 15

Product Type

1 Bee-gent Language or environment for agent development

2 JADE Distributed Agent platform

3 Kaariboga Language or environment for agent development

4 Voyager Support software

5 Pro-active GRID platform

Table 2.1: Some agent platforms.

Bee-gent

Bee-gent (Bonding and Encapsulation Enhancement Agent), is a communication
framework based on the multi-agent model [34]. It is a new type of development
framework in that it is a 100% pure agent system. As opposed to other systems
which make only some use of agents, Bee-gent provides applications with autonomous
network behavior by ‘‘agentifying’’ them (i.e., providing an agent interface). It then
supports agent-based inter-application communication, facilitating co-operation and
problem-solving. Bee-gent achieves this in a flexible and open structured manner,
making it well suited to providing for co-operative processing in the advanced network
society.

JADE

JADE is an enabling technology, a middleware for the development and run-time
execution of peer-to-peer applications which are based on the agents paradigm and
which can seamless work and interoperate both in wired and wireless environment.

Fully developed in the Java language, JADE platform tries to comply with the
following principles

• Interoperability By implementing the standard2, JADE agents are capable of
interoperating with other agents provided that the latter are also compliant with
the same specifications.

• Uniformity and portability JADE’s APIs are independent of the underlying
network and Java version (J2EE, J2SE, J2ME) allowing - in theory - application
developers to decide the Java run-time environment at deploy time.

• Easy to use The complexity of the middleware is hidden behind a simple and
intuitive set of APIs.

• Pay-as-you-go philosophy Programmers do not need to use all the features
provided by the middleware as those that are not used do not require

2Specifications proposed bu The Foundation for Intelligent Physical Agents (FIPA) which are intended
to promote the interoperation of heterogeneous agents and the services that they can represent [5]

16 CHAPTER 2. MIDDLEWARE

programmers to know anything about them, neither do they add any
computational overhead.

Figure 2.2: JADE Architecture.

Kaariboga

Kaariboga Mobile Agents, Kaariboga, is a free – JAVA – implementation of a framework
for mobile agents. Although project development seems to be stalled, Kaariboga
intends to provide a platform that can be freely used for experiments and research on
mobile agents[10].

Voyager

Voyager is a licensed product from Recursion Software, Inc. It is a standards neutral,
100% pure Java development platform and object request broker (ORB) for distributed
computing, designed to speed development and improve the performance and quality
of enterprise solutions [34].

It offers (among others) flexible, layered architecture, portability across multiple
operating systems, built-in and custom security features, survivability, scalability,
reliability, high performance/fast run-time and is compliant with standards [15].

The Voyager Framework includes:

• Voyager Distributed Development Platform (VDDP)

• Plug-In Modules: Security, Transaction, Messaging

2.2. ACTORS 17

General Security Development Standards

O
S

In
de

pe
nd

en
t

D
oc

um
en

ta
tio

n

M
ob

ile
ag

en
ts

Au
th

en
tic

at
io

n

D
at

a
en

cr
yp

tio
n

Au
th

or
iz

at
io

n

Ac
ce

ss
re

st
ri

ct
io

n

M
on

ito
ri

ng

D
eb

ug
gi

ng

R
A

D

A
rc

hi
te

ct
ur

e

FI
PA

G
LO

B
U

S

G
ri

d
se

rv
ic

es

Bee-gent Y Y Y 1 2 4 4 4 4 3 4 1 4 4
JADE Y Y Y 1 4 2 4 2 2 4 3 1 4 2
Kaariboga Y Y Y 4 4 4 3 4 4 4 4 4 4 4
Proactive Y Y Y 2 2 2 2 2 2 4 2 4 2 1
Voyager Y Y Y 1 1 4 4 4 4 4 4 4 4 4

Table 2.2: Overall ratings of agent platforms. ’Y’ (Yes) indicates that the system
satisfies the specific criterion. The grades have been assigned from 1 (best,yes) to 4
(worst,no).

• Voyager Management Console

Pro-Active

Proactive is a GRID Java library for parallel, distributed, and concurrent computing,
also featuring mobility and security in a uniform framework. With a reduced set of
simple primitives, ProActive provides a comprehensive API allowing to simplify the
programming of applications that are distributed on Local Area Network (LAN), on
cluster of workstations, or on Internet Grids [13].

Proactive is not a pure agent platform. Apart from enabling the development of
a mobile and potentially secure agent, it also provides a uniform way to encapsulate
remotely accessible objects, threads as asynchronous activities, actors with their own
scripts (see Section 2.2) or servers of incoming requests [13].

2.2 Actors

Actors are autonomous reasoning agents [32]. They are small entities, solely defined
by their behavior which is further characterized by its response to receiving a
message [37]. In analogy to real-life actors, a key attribute of actor communities
is concurrency (real humans operate concurrently in everyday life).

Communication between actors is achieved through an - asynchronous - message
passing according to a specific scheme. When a message is received by an actor, the
actor determines whether it recognizes it as one for which there exists a programmed
response. If so, the action associated with the message is performed and a response,
if necessary, is relayed back to the sender of the original request.

Actors have a well defined interface, which abstracts its internal state and
execution and restricts how it interacts with its environment. Externally, this

18 CHAPTER 2. MIDDLEWARE

interface includes ports that represent points of communication for an actor and
parameters which are used to configure its the behavior [36]. This abstraction is a
central concept in actor-oriented design; internal behavior and state of an actor are
hidden behind the actor interface and are not visible externally. This property of
strong encapsulation separates the behavior of a component from the interaction of
that component with others.

The main difference between actors and agents is that actors mostly react to
messages sent by other actors while agents have sensors and decide what to do
according to the current environmental status. Actors don’t know anything about
their surroundings and expect a message from an external source in order to
act. Agents do exchange messages with each other but they also keep an internal
representation of the environment (at least of what they can ‘‘sense’’) and perform
actions as a consequence of the things the ‘‘see’’ or ‘‘hear’’. Finally, agents have a
specific target, a goal which drives their reactions while actors do not.

2.2.1 Ptolemy

A project that supports actor-oriented design is Ptolemy. Ptolemy is a
framework to model, simulate, rapidly prototype and design heterogeneous and
concurrent systems [20, 32]. It would be ideal for applications for which
heterogeneity is an important factor such as design of multimedia networks,
real-time embedded software, hardware/software codesign, control and call-
processing in telecommunication networks, mixed-mode hardware simulation,
mapping applications onto heterogeneous multiprocessor systems and mixed signal
processing and real-time control [20]. Generally, Ptolemy focuses on systems that are
complex in the sense that they mix widely different operations.

There is also focus on embedded systems especially those which blend different
technologies together (i.e., analog and digital electronics, hardware and software,
electronics and mechanical devices). The term embedded software describes software
that is meant to be executed on devices that are not computers, such as automobiles,
telephones, pagers, consumer electronics, toys, aircraft, trains, security systems,
weapons systems, printers, modems, copiers, thermostats, manufacturing systems,
appliances, etc. A main difference between embedded and traditional software is
that the first operates on devices that reside in the physical world and hence there
are temporal constraints, absent in desktop-oriented systems. As mentioned before
actors (i.e., Ptolemy components), act concurrently. Ptolemy implements a variety
of models of computation that deal with this concurrency. A - general - graphical
representation of models is shown in Figure 2.3, where nodes represent - in most
circumstances - actors and arcs represent message exchanges (communication).

Namely, the models implemented in Ptolemy [32] are

• Component Interaction

• Communicating Sequential Processes

• Continuous Time

2.3. GLITE 19

Figure 2.3: General representation of models of computation.

• Discrete Events

• Distributed Discrete Events

• Discrete Time

• Finite State Machines

• Process Networks

• Synchronous Dataflow

• Giotto

• Synchronous/Reactive

• Timed Multitasking

Describing the above is beyond the scope of this work and the reader can find details
in [32].

2.3 gLite

gLite is a European effort to create a lightweight middleware for grid computing which
will provide a bleeding-edge, best-of-breed framework for building grid applications
tapping into the power of distributed computing and storage resources across the
Internet.

2.3.1 Components

gLite consists of various subsystems which provide the essential infrastructure to
form virtual organizations - grids.

20 CHAPTER 2. MIDDLEWARE

Computing Element Subsystem

The Computing Element (CE) is the service representing a computing resource. Its
main functionality is job management (job submission, job control, etc.). The CE
may be used by a generic client: an end-user interacting directly with the Computing
Element, or the Workload Manager, which submits a given job to an appropriate CE
found by a matchmaking process. For job submission, the CE can work in push
model (where the job is pushed to a CE for its execution) or pull model (where the
CE is asking the Workload Management Service for jobs). Besides job management
capabilities, a CE must also provide information describing itself. In the push model
this information is published in the information Service, and it is used by the match
making engine which matches available resources to queued jobs. In the pull model
the CE information is embedded in a ‘‘CE availability’’ message, which is sent by the
CE to a Workload Management Service. The matchmaker then uses this information
to find a suitable job for the CE.

Data Management Subsystem

The three main service groups that relate to data and file access are: Storage Element,
Catalog Services and Data Scheduling. To the user of the data services the abstraction
that is being presented is that of a global file system, with very similar semantics. A
client user application may look like a Unix shell which can seamlessly navigate in
this virtual file system, listing files, changing directories and accessing the data in
the files (access is controlled by Access Control Lists and can be done through the
Storage Element).

Accounting Subsystem

The accounting service accumulates information about the usage of Grid resources
by the users and by groups of users.This information allows preparation of statistical
reports, to track resource usage for individual users, to discover abuses and to help
avoid them. Accounting information could be used to charge users for the Grid
resources they have utilized. The information available from the accounting service
can also be used to implement submission policies based on user quotas or on
resource usage (fair share). In principle it also allows the creation of a real exchange
market for the Grid resources and services. The subsequent economic competition
should result in market equilibrium, thereby promoting load balancing on the Grid.

Logging and Bookeeping Subsystem

The Logging and Bookkeeping service (LB) tracks jobs in terms of events - important
points of job life (i.e., submission, finding a matching CE, starting execution etc.).

The events are passed to a physically close component of the LB infrastructure
(local logger) in order to avoid network problems. This component stores them in a
local disk file and takes over the responsibility to deliver them further. The destination
of an event is one of the bookkeeping servers assigned statically to a job upon its

2.3. GLITE 21

submission. The server processes the incoming events to give a higher level view on
the job states (e.g., Submitted, Running, Done) which also contain various recorded
attributes (e.g., destination CE name, job exit code, etc.). In order to retrieve those
details, LB provides a public interface consumer API which is completely passive; it
allows querying but no data are pushed beyond the LB server actively.

Information and Monitoring Subsystem

R-GMA (Relational Grid Monitoring Architecture) is based on the GMA from the GGF
(Grid Global Forum) [8], which is a simple Consumer-Producer model. The special
strength of this implementation comes from the power of the relational model. R-GMA
offers a global view of the information as if each Virtual Organization had one large
relational database. It is suitable both for information about the grid (primarily to
find out what services are available at any one time and then to find details of those
services) and for application monitoring. Those with information to share publish it
via a ‘‘Producer’’ and those seeking information obtain it via a ‘‘Consumer’’.

Security Subsystem

The aim of the security system is to be modular (ability to add new modules later),
agnostic (modules will evolve), standard and interoperable. A ‘‘third-person’’ view of
the security architecture is shown in Figure 2.4.

Workload Management Subsystem

The Workload Management System (WMS) comprises a set of Grid middleware
components responsible for the distribution and management of tasks across Grid
resources, in such a way that applications are conveniently, efficiently and effectively
executed.

The core component of the Workload Management System is the Workload
Manager (WM), whose purpose is to accept and satisfy requests for job management
coming from its clients. For a computation job there are two main types of request:
submission and cancellation. In particular the meaning of the submission request
is to pass the responsibility of the job to the WM. The WM will then pass the job
to an appropriate CE for execution, taking into account the requirements and the
preferences expressed in the job description. The decision of which resource should
be used is the outcome of a matchmaking process between submission requests and
available resources.

22 CHAPTER 2. MIDDLEWARE

Figure 2.4: gLite security architecture.

Chapter 3

Fire Dynamics Simulator

Fire Dynamics Simulator (FDS) is a computational fluid dynamics (CFD) model of
fire-driven fluid flow. The software solves numerically a form of the Navier-Stokes
equations appropriate for low-speed, thermally-driven flow with an emphasis on
smoke and heat transport from fires.

3.1 Overview

Computational fluid dynamics models, in general, try to predict what will happen,
quantitatively, when fluids flow, often with the complications of simultaneous flow
of heat, mass transfer (e.g., perspiration, dissolution), phase change (e.g., melting,
freezing, boiling), chemical reaction (e.g., combustion, rusting), mechanical movement
(e.g., of pistons, fans, rudders), stresses in and displacement of immersed or
surrounding solids [9].

Laws governing fluids are relatively simple and straightforward; motion,
thermodynamics and some chemistry. Solutions, however, are rather complex. As a
result, analytical methods are unusable in real-life problems. A common approach
to reduce complexity is to replace the initial problem with a number of smaller, less-
complex problems [31].

That is how FDS operates. Instead of solving equations for the whole volume
surrounding a specific event, the user splits the flow domain into smaller sub-
volumes. For FDS to work, the volume in question must be a rectangular area and
subsequently the sub-volume grid must be rectilinear. A common simulation circle
consists of three steps:

1. represent the objects in the flow domain and provide the ‘‘mesh’’ or ‘‘grid’’ (i.e.,
the splitting in sub-volumes procedure mentioned above).

2. run the simulation on the ‘‘mesh’’.

3. extract and visualize the data from the results produced from the simulation.

A diagram illustrating the data files and programs used in FDS is shown in Figure
3.1. From top to bottom, the diagram shows the user-provided input (Step 1), the

23

24 CHAPTER 3. FIRE DYNAMICS SIMULATOR

Database

(.data)

Input

(.data)

FDS

Smokeview

input (.smv)

Slice/Vec

or slice (.sf)

Boundary

(.bf)

Particle

(.part)

3D Smoke

(.s3d)

Iso-surfice

(.iso)

PLOT3D

(.q)

Smokeview
Database

(.data)

Graphics

Figure 3.1: FDS data files and programs.

simulation (Step 2), and the output files (Step 3). ‘‘Smokeview’’ is an application used
to graphically represent the results of the simulation (see details below).

3.1.1 Step 1: The input file

Object representation and mesh generation is done with a user-provided input file.
The input file is a text file containing all the essential information to describe the
scenario under consideration. The most important inputs determine the physical size
of the overall rectangular domain, the grid dimensions, and the additional geometrical
features. Next, the fire and other boundary conditions must be specified. Finally,
there are a number of parameters that customize the output files to capture the most
important flow quantities [35].

A sample input file is shown in Listing 1. It describes two rooms (a large and
a smaller one) connecting to each other with a door (See Figure 3.2). The scenario
states that a fire starts in the first (large) room and after a period of time, the door
opens. The file database.data mentioned in DATABASE=’database4.data’ is
an external file containing information about the properties of the object surfaces
used (e.g., the material of which objects are made, details about how the objects react
to specific fuels, etc.)

3.1. OVERVIEW 25

Listing 1 A sample input file of FDS.

&HEAD CHID=’2subRm01z’,TITLE=’ATF Room Fire Test’ /
/
&GRID IBAR=48, JBAR=24, KBAR=24 /
&PDIM XBAR0=0.0,XBAR=4.7,YBAR0=0.0,YBAR=2.5,ZBAR0=0.0,ZBAR=2.5 /
/
&TIME DT=0.01,TWFIN=5.0 /
&MISC SURF_DEFAULT=’SHEET METAL’,

DATABASE=’database4.data’,
REACTION=’POLYURETHANE’ /

&SURF ID=’burner’,HRRPUA=1000. /

&OBST XB=2.60,3.20,0.95,1.55,0.0,0.10, SURF_IDS=’burner’,
’INERT’, ’INERT’ / burner

&OBST XB=3.65,3.75,0.0,0.87,0.0,2.5 / wall1
&OBST XB=3.65,3.75,0.87,1.63,2.0,2.5 / wall1
&OBST XB=3.65,3.75,0.87,1.63,0.0,2.0, T_REMOVE=2.5,

RGB=0.7,0.8,0.8 / door wall1
&OBST XB=3.65,3.75,1.63,2.5,0.0,2.5 / wall1

&VENT CB=’XBAR’ , SURF_ID=’OPEN’ / open right side of 2nd room

&PL3D DTSAM=5. / Plot 3D file every 5 secs
&PART DTPAR=0.5,NIP=100 /

26 CHAPTER 3. FIRE DYNAMICS SIMULATOR

3.1.2 Step 2: Simulation

Fires are generally known to be of the most complex phenomena to understand.
The difficulties revolve about three issues [21]: fire scenarios are by default
accidental. Thus, the number of possible cases to consider is gigantic. Secondly,
the computational power needed to perform all the necessary calculations (bluff
body aerodynamics, multi-phase flow, turbulent mixing and combustion, radiative
transport, and conjugate heat transfer) is limited. Finally, what turns out to be the
‘‘fuel’’, in most cases, was never intended to be such. As a result, mathematical
models describing the phenomena may not be available at all. After all, modeling
physical and chemical transformations of real materials as the burn is an area still
under heavy development.

In order to continue, things must be simplified. Work begins with investigating a
small number of scenarios that are easier to analyze and can be generalized over time
instead of trying to develop a a methodology applicable to all fire problems. Moreover,
like any other complex computational problem, descriptions of fire are idealized and
approximations are be used widely.

Hydrodynamic Model In fluid dynamics, the Navier-Stokes equations, named after
Claude-Louis Navier and George Gabriel Stokes are a set of nonlinear partial
differential equations that describe the flow of fluids such as liquids and
gases [16]. FDS solves numerically a form of the Navier-Stokes equations
appropriate for lowspeed, thermally-driven flow with an emphasis on smoke and
heat transport from fires. The core algorithm is an explicit predictor-corrector
scheme, second order accurate in space and time.

Combustion Model For most applications, FDS uses a mixture fraction combustion
model. The mixture fraction is a conserved scalar quantity that is defined as the
fraction of gas at a given point in the flow field that originated as fuel. The model
assumes that combustion is mixing-controlled, and that the reaction of fuel and
oxygen is infinitely fast. The mass fractions of all of the major reactants and
products can be derived from the mixture fraction by means of ‘‘state relations’’,
empirical expressions arrived at by a combination of simplified analysis and
measurement.

Radiation Transport Radiative heat transfer is included in the model via the solution
of the radiation transport equation for a non-scattering gray gas, and in some
limited cases using a wide band model.

Boundary Conditions All solid surfaces are assigned thermal boundary conditions,
plus information about the burning behavior of the material. Heat and
mass transfer to and from solid surfaces is usually handled with empirical
correlations, although it is possible to compute directly the heat and mass
transfer.

FDS can also simulate the presence of smoke detectors and sprinkles (when stated in
the input file).

3.2. FDS VARIATIONS 27

(a) Area overview before
simulation

(b) Fire and smoke before the
door opens

(c) Fire and smoke after the
door has opened

Figure 3.2: The two room example.

3.1.3 Step 3: Results

After the simulation is finished, results are written in a variety of output files (see
Figure 3.1). Smokeview is a program written in C and Fortran 90, designed to read
and visualize (using the OpenGL graphics library) both static and dynamic data from
these files. Dynamic data is visualized by animating particle flow (showing location
and ‘‘values’’ of tracer particles), 2D contour slices (both within the domain and on
solid surfaces) and 3D level surfaces. 2D contour slices can also be drawn with colored
vectors that use velocity data to show flow direction, speed and value. Static data is
visualized similarly by drawing 2D contours, vector plots and 3D level surfaces [24].

In simple words, the user loads the output files into Smokeview, adjusts the scene
as desired, selects what to watch (i.e., temperature on a specific slice of the mesh,
smoke, water, etc.) and the entire simulation is presented to him as an animated
sequence of frames.

Examples of Smokeview runs are presented. Figure 3.2 shows the result of the
input file noted in Section 3.1.1. Figure 3.3 depicts snapshots of shaded vector plots
in a vertical plane at different times after ignition. FDS is also capable of simulating
large fires. Figure 3.4 shows a snapshot of a large oil fire simulation. The domain is
384m by 384m by 288m. Each tank is 84 m in diameter and 27 m tall. The grid is
uniform with 6 m grid cells.

3.2 FDS Variations

FDS comes in two variations. The first is meant to be run on a single machine unlike
the second which allows the distribution of sub-meshes (and the subsequent sub-
computations) over a network (local or the internet), offering a boost in simulation
times (see Chapter 4 for experiments and results). Of course, the computational core
(i.e., the methods and algorithms used for the simulation) remain the same in both
cases.

In order to run a calculation on more than one computer, FDS uses the Message-
Passing Interface (MPI). MPI is a specification of a portable, practical, efficient and

28 CHAPTER 3. FIRE DYNAMICS SIMULATOR

Figure 3.3: Dynamic data visualization.

Figure 3.4: Large fire simulation.

3.2. FDS VARIATIONS 29

flexible interface (currently defined for C and Fortran languages) providing widely
used standards for writing message passing programs [11].

The initial FDS job must be broken up into multiple meshes. The general idea is to
assign a single mesh to each processor and run all simulations in parallel. Neighbour
meshes, however, must exchange information considering the simulation itself. Also,
all the results must be gathered by a single processor in the end to produce the output
files. All this communication is handled by the MPI library.

The third version of FDS, (made for project DDEMA [2]) agents to scatter the
meshes/computations over the internet. The agentised version of FDS is actually
a wrapper over the MPI version, so again the philosophy is a mesh per agent. It’s
architecture is depicted in 3.51. For the implementation of this version, JADE
platform is used (see Section 2.1.2).

The main components of this version are:

MpiAgent.java (Java agent) This class provides several major functions such as
detect and track neighbor agents, create MpiAdaptor object (see below) and
start up its thread, handle Send data requests from the adaptor by means
of wrapping the data into an ACL message and send it to the destination given
by the adaptor, handle Receive data requests from the adaptor by storing
the request information (source, tag, number of bytes, etc.) and waking up
the adaptor when the data is received, handle asynchronous Receive data
requests from the adaptor by storing the request in a queue and forward the
data to legacy code when the data is received and finally handle SYNC requests
from the adaptor by sending the SYNC to all neighbor agents and waking up the
adaptor when it receives the SYNC from the others.

MpiAdaptor.java (MPI adaptor) This class acts as a thread host for the legacy code.
Also relays Send data and asynchronous Receive data requests form MPI
utility to the agent. Moreover, it forwards Receive data and SYNC requests
from MPI utility to the agent (and waits until it is notified by the latter that it is
OK to continue).

MpiWrapper.c (MPI wrapper) This is C code containing the two following JNI
methods:

• Java_MpiAdaptor_fds_1execute() When MpiAdaptor is started by
MpiAgent, first it creates the thread entity, then it calls this method to
start legacy process.

• Java_MpiAdaptor_mpi_1ireceiveDataArrived() This method is
used to copy the data received from asynchronous requests to the legacy
code buffers.

mpi_util.c (MPI utility) This file implements all MPI method calls that are used by
the legacy code. Hence, this is the first step to pass data from low level FDS up

1From ‘‘Fire Dynamics Simulator, Agent version: Design and User guide Documentation’’, by Haiping
Zhang, (personal communication)

30 CHAPTER 3. FIRE DYNAMICS SIMULATOR

to the agent level.

Figure 3.5: Example dataflow in agentised version of FDS.

Java programs can easily call C routines using JNI. However, the original code
is written in Fortran. Thus, there is an extra layer between MpiAdaptor and the
Fortran code written in C which plays the role of an interpreter between the Java and
the Fortran code. In other words, there is a Java/JADE wrapper around the C-code
which in return is a wrapper around FDS (Figure 3.6).

Java

C code

Fortran

Figure 3.6: Code wrappers.

Chapter 4

Experiments and Results

The scope of the experiments was to run the MPI and agent versions of FDS, do
performance measurements and determine the validity of the results produced by the
agent version.

4.1 Machinery nostrum

4.1.1 Cyclone Cluster

Experiments involving MPI were run on Cyclone. Cyclone is one of the two Beowulf
clusters [1] in the Department of Computer & Communication Engineering, University
of Thessaly.

The setup of the machines is that of a typical cluster. All eleven computing nodes
are connected to a local network through a switch (see Figure 4.1). There is also
a master node with two network interfaces (one for the local network, one for the
external network/Internet).

The master node is the entry point of the cluster, where the users are able to
submit their job to a queue. Job scheduling is done by the master node as well,
which is in charge of determining which node has spare clock cycles and send MPI
‘‘sub-jobs’’ to it. All nodes (including the master one) are identical in terms of internal
components. Each one is equipped with a 2.6GHz, Pentium 4 processor, 512MB of
RAM and an 80GB hard disk, resulting to a total of approx. 6GB of RAM and 960GB
of disk space. The nodes are communicating to each other through a 100MBit switch.

Finally, current status of the cluster (online nodes, etc.) and real-time statistics
(workload, memory usage, disk usage, etc.) are available through a web interface
which can be found at http://cyclone.inf.uth.gr.

4.1.2 Local grid

In order to test the agent version of FDS, three computers were used. The master node
of Cyclone (referred to as ‘‘Computing Node 1’’), a 2.44 GHz – Pentium 4 machine with
512 RAM and a 80G SCSI disk (‘‘Computing Node 2’’) and a 1.8 GHz – Pentium 4 with

31

http://cyclone.inf.uth.gr

32 CHAPTER 4. EXPERIMENTS AND RESULTS

C1 C2 C3
· · ·

C11

24-port ethernet switch

Master Node

(cyclone.inf.uth.gr)
Internet

Figure 4.1: Cyclone network infrastructure.

256 RAM and a 80G IDE disk (‘‘Computing node 3’’). All of the nodes are connected
to each other over a local network of 100MBit bandwidth.

When the simulation required more than three nodes, we run two agents on the
same machine. The simulation scheme regarding Computing Nodes (CN) vs number
of meshes (zones) is as following:

1 zone : CN 1
2 zones : CN 1, CN 2
3 zones : CN 1, CN 2, CN 3
4 zones : CN 1, CN 1, CN 2, CN 3
5 zones : CN 1, CN 1, CN 2, CN 2, CN 3
6 zones : CN 1, CN 1, CN 2, CN 2, CN 3, CN 3

The order of CNs in each row above is the same as the identification number of the
corresponding mesh. For example, in the 5 zone case, meshes 1 and 2 are on CN1,
meshes 3 and 4 on CN2 and mesh 5 on CN3.

4.2 Experiments

For all the experiments, the basic input file used is the one presented in Section 3.1.1,
Listing 1. As mentioned before, this file defines two rooms separated by a door and
simulates a burning fire for 5 seconds.

Six variations of this file were used, variations in terms of the different number of
meshes used for the computation. In the first case, the entire space is assigned to
a single mesh. In the second case, two meshes are defined, separating the area into
two zones (see Listing 2). Same strategy is adopted respectively for the other cases
where the same area is divided into three, four, five and six sub-meshes.

4.2. EXPERIMENTS 33

Listing 2 Definition of two non-overlapping sub-meshes.

/ No overlapping Zones
/ Zone 01
&GRID IBAR=24, JBAR=24, KBAR=24 /
&PDIM XBAR0=0.0,XBAR=2.4,YBAR0=0.0,YBAR=2.5,ZBAR0=0.0,ZBAR=2.5 /
/
/ Zone 02
&GRID IBAR=24, JBAR=24, KBAR=24 /
&PDIM XBAR0=2.4,XBAR=4.7,YBAR0=0.0,YBAR=2.5,ZBAR0=0.0,ZBAR=2.5 /

4.2.1 Performance measurements

We measure performance by means of measuring the time it takes for the simulation
to complete.

Generally speaking, the procedure used to extract timings from the results was
the following:

• run all versions (serial, parallel-MPI, parallel-agent) many times at different
times and days to achieve statistically distributed workloads on the computers
used,

• parse the overall summary (see Listing 3) stored in one of the output files called
{jobname}.out and get the time consumed for the MAIN procedure (this is what
we refer to as the representative time for the entire simulation),

• gather all different results for every simulation and for every submesh and
calculate the average time for all three runs,

• calculate the maximum average time for the different submeshes,

• calculate the sum of average times for the different submeshes.

Results are summarized in several tables and figures. Tables 4.1, 4.2 and 4.3 show
the results for serial1, MPI and agent2 version respectively. The first column indicates
the number of zones (i.e., meshes) to which the space is separated. Second column
contains information about the total number of iterations (timesteps) of the algorithm
in order to reach the end of the simulation (5 seconds for this example). Third column
contains the average actual timings for each mesh separated by commas.

Regarding the overall maximum mesh-times per file, we expect that, with the
serial version, they will remain almost the same. When one processor is involved,
there is no significant difference between computing one big mesh and two – or more
– sub-meshes.

1serial version reports the overall time, that’s why there are not different times for different meshes
2agent version doses not support running a simulation on a single mesh. It needs two or more

meshes in order to start

34 CHAPTER 4. EXPERIMENTS AND RESULTS

Listing 3 Extract of the overall simulation summary.

CPU Time Usage, Mesh 1

CPU s %

MAIN 215.01 100.00
DIVG 10.53 4.90
MASS 14.64 6.81
VELO 18.22 8.47
PRES 6.38 2.97
PART 0.00 0.00
DUMP 19.36 9.00
SPRK 4.89 2.28
RADI 28.62 13.31
COMB 2.78 1.29
COMM 3.17 1.48

Zones Iterations CPU time Sum
1 505 178.45 178.45
2 502 183.77 183.77
3 502 182.31 182.31
4 502 181.24 181.24
5 502 171.58 171.58
6 502 189.52 189.52

Table 4.1: Timings for the serial version.

Zones Iterations CPU time Sum
1 505 182.33 182.33
2 503 93.99, 99.61 193.60
3 502 92.16, 74.03, 29.78 195.97
4 503 92.53, 74.28, 16.29, 16.18 199.27
5 502 44.64, 44.88, 74.53, 16.54, 16.07 196.66
6 502 51.26, 51.70, 41.32, 39.91, 18.24, 18.04 220.47

Table 4.2: Timings for the MPI version.

4.2. EXPERIMENTS 35

Zones Iterations CPU time Sum
2 503 98.91, 126.22 225.13
3 502 101.82, 106.80, 409.06 617.68
4 503 103.63, 100.39, 22.73, 655.85 882.59
5 502 50.82, 51.82, 100.30, 25.36, 1062.28 1290.58
6 502 58.47, 59.28, 58.55, 57.32, 717.35, 700.26 1651.24

Table 4.3: Timings for the agent version.

On the other hand, with the MPI version we expect that the more we split the
initial area to smaller spaces, the more the computational times will decrease. This
seems to be true. As shown in Table 4.2, since computations for different meshes
are now performed simultaneously and the wall clock time for the execution is the
maximum time over all the meshes (underlined numbers). Communication cost
appears, which seems not to be very significant as one compares the total execution
times (computation + communication) in the fourth column (sum) of the table. This
is expected since all communication is done internally within the cluster nodes using
the MPI functions.

Finally, we see that timings will increase for the agent version when more sub-
meshes are used. The number of computations are the same as before but now it is
important which computing node is used for each mesh. One can see that the longer
times are always on CN 3. Communication cost here contains both communication
between agents/meshes and the data passing from legacy code to agent level.

The above conclusions are confirmed in Figure 4.2, which shows the maximum
average times for each version in a graphical way. The serial version is executed on
all three computing nodes and the maximum (over the meshes) time is depicted with
’�’ for Cyclone, ’♦’ for CN 2 and ’5’ for CN 3. The results are similar and show the
computing power of the nodes.

The MPI version is executed on Cyclone and the maximum time decreases as the
size of the bigger mesh decreases (’4’ on Figure 4.2).

The agent version is used (’/’ on all CNs, ’.’ on Cyclone) as discussed in Section
4.1.2. It is clear how the low power of CN 3 affects the maximum time, while in the
case where all agents run on Cyclone, maximum time behaves as before.

Regarding the overall sum of times per case, we expect, for the serial version (’�’
on cyclone, ’♦’ on CN 2 and ’5’ on CN 3), that measurements are, once again, the
same, whether multiple meshes are used or not.

For the MPI version (’4’ on Cyclone), the results are expected to be very close
to the serial ones. Since all the nodes are identical, the sum of times needed for
each mesh should be the same as the time needed for the entire space plus a small
communication overhead. In other words, if we plot the results, we expect the MPI
line to be just above the serial one.

For the agent version (’/’ on all CNs, ’.’ on Cyclone only), however, we are stating
again that communication between the machines is important. Moreover, we need
even more clock cycles because of the chain of wrappers (data are passed from

36 CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.2: Summary of maximum times.

FORTRAN to C and finally to Java code - see Section 3.2). This is the reason the
agent line is above the rest, when CN 3 is used and why the total times are increasing
as the number of sub-meshes increases (see Figure 4.3).

4.2.2 Validation of results

We are interested in validating the results of the agent version, so that we can make
sure that the wrapping is done correctly and the correct information is passed between
the agents.

In order to do the validation we use fds2ascii [4], a FORTRAN utility which converts
the results stored after the simulation in binary format (stored by FDS for time and
memory usage optimization) to ascii files. These files contain the value of certain
variables (as specified in the input file) at a two-dimensional slice of the space.

Having converted all output data for serial, mpi and agent simulations, we compare
the results. In order to do that, we use a small command-line program written in Java
which parses two fds2ascii output files and calculates the relative difference between
the values in terms of

||f − g||2
||f ||2

=

√∫ ∫
[f (x, z)− g(x, z)]2 dxdz∫ ∫

f (x, z)2dxdz

where f contains the values from the first file and g the values form the second file.
Integration is calculated numerically using the trapezoidal rule∫ b

a

f (x)dx ' h

2
(f (x0) + 2f (x1) + 2f (x2) + ... + 2f (xN−2) + 2f (xN−1) + f (xN))

4.2. EXPERIMENTS 37

Figure 4.3: Summary of sum of times.

We use relative difference (i.e., percentage) in order to have more meaningful results.
We also use the L2 norms instead of maximum of differences because the scheme
that FDS uses, needs random values for specific quantities at the initial step. As a
consequence, we are interested in the difference over all the area.

The results of the comparison are shown in tables 4.4, 4.5 and 4.6. The quantities
used for the comparison are TEMPERATURE, HRRPUV and MIXTURE_FRACTION.

As expected, most of the results are close to zero. The difference between the serial
and the agent version behaves as the difference between the serial and the MPI one
(which is tested by NIST), while there is no difference between the MPI and the agent
version. This ensures the validity of the latter.

38 CHAPTER 4. EXPERIMENTS AND RESULTS

Serial - MPI
Zones Mesh TEMPERATURE HRRPUV MIXTURE_FRACTION

2 1 0.109 0.000 0.261
2 0.161 0.250 0.255

3
1 0.112 0.000 0.256
2 0.129 0.200 0.138
3 0.080 0.000 0.239

4

1 0.198 0.000 0.456
2 0.251 0.296 0.268
3 0.041 0.000 0.373
4 0.092 0.000 0.223

5

1 0.032 0.000 1.284
2 0.133 0.000 0.357
3 0.160 0.310 0.222
4 0.056 0.000 0.208
5 0.058 0.000 0.168

6

1 0.138 0.000 4.359
2 0.226 0.000 0.634
3 0.303 0.317 0.308
4 0.312 0.797 0.398
5 0.064 0.000 0.355
6 0.155 0.000 0.373

Table 4.4: Percentage difference between Serial and MPI version.

4.2. EXPERIMENTS 39

Serial - Agent
Zones Mesh TEMPERATURE HRRPUV MIXTURE_FRACTION

2 1 0.109 0.000 0.261
2 0.161 0.250 0.255

3
1 0.112 0.000 0.256
2 0.129 0.200 0.138
3 0.080 0.000 0.239

4

1 0.107 0.000 0.254
2 0.137 0.149 0.126
3 0.028 0.000 0.193
4 0.081 0.000 0.183

5

1 0.060 0.000 1.995
2 0.046 0.000 0.132
3 0.099 0.234 0.140
4 0.085 0.000 0.421
5 0.170 0.000 0.579

6

1 0.136 0.000 4.281
2 0.224 0.000 0.626
3 0.295 0.296 0.288
4 0.306 0.742 0.390
5 0.066 0.000 0.354
6 0.144 0.000 0.348

Table 4.5: Percentage difference between Serial and Agent version.

40 CHAPTER 4. EXPERIMENTS AND RESULTS

MPI - Agent
Zones Mesh TEMPERATURE HRRPUV MIXTURE_FRACTION

2 1 0.000 0.000 0.000
2 0.000 0.000 0.000

3
1 0.000 0.000 0.000
2 0.000 0.000 0.000
3 0.000 0.000 0.000

4

1 0.152 0.000 0.424
2 0.182 0.222 0.197
3 0.045 0.000 0.284
4 0.058 0.000 0.097

5

1 0.044 0.000 0.622
2 0.117 0.000 0.227
3 0.120 0.172 0.190
4 0.126 0.000 0.744
5 0.148 0.000 0.489

6

1 0.003 0.000 0.040
2 0.006 0.000 0.016
3 0.020 0.041 0.040
4 0.015 0.734 0.024
5 0.014 0.000 0.055
6 0.012 0.000 0.030

Table 4.6: Percentage difference between MPI and Agent version.

Bibliography

[1] (2005, June) Beowulf project overview. [Online]. Available: http:
//www.beowulf.org/overview/index.html

[2] (2005, June) Ddema project. [Online]. Available: http://www.cs.purdue.edu/
DDEMA

[3] (2005, June) Distributed european infrastructure for supercomputing
applications - deisa. [Online]. Available: http://www.deisa.org/

[4] (2005, June) Fds/smokeview tools. [Online]. Available: http://fire.nist.gov/fds/
refs/tools.html

[5] (2005, June) The fipa website. [Online]. Available: http://www.fipa.org/

[6] (2005, June) Geant website. [Online]. Available: http://www.geant.net/

[7] (2005, June) General parallel file system. [Online]. Available:
http://www-1.ibm.com/servers/eserver/clusters/software/gpfs.html

[8] (2005, June) Global grid forum. [Online]. Available: http://www.gridforum.org/

[9] (2005, June) Introduction to computational fluid dynamics. [Online]. Available:
http://www.cham.co.uk/website/new/cfdintro.htm

[10] (2005, June) Kaariboga mobile agents. [Online]. Available: http:
//www.projectory.de/kaariboga/index.html

[11] (2005, June) Message passing interface (mpi). [Online]. Available:
http://www.llnl.gov/computing/tutorials/mpi/

[12] (2005, June) Moore’s law, the future - technology and research at intel. [Online].
Available: http://www.intel.com/technology/silicon/mooreslaw/

[13] (2005, June) Proactive website. [Online]. Available: http://www-sop.inria.fr/
oasis/ProActive/

[14] (2005, June) Seti@home. [Online]. Available: http://setiathome.ssl.berkeley.
edu/

41

http://www.beowulf.org/overview/index.html
http://www.beowulf.org/overview/index.html
http://www.cs.purdue.edu/DDEMA
http://www.cs.purdue.edu/DDEMA
http://www.deisa.org/
http://fire.nist.gov/fds/refs/tools.html
http://fire.nist.gov/fds/refs/tools.html
http://www.fipa.org/
http://www.geant.net/
http://www-1.ibm.com/servers/eserver/clusters/software/gpfs.html
http://www.gridforum.org/
http://www.cham.co.uk/website/new/cfdintro.htm
http://www.projectory.de/kaariboga/index.html
http://www.projectory.de/kaariboga/index.html
http://www.llnl.gov/computing/tutorials/mpi/
http://www.intel.com/technology/silicon/mooreslaw/
http://www-sop.inria.fr/oasis/ProActive/
http://www-sop.inria.fr/oasis/ProActive/
http://setiathome.ssl.berkeley.edu/
http://setiathome.ssl.berkeley.edu/

42 BIBLIOGRAPHY

[15] (2005, June) Voyager java development platform. [Online]. Available:
http://www.recursionsw.com/voyager.htm

[16] (2005, June) Wikipedia, the free encyclopedia – navier-stokes equations.
[Online]. Available: http://en.wikipedia.org/wiki/Navier-Stokes_equations

[17] H. C. Allan Snavely, Greg Chun, ‘‘Benchmarks for grid computing,’’ Apr. 30
2003. [Online]. Available: http://www.sdsc.edu/∼allans/sigmetricsfinal.pdf

[18] M. Baker, R. Buyya, and D. Laforenza, ‘‘Grids and grid technologies for wide-
area distributed computing,’’ SOFTWARE -PRACTICE AND EXPERIENCE, vol. 32,
no. 15, pp. 1437–1466, 2002.

[19] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa, ‘‘Jade - a white paper,’’ Sept.
2003. [Online]. Available: http://exp.telecomitalialab.com/upload/articoli/
V03N03Art01.pdf

[20] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, ‘‘Ptolemy: A framework for
simulating and prototyping heterogeneous systems,’’ Aug. 31 1992.

[21] F. R. D. Building and F. Fire Research Laboratory, ‘‘Fire dynamics simulator
(version 4): Technical reference guide,’’ Nov. 2003. [Online]. Available:
http://fire.nist.gov/bfrlpubs/fire04/PDF/f04100.pdf

[22] J. Cao, ‘‘Self-organizing agents for grid load balancing,’’ Fifth IEEE/ACM
International Workshop on Grid Computing (GRID’04), pp. 388–395. [Online].
Available: http://doi.ieeecomputersociety.org/10.1109/GRID.2004.57

[23] J. Cao, D. P. Spooner, J. D. Turner, S. A. Jarvis, D. J. Kerbyson,
S. Saini, and G. R. Nudd, ‘‘Agent-based resource management for grid
computing,’’ Scientific Programming, vol. 5, 2002. [Online]. Available:
http://www.dcs.warwick.ac.uk/research/hpsg/documents/CaoJ.ARMGC.pdf

[24] G. P. Forney and K. B. McGrattan, ‘‘User’s guide for smokeview version 4: A tool
for visualizing fire dynamics simulation data,’’ Aug. 2004. [Online]. Available:
http://fire.nist.gov/bfrlpubs/fire04/PDF/f04098.pdf

[25] I. Foster, ‘‘What is the grid? a three point checklist,’’ GRIDToday, July 20 2002.

[26] I. Foster, C. Kesselman, and S. Tuecke, ‘‘The anatomy of the grid: Enabling
scalable virtual organizations,’’ International J. Supercomputer Applications,
vol. 15, no. 3, 2001.

[27] I. Foster, N. R. Jennings, and C. Kesselman, ‘‘Brain meets brawn: Why grid and
agents need each other,’’ 3rd International Conference on Autonomous Agents and
Multi Agent Systems, New York USA, July 22 2004.

[28] I. Foster and C. Kesselman, The Grid: Blueprint for a new computing
infrastructure. Los Altos, CA 94022, USA: Morgan Kaufmann Publishers, 2003.

http://www.recursionsw.com/voyager.htm
http://en.wikipedia.org/wiki/Navier-Stokes_equations
http://www.sdsc.edu/~allans/sigmetricsfinal.pdf
http://exp.telecomitalialab.com/upload/articoli/V03N03Art01.pdf
http://exp.telecomitalialab.com/upload/articoli/V03N03Art01.pdf
http://fire.nist.gov/bfrlpubs/fire04/PDF/f04100.pdf
http://doi.ieeecomputersociety.org/10.1109/GRID.2004.57
http://www.dcs.warwick.ac.uk/research/hpsg/documents/CaoJ.ARMGC.pdf
http://fire.nist.gov/bfrlpubs/fire04/PDF/f04098.pdf

BIBLIOGRAPHY 43

[29] G. Fox, D. Gannon, and M. Thomas, Grid Computing: Making the Global
Infrastructure a Reality. Wiley, March 2003.

[30] M. Fukuda, Y. Tanaka, N. Suzuki, L. F. Bic, and S. Kobayashi, ‘‘A mobile-agent-
based pc grid,’’ Twelfth International Symposium on High Performance Distributed
Computing (HPDC-12), June 25th, 2003,Seattle, WA.

[31] D. Hunt. (2001, Dec.) Computational fluid dynamics. [Online]. Available:
http://www.tessella.com/literature/supplements/PDF/cfd.pdf

[32] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong,
Y. Zhao, and H. Zheng, ‘‘Overview of the ptolemy project,’’ July 2 2003.
[Online]. Available: http://ptolemy.eecs.berkeley.edu/publications/papers/03/
overview/overview03.pdf

[33] M. Luck, P. McBurney, and C. Preist, Agent Technology: Enabling Next
Generation Computing. Univ.Southampton, Jan. 2003. [Online]. Available:
http://www.agentlink.org/admin/docs/2003/2003-48.pdf

[34] E. Mangina, ‘‘Review of software products for multi-agent systems,’’ June 2002.
[Online]. Available: http://www.agentlink.org/admin/docs/2002/MAS.pdf

[35] K. McGrattan and G. Forney, ‘‘Fire dynamics simulator (version 4): User’s
guide,’’ Sept. 2004. [Online]. Available: http://fire.nist.gov/bfrlpubs/fire04/
PDF/f04099.pdf

[36] S. A. Neuendorffer, ‘‘Actor oriented metaprogramming,’’ 2004.
[Online]. Available: http://ptolemy.eecs.berkeley.edu/publications/papers/
04/StevesThesis/twoside.pdf

[37] J. R. Pugh, ‘‘Actors - the stage is set,’’ ACM SIGPLAN Notices, vol. 19, no. 3, pp.
61–65, 1984.

[38] J. Schopf, ‘‘Grids: The top ten questions,’’ Scientific Programming, vol. 10, no. 2,
2002.

[39] M. Wooldridge, Multiagent Systems. John Wiley & Sons, Ltd, 2002.

http://www.tessella.com/literature/supplements/PDF/cfd.pdf
http://ptolemy.eecs.berkeley.edu/publications/papers/03/overview/overview03.pdf
http://ptolemy.eecs.berkeley.edu/publications/papers/03/overview/overview03.pdf
http://www.agentlink.org/admin/docs/2003/2003-48.pdf
http://www.agentlink.org/admin/docs/2002/MAS.pdf
http://fire.nist.gov/bfrlpubs/fire04/PDF/f04099.pdf
http://fire.nist.gov/bfrlpubs/fire04/PDF/f04099.pdf
http://ptolemy.eecs.berkeley.edu/publications/papers/04/StevesThesis/twoside.pdf
http://ptolemy.eecs.berkeley.edu/publications/papers/04/StevesThesis/twoside.pdf

	List of Figures
	List of Tables
	Grid Overview
	Definitions
	Why use computational grids?
	Architecture
	Components

	Future Work and Research for the Grid
	DEISA - A grid example
	DEISA Architecture
	Operation and services

	Middleware
	Agents
	Agents and grids
	Agent platforms

	Actors
	Ptolemy

	gLite
	Components

	Fire Dynamics Simulator
	Overview
	Step 1: The input file
	Step 2: Simulation
	Step 3: Results

	FDS Variations

	Experiments and Results
	Machinery nostrum
	Cyclone Cluster
	Local grid

	Experiments
	Performance measurements
	Validation of results

	Bibliography

