
Sweepers: Swept User-Defined Tools

for Modeling by Deformation.

Alexis Angelidis

University of Otago

alexis@cs.otago.ac.nz

Geoff Wyvill

University of Otago

geoff@cs.otago.ac.nz

Marie-Paule Cani

Laboratoire GRAVIR∗

Marie-Paule.Cani@imag.fr

Abstract

We present sweepers, a new class of space deforma-
tions suitable for interactive virtual sculpture. The artist
describes a basic deformation as a path through which a
tool is moved. Our tools are simply shapes, subsets of 3D
space. So we can use shapes already created as customized
tools tomakemore complex shapes or to simplify themod-
eling process.

When a tool is moved it causes a deformation of the
working shape along the path of the tool. This is in ac-
cordance with a clay modeling metaphor and easy to un-
derstand and predict.More complicated deformations are
achieved by using several tools simultaneously in the same
region.

It is desirable that deformations for modeling are
‘foldover-free’, that is parts of deformed space cannot
overlap so that the deformations are reversible. There
are good intuitive reasons to believe that our deforma-
tions are foldover-free but we have not yet completed a
proof.

We have an efficient formulation for a single tool fol-
lowing a simple path (translation, scaling or rotation) and
we can demonstrate the effects of multiple tools used si-
multaneously.

For representing shapes, we present amesh refinement
and decimation algorithm that takes advantage of the def-
inition of our deformations. The prototype implementa-
tion described has been used to create a variety of models
quickly and conveniently.

1. Introduction

The process a sculptor uses to create a shape can
be regarded as a definition of the shape. From this
point of view, a representation such as a NURB or im-
plicit surface is merely an intermediate device be-
tween the acts of modeling and rendering. Foley and

∗ GRAVIRisa joint labofCNRS, INRIA, InstitutNationalPoly-
technique de Grenoble and Université Joseph Fourier.

Figure 1. Squirrel character modeled out of an ini-

tial ball. The artist modeled only one side, while the

other is automatically made at the same time thanks

to the simultaneous tool. There are no discontinuities

caused by the symmetry.

Van Dam remark, “The user interfaces of success-
ful systems are largely independent of the internal rep-
resentation chosen” [1]. This, surely, is evidence that
the representations are inherently unsuitable model-
ing interfaces.

Our thesis is that the primary representation of a
model must allow straightforward and intuitive edit-
ing by an artist. By intuitive, we mean that the edit-
ing operations must work in accordance with a consis-
tent metaphor that is clear to the artist.

Existing mathematical representations are not di-
rectly suitable for editing operations, while most ex-
isting editing operations are not intuitive according to
a suitable metaphor. For most virtual modeling tools,
this observation results from the fact that the math-
ematical representation is strongly linked to the edit-

ing operations; for example editing the control points
of a NURB patch manually. Space deformations stand
apart from this, and can be used with any mathemat-
ical model, including implicit surfaces when the defor-
mation is reversible. However, space deformation has
had more success adjusting existing models than with
creating entirely new ones, mainly because the defor-
mation operations have not been developed to create
a rich set of features. With the exception of [2], [3]
and [4], deformation operations do not prevent surfaces
from self-intersecting. This is crucial, since space defor-
mation cannot remove a self-intersection in a surface.

We see all these things as obstacles to the creativity
of artists. This paper proposes a class of operations for
sculpture independent of the shape’s underlying math-
ematical model. It can be applied in principle to any
standard model. All the examples in this paper, how-
ever, are deformations of a single sphere. These defor-
mation operations are specified intuitively as transfor-
mations of tools where a tool is any shape. They are
continuous (at least C0 and in most cases C2). They are
local in operation, within some user-defined distance of
the tools and most importantly they are foldover-free,
preserving the shape’s coherency. The remainder of this
paper is organized as follows. In Section 2, we discuss
the limits of existing techniques. In Section 3 we intro-
duce our new deformations as a class of operations ap-
plicable to space in any number of dimensions. In Sec-
tion 4 we develop closed forms for the efficient applica-
tion of a single tool in a 3-dimensional scene. In Section
5 we present the details required to implement the tech-
nique in an interactive modeler, including an adapted
refinement and decimation algorithm. We show our re-
sults in Section 6.

2. Related work

Space deformation provides a formalism to specify
any editing operation, by successively deforming the
space in which an initial shape St0 is embedded:

Sn =

{

n−1

Ω
i=0

f ti 7→ti+1(p)|p ∈ St0

}

where f ti 7→ti+1 : R
n → R

n is a deformation of space1.
The reason why space deformations are indepen-
dent of the mathematical model of a surface is that
they apply to the space in which the model is embed-
ded and can deform regions of space where there is no
surface, if required. Note that, as for non-virtual sculp-

1
n−1
Ω

i=0
fti 7→ti+1 (p) denotes a function composition sequence

ftn−1 7→tn ◦ · · · ◦ f t0 7→t1(p)

ture, the operations do not commute under func-
tion composition, ◦.

This section reviews existing classes of deformations,
organized in three groups: deformations that are not
suitable for sculpture and can produce a limited set
of shapes, deformations that can produce a large set
of shapes given enough parameters for a few functions
f ti 7→ti+1 , and deformations that can produce a large set
of shapes given enough simple functions f ti 7→ti+1 .

2.1. Global deformations

A. Barr [5] defines space tapering, twisting and
bending transformations via a matrix that is a func-
tion of a space coordinate. An interesting result is the
proof that the surface normal vector transformation is
given by the transformation’s Jacobian co-matrix2. C.
Blanc [6] generalizes this work to deformations that
are functions of more than one space coordinate. Y.K.
Chang and A.P. Rockwood [7] propose a polynomial
deformation that efficiently achieves “Barr”-like defor-
mations and more, using a Bézier curve with coordi-
nate sets defined at control points. M. Mikita [8] ex-
tends this method to triangular Bézier surfaces. A re-
striction of these methods is the initial rectilinear axis
or planar surface. B. Crespin [9] proposes a technique
based on recursive subdivision in order to use an ini-
tially deformed tool. His deformations do not prevent
the shape from self-intersecting.

All these deformations are global, and can be han-
dled easily by the user because they have few control
parameters. However because of their non-locality, they
are not suitable for surface sculpture.

2.2. Many parameters, few functions

T. Sederberg and S. Parry [10] introduced Free-Form
Deformations (FFDs) which allow continuous space de-
formations with multiple points transformed. They de-
fine the lattice of control points for a Bézier volume and
move the control points. The embedded space is then
smoothly deformed by interpolating the control point
coordinates. A major restriction of FFD is the regu-
larity of the grid. S. Coquillart [11] and C. Blanc [12]
extend this work for a non-regular lattice. Still, a prob-
lem is that a correspondence between the edited shape
and the lattice has to be done manually. W. M. Hsu et
al. [13] propose a way of doing direct manipulation of a
single point or multiple points in space with FFD. The
regularity and fixed size of the grid along with comput-
ing costs restrict its utility.

2 Matrix of the cofactors

R.A MacCracken and K.I. Joy [14] use subdivision vol-
umes, allowing arbitrary lattices. Customizing the lat-
tice onto the shape is however tiresome.
P. Borrel and D. Bechmann [15] generalize this to ar-
bitrarily positioned control points, where no lattice is
needed: the shape is non-linearly projected into a space
of higher dimension; the deformation is a linear pro-
jection back onto R

3 (or R
4 for controlling animation).

In Scodef (Simple Constrained Deformation) instead of
just control points, P. Borrel and A. Rappoport [16] use
also control areas, and the control features can be as-
signed orientations to perform twists. These methods
define the deformation as a projection of a built space
of higher dimension. Issues arise for controlling the de-
formation, because the pseudo-inverse computation in-
volved does not always behave intuitively.
L. Moccozet and N. Magnenat-Thalmann [17] propose
another approach to get rid of lattice regularity. They
use a method developed by G. Farin [18] to define a con-
tinuous parametrization over the Sibson coordinates.
Still, control points have to be placed manually, and
computing the Sibson coordinates is expensive and dif-
ficult.
The above methods do not guarantee not to fold the
surface on itself. James E. Gain and Neil A. Dodg-
son [4] present a foldover-free condition and a cure for
FFD deformations based on uniform B-Splines.

These methods can achieve very complex deforma-
tions but at a cost: either they are computationally in-
tensive, or the effort required from the user to specify
a lattice is high.

2.3. Many functions, few parameters

Another approach to space deformation is the def-
inition of simple deforming tools. In this framework a
shape is modeled by combining many simple deforma-
tions.
The first surface editing tool introduced that looks like
space deformation is warping, by R. Parent [19]. Ver-
tices within a distance (discrete number of edges) from
a selected vertex are warped, that is, a weighted trans-
formation of the selected vertex is applied to them.
P. Decaudin [2] proposes a tool that allows modeling a
shape by iteratively adding or removing the volume of
simple 3D shapes (eg. sphere, ellipsoid). These defor-
mations do not allow bending or twisting a shape, so
they need to be coupled with other deformations to be
general. They are foldover-free.
G. Wyvill et al. [20] introduce feature modeling, lo-
cal space deformations applied to a parametric sur-
face. A translation, twist or bend is applied around
a point within a limiting ellipsoid. The deformation
has a second-order continuity. The interesting point is

that intuitive editing is performed within the scene’s
space, as opposed to the surface’s parametric space.
Also, it shows that a space deformation tool can eas-
ily be turned into a surface editing tool.
Y. Kurzion and R. Yagel [21] present deformations they
call ray deflectors. An inverse deformation can be com-
puted, allowing deformation of the rendering instead
of the shape. Their tool can translate, rotate and scale
space, contained in a sphere, locally and smoothly: the
deformation is however interpolated only by the cen-
ter point of the tool. Moreover, they define a discon-
tinuous deformation that allows one to cut space.
K. Singh and E. Fiume [22] introduce wires, a geo-
metric deformation technique which can easily achieve
a very rich set of deformations with curves as control
features; however the deformation does not prevent the
object from self-intersecting, and the only features that
can remain undistorted are curves.
B. Crespin [9] introduces the IFFD (Implicit Free Form
Deformation). Note that though it is called implicit,
the deformation applied to an embedded shape is ex-
plicit: the field generated by a skeleton modulates affine
transformations. He also proposes two ways to combine
many transformations simultaneously.
D. Mason and G. Wyvill [3] introduce blendeforming,
using reversible (foldover-free) local deformations that
can specify the deformation by controlling the position
of a point or the control points of a curve.

The modeling philosophy of all these meth-
ods is to apply simple deformations one after the
other as a sculptor would do. In the zones de-
formed by the tool, it is difficult to control precisely
which portion of the shape will be rigidly trans-
formed.

A drawback of all the methods above resides in the
relation between the deformation and the clay: either
it is manually defined by the user, or making the corre-
spondence is the bottleneck of the algorithm. As a re-
sult it is difficult to push or pull a particular part of
the surface predictably.

3. Definitions and algorithm

Before describing how we perform the general defor-
mations, we define the subsets and the matrix notation
we use. Then, we explain how we handle foldover-free
deformation with a single tool. We conclude this sec-
tion with the complete deformation expressions.

3.1. Terminology and notation

We call tool j a scalar field φt
j : p ∈ R

n 7→ [0, 1]
(the superscript t denotes time). To specify tools eas-

ily, we use the following C2 piecewise polynomial func-
tion µj : R 7→ [0, 1] of a distance function dt

j : R
n 7→ R:

µj(d) =

{

0 if λj ≤ d
1 + (d

λj
)3(d

λj
(15 − 6 d

λj
) − 10) if d < λj

We define φt
j = µj ◦dt

j , as shown in Figure 2. Note that
each tool has a different coating thickness λj . For the
following, the minimum of its derivative will be needed:

min(
δµj

δd
) =

−1.875

λj

The scalar field φt
j has a local support, and is C2

where the distance function is smooth within a λj -
neighborhood of the tool. We distinguish three zones:

• the inside T t
j , where φt

j(p) = 1.

• the coating Kt
j , where φt

j(p) ∈ (0, 1).

• the outside Ot
j , where φt

j(p) = 0.

We represent a tool’s transformations by keyframes
(t0, . . . tn), with the corresponding matrices (the trans-
formations we consider are 4 × 4 matrix products of
translations, uniform scaling and rotations):

• absolute transformations M ti

j , used to compute the
distance to the tool.

• relative transformations M
ti 7→ti+1

j =M
ti+1

j (M ti

j)−1.

To compute the transformed scalar field φti

j at ti, we
evaluate the distance in a canonical frame set, and we
rescale the distance by using the transformation’s de-
terminant:

dti

j (p) = det(M ti)
1
3 dt0

j ((M ti)−1p)

Loosely speaking, the scalar φti

j (p) is the amount of de-
formation of tool j at time ti at p. To blend or to com-
pute fractions of deformations, we use the operator �
and ⊕ defined by M. Alexa [23], which behave like ·
and + for scalars 3. The näıve deformation of a point
with a single tool would be:

f ti 7→ti+1(p) = φti

j (p) � M
ti 7→ti+1

j p

This, however, does not prevent the space from folding
onto itself.

3 � is defined as α�M = exp(α log M) and ⊕ is defined as M ⊕

N = exp(log M + log N)

-4

-2

0

2

4-4

-2

0

2

4

0
1

2

3

4

-4

-2

0

2

4 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

-4

-2

0

2

4-4

-2

0

2

4

0
1

2

3

4

-4

-2

0

2

4

φt
j(p) = µj ◦ dt

j(p)

Figure 2. 2D scalar field for a disk of radius 1, with

λj = 1.

3.2. Single tool and foldover issue

We introduce our deformations with a single tool j
to underline how we solve the foldover issue. Suppose
for instance that M

ti 7→ti+1

j is a translation of length
larger than the coating thickness λj ; it would map

points from T ti

j onto points of O
ti+1

j , folding space
onto itself, as shown in the left of Figure 3. How-
ever, if we decompose the transformation into a se-
ries of s small enough transformations, foldovers can
be avoided, as shown in the right of the figure. If there
was a closed form expression for the deformation when
s → +∞, we would not need to bother with stating
a foldover-free condition. In practice, computing this
closed form seems impossible, and taking the small-
est number for which the deformation is foldover-free
is enough. We will therefore define a lower bound to
s, and create equally spaced sub-keyframes {τ0, . . . τs},
such that τ0 = ti and τs = ti+1.

For the rest of the paper we will focus on a single
interval [ti, ti+1], so let us simply denote the relative

transformation Mj = M
ti 7→ti+1

j . The in-between abso-
lute transformations are:

(

k

s
� Mj

)

∗ M ti

j , k ∈ [0, s − 1]

and the in-between relative transformations are all the
same: 1

s
� Mj

We have shown in Appendix A that the following is a
lower bound to the required number of steps:

−min(
δµj

δd
) max
l∈[1,8]

||log(Mj)pl|| < s (1)

where pl∈[1,8] are the corners of a bounding box around

Kti

j .

3.3. Deforming with many tools

Applying more than one tool at the same time at
the same place has applications such as shown in Fig-
ure 1, where we modeled a symmetric object by ap-
plying the same tool symmetrically with respect to a

Foldover Foldover−free

τ 0

...

t i+1

t i

τ

τ

τ

τ 1

2

3

s

Figure 3. 2D illustration of our solution to foldovers.

Left: the deformation maps space onto itself. Right:

the deformation is decomposed into small foldover-

free steps.

plane. It is also used when defining a deformable tool
made of several rigid parts such as a hand, and it al-
lows the surface to be pinched. This could be useful
later when we extend our method to incorporate topol-
ogy changes.

Let us define n tools sharing the same keyframes ti,
with each tool associated with a scalar field φti

j . Each
tool is also associated with a relative transformation
M

ti 7→ti+1

j between keyframes ti and ti+1. The following

expression provides a piecewise smooth4 combination
of all the transformations at any point p in space (we

denote φj = φti

j and Mj = M
ti 7→ti+1

j to simplify the
expression):
{

I if
∑n

k=1φk(p)=0
⊕n

j=1

((

(1−
Qn

i=1(1−φi(p)))
P

n
k=1 φk(p) φj(p)

)

� Mj

)

if
∑n

k=1φk(p) 6=0

This expression can be computed more efficiently:

{

I if
∑n

k=1φk(p)=0

exp
1−

Qn
i=1(1−φi(p))

Pn
k=1

φk(p)

Pn
j=1(φj(p) log(Mj))

if
∑n

k=1φk(p) 6=0
(2)

where:

4 as smooth as the φi.

• 1
P

n
k=1 φk(p) is required to produced a normalized

combination of the transformations. This prevents
for instance two translations of vector ~d produc-
ing a translation of vector 2~d, which would send a
point far away from the tools (the problem is also
discussed in [22]).

• 1 −
∏n

i=1(1 − φi(p)) smooths the deformation in
the entire space, required in the boundary between
Kti

j and Oti

j . Indeed, smoothness would be lost if
we only used the normalization above.

An interesting point about this expression is that when
compared to the solution proposed by B. Crespin [9],
there is no extra scalar field required (only φj) to en-
sure continuity in R

n. The following expression is a
lower bound to the required number of steps, general-
izing the single tool condition (see Appendix A):

−
∑

j

min(
δµj

δd
) max
l∈[1,8]

∣

∣

∣

∣log Mjplj

∣

∣

∣

∣ < s (3)

where plj∈[1,8] are the corners of the bounding box

around Kti

j . To apply the deformation, the steps are
as follows:

1. Compute the number of steps, s, using expression
(3).

2. Deform the vertices s times using expression (2),
using 1

s
� Mj instead of Mj . The absolute trans-

formation is multiplied by 1
s
� Mj at each step.

Normal deformation: In order to deform the nor-
mals, we need to compute the co-matrix of the Jaco-
bian [5]. Even though a closed form can be derived
from the above transformation, its length makes it dif-
ficult to code and time consuming. In practice, com-
puting the Jacobian with finite differences works well
enough5.

4. Fast expressions for interactive sculp-

ture

When using multiple tools, the time of the scene
must be frozen in order to input each tool one at a time.
However this is not the case for editing with a single
tool. In this scenario, the transformations may just be
pure translations, uniform scaling and rotations. The
transformations of a point and its normal are much
simpler to compute, as there is a closed form to the
logarithm of such simple transformations. In this sec-
tion, in addition to efficient expressions for computing

5 We used C++ double precision float numbers with ε = 1e−12,
with coating values λj between 0.2 and 10.

the number of required steps, we provide fast defor-
mation functions for a vertex and its normal. For the
normal, computing the Jacobian’s co-matrix is not al-
ways required: (comJ t)~n leads to much simpler expres-
sions for translations and uniform scaling. Note that
the normal’s deformations do not preserve the normal’s
length. It is therefore necessary to divide the normal by
its magnitude. We denote ~γt = (γt

x, γt
y, γ

t
z)

> the gradi-
ent of φt at p.

4.1. If M is a translation:

The use of � can be simplified with translation vec-
tor ~d. The minimum number of steps is:

−min(
δµti

δd
)||~d|| < s

The s vertex deformations are:

fτk 7→τk+1(p) = p +
φτk (p)

s
~d

The s normal deformations are:

gτk 7→τk+1(~n) = (1 +
1

s
~γτk

> ~d)~n −
1

s
(~d >~n) ~γτk

4.2. If M is a uniform scaling operation:

Let us define the center of the scale c, and the scal-
ing factor σ. The minimum number of steps is:

−min(
δµti

δd
)σ log(σ)Dmax < s

where Dmax is the largest distance between a point in
the deformed area and the center c, approximated us-
ing a bounding box. The s vertex deformations are:

fτk 7→τk+1(p) = σ
φτk (p)

s (p − c) + c

Let ~χ = 1
s

log(σ)(p − c). The s normal deformations
are:

gτk 7→τk+1(~n) = (1 + ~γτk
>

~χ)~n − (~χ>~n) ~γτk

4.3. If M is a rotation:

Let us define a quaternion q(θ) of rotation angle
θ, center of rotation r and vector of rotation ~v =
(vx, vy, vz)

>. The minimum number of steps is:

−min(
δµti

δd
)θRmax < s

where Rmax is the distance between the axis of rota-
tion and the farthest point from it, approximated us-
ing a bounding box. The s vertex deformations are:

fτk 7→τk+1(p) = q(θ
µτk (p)

s
)(p − r)q(θ

µτk (p)

s
) + r

As the expression we obtained for (comJτk)~n was not
as simple as in previous cases, the s normal deforma-
tions are simply given as:

gτk 7→τk+1(~n) = (comJτk)~n

where:

Jτk =
(

vxA+γτk
x B+~nx vyA+γτk

y B+~ny vzA+γτk
z B+~nz

)

~a = p − r ~nx = (C, Svz ,−Svy)
>

~ξ = ~a − (~a~v)~v ~ny = (−Svz, C, Svx)>

C = cos
(

θµτk (p)
s

)

~nz = (Svy,−Svx, C)>

S = sin
(

θµτk (p)
s

)

A = (1 − C)~v

B = θ
s
(C~v ∧ ~a − S~ξ)

5. Outline for an interactive modeler

Though modeling could be performed by a script, it
is much more convenient to provide the designer with
immediate visual feedback of the current state of the
shape. We provide in this section complementary in-
formation for a practical implementation. The preci-
sion limit imposed by speed requirements is discussed.

5.1. Shape model

We want to control the exact topology of our shapes.
The objective of such control is to allow the user to de-
fine very thin membranes without having them disap-
pear, or having to sample the surface excessively, as
we were able to do in Figure 8(c). For this reason, we
choose to handle piecewise connected surfaces. How-
ever, the reader may be interested to know that point-
sampled geometry has recently had interesting results
[24].

Although our deformations could be applied to the
control points of some parametric surface, we represent
the modeled shape with a triangle mesh, refined or dec-
imated in order to keep homogeneous sampling. The
restriction to “C0 patches” circumvents the issues re-
lated to non-regular vertices and maintaining smooth-
ness across the boundaries of parametric patches.

Thus, the scene is initialized with a polygonal model
of a sphere with sampling properties on the size of the
edges and the normal variation6. In order quickly to
fetch the vertices to be deformed and the edges that
require splitting or collapsing, these are inserted into a

6 A simpleway to obtain an homogeneous sphere polygonization
consists of starting with an octahedron, putting all its edges
longer than h in a queue, splitting them and putting the pieces
longer than hback in the queue. Each time a split is performed,
the new edges are flipped to maximize the smallest angle.

3D grid. Note that this spatial limitation is not too re-
strictive for the artist, as our deformations allow us
to translate the entire model rigidly and scale it uni-
formly. To fetch the part of the scene requiring up-
date, a query is done with the tool’s bounding box.
This bounding box is the one used in equation (3).

Because our deformation algorithm subdivides a de-
formation into a series of smaller ones, it provides us
with in-between triangulations whose vertices have had
thresholded displacements. To take advantage of this,
we apply a modified version of the generic algorithm in
[25]. Our method requires keeping two vertices and two
normals per point, corresponding to the current time
τi and next time τi+1 of some small step f τi 7→τi+1 .

The intuitive idea behind our surface-updating algo-
rithm is to assume that smooth curves run on the sur-
face, and that the available information, namely ver-
tices and normals, should be able to represent them.
If this is not the case after deformation, then the sur-
face is under-sampled.

Let us consider an edge e defined by two vertices
(v0, v1) with normals (n0, n1), and the deformed edge
e′ defined by vertices (v′

0, v
′
1) with normals (n′

0, n
′
1).

In addition to the conditions in [25] based on edge
length and angle between normals, we also base the
choice of splitting edge e′ on the error between the
edge and a fictitious point, which belongs to a smooth
curve on the surface. The fictitious point is only used
for measuring the error, and is not a means of inter-
polating the vertices. If the error between the fictitious
point and the edge is too large, the edge e is split, and
the new vertex and normal are deformed. If the fic-
titious point represents the edge e′ well enough, then
edge e is collapsed, and the new point is deformed.

We define the fictitious vertex as the mid-vertex of
a C1 curve, since we only have first order information
on the surface:

v′f = 0.5(v′
0 + v′1 + 0.5((g ∗ n′

0)n
′
0 − (g ∗ n′

1)n
′
1))

where g = v′
0 − v′1.

Too-long edge: An edge e′ is too long if at least one
of the following conditions is met:

• The edge is longer than Lmax, the size of a grid-
cell. This condition keeps a minimum surface den-
sity, so that the deformation can be caught by the
net of vertices if the coating thickness λj is greater
that Lmax.

• The distance between the fictitious vertex and the
mid-vertex of e′ is too large (we used Lmax/20).

• The angle between the normals n′
0 and n′

1 is larger
than a constant θmax.

Too-short edge: An edge e′ is too short if all the
following conditions are met:

• The edge’s length is shorter than Lmin (we used
Lmax/2).

• The angle between the normals n′
0 and n′

1 is
smaller than a constant θmin.

• The distance between the fictitious vertex and the
mid-vertex of e′ is too small (we used Lmin/20).

Also, to avoid excessively small edges, an edge is
merged regardless of previous conditions if it is too
small (we used Lmin/20).

We like to stress that the procedure for updat-
ing the mesh is applied at each small step, rather
than after the user’s deformation has been ap-
plied. Because vertex displacements are bounded
by the foldover-free conditions, we avoid the prob-
lems related to triangulating greatly distorted sur-
faces. Figure 4 shows a twist on a simple shape. Figure
5 shows the algorithm preserving a fine triangula-
tion only where required. Figure 6 shows the algorithm
at work in a more practical situation. The proce-
dure is:

Compute the number of steps required, s.
for each step τi 7→ τi+1 do

Deform the points, and hold their previous values
for each too-long edge do

split the edge and deform the new point.
end for

for each too-short edge do

collapse the edge and deform the new point.
end for

end for

Figure 4.Example of ourmesh-updating algorithmon

a highly twisted U-shape. The close-up shows a sharp

feature, with finer elongated triangles.

Limitation: Suppose the scene is at time tk, so that
the shape Sk is shown to the user, and that he spec-
ifies a deformation f tk 7→tk+1 with the mouse. All the
mesh refinements and simplifications are performed in
Sk. This is however an approximation, as ideally the
operations should be performed in the initial shape S0,

and
k

Ω
i=0

f ti 7→ti+1 should be applied to the new vertices.

Figure 5. Behaviour of our mesh-updating algorithm

on an already punched sphere. The decimation acom-

panying the second punch simplifies the small triangle

of the first punch. The tool has been removed for bet-

ter visualization.

Figure 6. Close-up of the goat. Notice the large tri-

angles on the cheek and the fine ones on the ear. The

initial shape is a sphere.

This would however become more and more time con-
suming as the sequence of actions gets longer (k gets
larger). The approximation consisting of deforming Sk

rather than S0 works well enough in practice, and is
fast.

5.2. Tool model

We propose to control the position, size and orien-
tation of the tools by clicking on a controller with the
mouse that allows us to perform translation, uniform
scaling and rotation along three axes or in the view-
ing plane. The tools can have three modes: if the user
performs a right click on a tool, it is in positioning
mode, and can be translated, scaled or rotated with-
out deforming the space. If the user performs a left
click, the tool is in deforming mode, and any trans-
formation will deform space and the shape embedded
in it in real time. If the user performs a middle click,
the clock of the scene is frozen, the tools are in multi-
ple deforming mode. This allows the user to position as
many tools as required between ti and ti+1, which will
deform space in parallel when the user presses an ac-
knowledge key.

Computing the distance to a tool is required to com-
pute the scalar field µj . The easiest tools that can be
implemented are simple objects (sphere, cube) which
have closed form expression for their distance to a
point. It is however convenient for an artist to choose
or manufacture his own tools, as every artist has his
own way of sculpting. For this purpose, we propose
the possibility to bake the pieces of clay in order to use
them as a tools (see Figure 7). By baking, we mean pre-
computing a data structure such that the distance field
can be efficiently computed. Various algorithms exist,
and information can found in [26]. Presenting them is
beyond the scope of this paper. In our implementa-
tion, we pre-compute a BSP of the Voronöı diagram of
the vertices, and compute the distance using the sur-
rounding triangles.

Figure 7. Example of customized tools deforming a

sphere.

6. Results

Even though we limited ourselves to combining a
few transformations (translation, uniform scale and ro-
tation), the set of possible deformations is already very
high because of the arbitrary shape and coating of the
tools, and also because many tools’ deformations can
be blended. The shapes shown in Figure 8 were mod-
eled in real-time in an hour at most, and were all made
starting with a sphere.

Figures 1, 8(a) and 8(b) show the use of the multi-
tool to achieve smooth and symmetric objects. Figure
8(d) shows that sharp features can be easily modeled.
Figures 8(c) and 8(i) show the advantage of foldover-
free deformations, as the artist did not have to concen-
trate on avoiding self-intersections: our deformations
do not change the topology of space and thus preserve
the topology of the initial object.

7. Conclusion and future work

We have presented sweepers, a new class of smooth
and normalized space deformations that are intuitive
since they correspond to a clay modeling metaphor and
preserve the shape’s coherency. In order to do this, we
combine transformations non-linearly in matrix loga-
rithmic space, allowing us to parametrize and decom-
pose the deformations using a foldover-free conjecture

that still has to be proved. In the case of simple trans-
formations for single tools, we provide fast expressions
used for real time modeling. Future work consists of
specifying more useful scalar fields, possibly using con-
volution surfaces. Also, for deforming implicit surfaces
as well as polygonal ones, a fast way of inverting the
function is required. This is theoretically feasible since
our deformations are diffeomorphisms of space. We are
also investigating ways to incorporate changes in topol-
ogy.

8. Acknowledgments

We wish to thank Sui-Ling Ming-Wong for care-
fully proof-reading this paper. This research was sup-
ported by the Marsden Fund.

A. Foldover-free conjecture

To simplify notation, let us note:

βj(p) =
1 −

Qn

i=1(1 − φi(p))
Pn

i=1 φi(p)
φj(p)

Let us define two points in space p, q ∈ R
d. To find a con-

dition on the deformation being foldover-free, we prove
the following: if q 6= p, then their images should be differ-
ent:

n
M

j=1

(βj(q) � Mj) q 6=

n
M

j=1

(βj(p) � Mj) p

We consider q being in the neighborhood of p, i.e. the reach-
able space along the n paths of the deformation, with
hj → 0+:

q =
n

M

j=1

(hj � Mj) p

We substitute q and rearrange the equation:

n
M

j=1

(−βj(p) � Mj)
n

M

j=1

(βj(q) � Mj)
n

M

j=1

(hj � Mj) p 6= p

Because hj → 0+, the two leftmost matrices commute,
and their product commutes with the rightmost ma-
trix. We can therefore write the condition:

n
M

j=1

((βj(q) − βj(p) + hj) � Mj) p 6= p

We suppose p is not an eigenvector associated with eigen-
value 1 of the above matrix, so we can generalize this ver-
tex inequality to a matrix inequality:

n
M

j=1

((βj(q) − βj(p) + hj) � Mj) 6= I

Applying the determinant and rearranging the expres-
sion:

n
Y

j=1

det(Mj)
−

βj (q)−βj (p)

hj 6=
n

Y

j=1

det(Mj)

Since hj → 0+:

n
Y

j=1

det(Mj)
−

δβj (q)

δhj 6=
n

Y

j=1

det(Mj)

Let us assume det(Mj) ≥ 1. Because ∀α ≥ 1, ∀x ∈ R the
function x 7→ αx is increasing with respect to x, the defor-
mation is foldover-free if ∀j:

−
δβj(q)

δhj

6= 1

By substituting for βj :

−
δ

δhj

„

(1 −
Q

i(1 − µi(di(q))))
P

i µi(di(q))
µj(dj(q))

«

6= 1

Applying the chain rule:

X

k

−
δdk(q)

δhj

δ

δdk

„

(1 −
Q

i(1 − µi(di)))
P

i µi(di)
µj(dj)

«

6= 1

By developing the derivative:

−
δdj(q)

δhj

δµj(dj)

δdj

Q

i(1−µi(di))

1−µk(dk)

−
P

k 6=j

δdk(q)
δhj

δµk(dk)
δdk

µj(dj)
P

i µi(di)
(

Q

i(1−µi(di))

1−µk(dk)
−

1−
Q

i(1−µi(di))
P

i µi(di)
) 6= 1

It can be easily shown that
µj (dj)

P

i µi(di)
∈ [0, 1],

Q

i(1−µi(di))

1−µk(dk)
∈

[0, 1] and
1−

Q

i(1−µi(di))
P

i µi(di)
∈ [0, 1]. Also, we have shown in Ap-

pendix B that ∀h ∈ R,
δd(h�Mp,T ti)

δh
≤ || δh�Mp

δh
||, and we

know that ∀d ∈ [0, 1], − δµ(d)
δd

≤ −min(δµ

δd
). Thus, the defor-

mation is foldover-free if ∀j:

−min(
δµj

δd
)

˛

˛

˛

˛

˛

˛

δh�Mjp

δh

˛

˛

˛

˛

˛

˛

h=0

−
P

k 6=j min(δµk

δd
)

˛

˛

˛

˛

˛

˛

δh�Mkp

δh

˛

˛

˛

˛

˛

˛

h=0
< 1

We can rewrite these n conditions in a single one:

−
X

i

min(
δµi

δd
)

˛

˛

˛

˛

˛

˛

˛

˛

δh � Mip

δh

˛

˛

˛

˛

˛

˛

˛

˛

h=0

< 1

Note that
˛

˛

˛

˛

˛

˛

δh�Mjp

δh

˛

˛

˛

˛

˛

˛

h=0
= ||log Mjp||. Because a matrix is

a diffeomorphism, we can define n bounding boxes pkj∈[1,8]

around K
ti
j to approximate ||log Mjp||. Also, since tak-

ing fractions of the transformations prevents the space to
fold on itself,we can introduce thenumberof stepswe look for:

−
X

j

min(
δµj

δd
) max
kj∈[1,8]

˛

˛

˛

˛

˛

˛

˛

˛

log(
1

s
� Mj)pkj

˛

˛

˛

˛

˛

˛

˛

˛

< 1

Since 1 < s:

−
X

j

min(
δµj

δd
) max
kj∈[1,8]

˛

˛

˛

˛log Mjpkj

˛

˛

˛

˛ < s

This does not constitute a proof since we haven’t shown that
p is not an eigenvector associatedwith eigenvalue 1 of the con-
cerned matrix, and we assumed det(Mj) ≥ 1.

B. Proof ∀h ∈ IR,
δd(h�Mp,T ti)

δh
≤ || δh�Mp

δh
||

Let q ∈ T ti be the point of the tool that is closest to p:
d(p, T ti) = d(p, q). Once p has moved, q may not be the clos-
est point anymore, so∀h ∈ R, d(h�Mp, T ti) ≤ d(h�Mp, q).
Therefore we can introduce this inequality:

δd(h�Mp,T ti)
δh

≤ lim
ε→0

d((h+ε)�Mp,q)−d(h�Mp,q)
ε

≤ δd(h�Mp,q)
δh

To compute the derivative of the distance to a point,
we use the following formula, modeled by differentiat-
ing

p

(h � Mp − q)2:

δd(h � Mp, q)

δh
=

(h � Mp − q) ∗ δh�Mp

δh
p

(h � Mp − q)2

Andfinally,because the lengthofavector is shorterwhenmul-
tiplied by a normal vector:

˛

˛

˛

˛

˛

(h � Mp − q)
δ

δh
h � Mp

|| δ
δh

h � Mp||

˛

˛

˛

˛

˛

≤
p

(h � Mp − q)2

So we can substitute the latter:

δd(h � Mp, q)

δh
≤ ||

δh � Mp

δh
||

References

[1] J. D. Foley, A. van Dam, S. K. Feiner, J. Hughes,
and R. Phillips, Introduction to Computer Graphics.
Addison-Wesley, 1994, p.392.

[2] P. Decaudin, “Geometric deformation by merging a 3d
object with a simple shape,” in Graphics Interface, May
1996, pp. 55–60.

[3] D.MasonandG.Wyvill, “Blendeforming:Raytraceable
localized foldover-free space deformation,” in Proceed-
ings of Computer Graphics International (CGI), July
2001, pp. 183–190.

[4] J. E. Gain and N. A. Dodgson, “Preventing self-
intersectionunder free-formdeformation,” IEEE Trans-
actions on Visualization and Computer Graphics, vol. 7,
no. 4, pp. 289–298, October-December 2001.

[5] A.H.Barr, “Global and local deformations of solidprim-
itives,” inProceedings of SIGGRAPH’84, ser.Computer
Graphics Proceedings, Annual Conference Series, vol.
18(3), ACM. ACM Press / ACM SIGGRAPH, July
1984, pp. 21–30.

[6] C. Blanc, “A generic implementation of axial procedu-
ral deformation techniques,” in Graphics Gems, vol. 5,
1994, pp. 249–256, academic Press.

[7] Y.-K. Chang and A. Rockwood, “A generalized de
Casteljau approach to 3d free-form deformation,” in
Proceedings of SIGGRAPH’94, ser. Computer Graphics
Proceedings, Annual Conference Series, ACM. ACM
Press / ACM SIGGRAPH, July 1994, pp. 257–260.

[8] M. Mikita, “3d free-form deformation: basic and ex-
tended algorithms,” in Proceedings of the 12th Spring
Conference on Computer Graphics, June 1996, pp. 183–
191.

[9] B. Crespin, “Implicit free-form deformations,” in Pro-
ceedings of the Fourth International Workshop on Im-
plicit Surfaces, 1999, pp. 17–24.

[10] T. Sederberg and S. Parry, “Free-form deformation
of solid geometric models,” in Proceedings of SIG-
GRAPH’86, ser. Computer Graphics Proceedings, An-
nual Conference Series, vol. 20(4), ACM. ACM Press
/ ACM SIGGRAPH, August 1986, pp. 151–160.

[11] S. Coquillart, “Extended free-form deformation: A
sculpturing tool for 3d geometric modeling,” in Proceed-
ings of SIGGRAPH’90, ser. Computer Graphics Pro-
ceedings, Annual Conference Series, vol. 24(4), ACM.
ACM Press / ACM SIGGRAPH, July/August 1990, pp.
187–195.

[12] C. Blanc, “Techniques de modélisation et de
déformation de surfaces pour la synthèse d’images,”
Ph.D. dissertation, Université Bordeaux I, Decem-
ber 1994.

[13] W. M. Hsu, J. F. Hughes, and H. Kaufman, “Direct ma-
nipulation of free-form deformations,” in Proceedings of
SIGGRAPH’92, ser. Computer Graphics Proceedings,
Annual Conference Series, vol. 26(2), ACM. ACM
Press / ACM SIGGRAPH, July 1992, pp. 177–184.

[14] R. MacCracken and K. Joy, “Free-form deformations
with lattices of arbitrary topology,” in Proceedings of
SIGGRAPH’96, ser. Computer Graphics Proceedings,
Annual Conference Series, ACM. ACM Press / ACM
SIGGRAPH, August 1996, pp. 181–188.

[15] P. Borrel and D. Bechmann, “Deformation of n-
dimensional objects,” in Proceedings of the first sympo-
sium on Solid modeling foundations and CAD/CAM ap-
plications, 1991, pp. 351–369.

[16] P. Borrel and A. Rappoport, “Simple constrained de-
formations for geometric modeling and interactive de-
sign,” in ACM Transactions on Graphics, vol. 13(2),
April 1994, pp. 137–155.

[17] L. Moccozet and N. Magnenat-Thalmann, “Dirichlet
free-formdeformationandtheirapplicationtohandsim-
ulation,” inComputer Animation’97, June 1997, pp. 93–
102.

[18] G. Farin, “Surfaces over Dirichlet tessellations,” Com-
puter Aided Geometric Design, vol. 7(1-4), pp. 281–292,
June 1990.

[19] R. Parent, “A system for sculpting 3d data,” in Proceed-
ings of SIGGRAPH’77, ser. Computer Graphics Pro-
ceedings, Annual Conference Series, vol. 11(2), ACM.
ACM Press / ACM SIGGRAPH, July 1977, pp. 138–
147.

[20] G. Wyvill, D. McRobie, C. Haig, and C. McNaughton,
“Free form modeling with history,” International Jour-
nal of Shape Modeling, vol. 2(4), pp. 275–282, December
1996.

[21] Y. Kurzion and R. Yagel, “Interactive space deforma-
tion with hardware assisted rendering,” IEEE Com-
puter Graphics and Applications, vol. 17(5), pp. 66–77,
September/October 1997.

[22] K.SinghandE.Fiume, “Wires: a geometricdeformation
technique,” in Computer graphics, Proceedings of SIG-
GRAPH’98, ser. Computer Graphics Proceedings, An-
nualConference Series,ACM. ACMPress /ACMSIG-
GRAPH, July 1998, pp. 405–414.

[23] M. Alexa, “Linear combination of transformations,” in
Proceedings of SIGGRAPH’02, ser. Computer Graphics
Proceedings, Annual Conference Series, ACM. ACM
Press / ACM SIGGRAPH, July 2002, pp. 380–387.

[24] M.Pauly,R.Keiser,L.P.Kobbelt, andM.Gross, “Shape
modeling with point-sampled geometry,” in Proceedings
of SIGGRAPH’03, vol. 22(3). ACM, July 2003, pp.
641–650.

[25] N. A. D. James E. Gain, “Adaptive refinement and deci-
mation under free-form deformation,” Eurographics’99,
vol. 7, no. 4, April 1999.

[26] A. P. Guéziec, ““Meshsweeper”: Dynamic point-
to-polygonal-mesh distance and applications,” IEEE
Transactions on Visualization and Computer Graphics,
vol. 7, no. 1, pp. 47–61, January/March 2001.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

Figure 8. All these shapesweremodeled startingwith

a sphere, in at most one hour. In (c), the firstmodeling

step was to squash the sphere into a very thin disk. In

(g), eyeballs were added.

