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Abstract

I
n Computer Graphics, in the context of shape modeling on a computer,

a common characteristic of popular techniques is the possibility for the

artist to operate on a shape by modifying directly the shape’s mathemati-

cal description. But with the constant increase of computing power, it has

become increasingly realistic and effective to insert interfaces between the

artist and the mathematics describing the shape. While in the future, shape

descriptions are likely to be replaced with new ones, this should not affect

the development of new and existing shape interfaces. Space deformation

is a family of techniques that permits describing an interface independently

from the description. Our thesis is that while space deformation techniques

are used for solving a wide range of problems in Computer Graphics, they

are missing a framework for the specific task of interactive shape modeling.

We propose such a framework called sweepers, together with a set of related

techniques for shape modeling. In sweepers, we define simultaneous-tools

deformation, volume-preserving deformation, topology-changing deforma-

tion and animated deformation. Our swept-fluid technique introduces the

idea that a deformation can be described as a fluid. In fact, the sweepers

framework is not restrained to shape modeling and is also used to define a

new fluid animation technique. Since the motion of a fluid can be consid-

ered locally as rigid, we define a formalism for handling conveniently rigid

transformations. To display shapes, we propose a mesh update algorithm,

a point-based shape description and a discrete implicit surface, and we have

performed preliminary tests with inverse-raytracing. Finally, our technique

called spherical-springs can be used to attach a texture to our shapes.
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Notation

W
e begin by describing the notation we use. We advise the reader to skip
this section, and refer to it while reading the manuscript in cases where an
equation is unclear. The purpose of the notation adopted is to deal exclu-

sively with problems in three-dimensional spaces, in a coordinate system described by
an origin and three clockwise-oriented unit orthogonal vectors (o,~ex,~ey,~ez).

Scalars are denoted in italic characters by:

s ∈ R (1)

Spatial components along ~ex, ~ey, ~ez are denoted with x y and z subscripts. A point is
a position in space, with components represented in a column array:

p = o + px~ex + py~ey + pz~ez =





px
py
pz



 = (px, py, pz)
> ∈ R3 (2)

We may refer to the three coordinates of point p with a dummy subscript, i.e. pi
where i ∈ {x, y, z}. A vector is a direction in space with a magnitude. A vector is
denoted with an arrow, with components represented in a column array:

~v = vx~ex + vy~ey + vz~ez =





vx
vy
vz



 = (vx, vy, vz)
> ∈ ~R3 (3)

We may refer to the three coordinates of vector ~v with a dummy subscript, i.e. vi
where i ∈ {x, y, z}. A vector may be obtained by subtracting two points. We denote

the dot product between two vectors ~a and ~b by:

~a · ~b = axbx + ayby + azbz ∈ R (4)

We denote with superscript 2 the dot product of a vector with itself:

~v2 = ~v · ~v ∈ R+ (5)

We denote with double pipes ‖.‖ the magnitude of a vector, i.e. its Euclidean length:

‖~v‖ =
√
~v2 ∈ R+ (6)
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We denote the cross product between two vectors by:

~a × ~b =





aybz − azby
azbx − axbz
axby − aybx



 ∈ ~R3 (7)

Although dot and cross products involving points do not define genuine dot and cross
products, they may appear in our equations, for the sake of algebraic simplicity. Note
that in those cases, the operation still corresponds to a real dot or cross product once
factored. Thus for example, we tolerate the cross products on the right hand side of
the following expression (if q = o, the last term would vanish):

~v × (p − q) = ~v × p − ~v × q (8)

Thus by convention, the cross product of two points is a vector.
We denote ∇ the derivative vector with respect to spatial coordinates along ~ex, ~ey
and ~ez:

∇ =





∂
∂x
∂
∂y
∂
∂z



 =
(

∂
∂x
, ∂
∂y
, ∂
∂z

)>
(9)

We handle ∇ like a non-commutative vector: its dot product with a vector field ∇·~v is
called the divergence, its cross product with a vector field ∇× ~v is called the curl, its
product with a scalar field ∇·φ is called the gradient and the divergence of the gradient
∇2φ is called the Laplacian. We denote matrices with capital letters, and matrix
components with zero based indices. The components of a 3 × 3 matrix are denoted:

M =





mxx mxy mxz

myx myy myz

mzx mzy mzz



 ∈ R3×3 (10)

We may refer to the component of a matrix M with dummy subscripts, i.e. mij where
i, j ∈ {x, y, z}. We denote with superscript > the transpose of a matrix, which swaps
element mij and mji:

if L = M> then lji = mij (11)

We use · to denote the matrix productM0 ·M1 as well as the matrix-vector productM ·~v
or matrix-point product M ·p. The product is defined by componentwise multiplication
of the rows of the left operand with the columns of the right operand. We consider
vectors as 3 × 1 matrices, thus the dot product can also be written:

~a · ~b = ~a> · ~b ∈ R (12)

Although the left hand side of the following looks similar to the above, it is a matrix:

~a · ~b> =





axbx axby axbz
aybx ayby aybz
azbx azby azbz



 ∈ R3×3 (13)
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We require 4 × 4 matrices as well in order to represent the translational part of trans-
formations. The components of a 4 × 4 matrix are denoted:

N =









nxx nxy nxz nxh
nyx nyy nyz nyh
nzx nzy nzz nzh
nhx nhy nhz nhh









∈ R4×4 (14)

Since we deal exclusively with three-dimensional spaces, we make assumptions to sim-
plify notation involving 3D coordinates and the 4th homogeneous coordinate. We
will only consider two kinds of 4 × 4 matrices: {nhx = nhy = nhz = nhh = 0} or
{nhx = nhy = nhz = 0, nhh = 1}. We may refer to the component of a matrix N
with dummy subscripts, i.e. nij where i, j ∈ {x, y, z, h}. To define operations between
3 × 3 and 4 × 4 matrices, we assume that 3 × 3 matrices have a fourth homogeneous
row and column filled with 0; thus for instance for matrix M given above we assume
mih = mhj = 0. This makes non-ambiguous the writing of the matrix sum M +N or
matrix product N ·M .

To define the product of a 4 × 4 matrix with a point, we assume that points have a
fourth homogeneous dummy coordinate always equal to 1:

N · p =





nxxpx + nxypy + nxzpz + nxh
nyxpx + nyypy + nyzpz + nyh
nzxpx + nzypy + nzzpz + nzh



 ∈ R3 ∪ ~R3 (15)

If all four components of the fourth row of N are all equal to 0 then the result of the
product N · p is a vector N · p = ~v, otherwise it is a point N · p = q. To define the
product of a matrix with a vector, we assume that vectors have a fourth homogeneous
dummy coordinate always equal to 0 symbolized by the arrow:

N · ~v =





nxxvx + nxyvy + nxzvz
nyxvx + nyyvy + nyzvz
nzxvx + nzyvy + nzzvz



 ∈ ~R3 (16)

The exponential of a matrix is defined as follows:

expM = I +M +
1

2
M2 +

1

6
M3 · · · =

∞
∑

k=0

Mk

k!
(17)

The logarithm is defined as an inverse of the exponential, as follows:

log(I −M) = −M − 1

2
M2 − 1

3
M3 · · · = −

∞
∑

k=1

Mk

k
(18)

A matrix is raised to the power of a real number exponent as follows:

M s = exp(s logM) (19)
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A quaternion is a 4-dimensional element of quaternion space H, denoted in bold font
and whose components are represented in a column array:

q =









qs
qx
qy
qz









∈ H (20)

For convenience, the components of a quaternion are denoted with a scalar s ∈ R and
a vector ~v ∈ ~R3 as follows: q = (s,~v)>. Let us define two quaternions q = (s,~v)> and
q′ = (s′,~v′)>. The addition of two quaternions is obtained by adding the corresponding
components. We denote by ∗ the quaternion product, defined as follows:

q ∗ q′ = (ss′ − ~v · ~v′, s~v′ + s′~v + ~v × ~v′)> (21)

The most remarkable elements are the unit quaternions H1, which can be written
q = (cos(θ), sin(θ)~n)>, and whose norm s2+~v2 is equal to 1. The set of unit quaternions
constitute a unit sphere in a four-dimensional space. They provide a convenient way to
handle pure rotations. The logarithm of quaternion q is a 3D element p = θ~n, and the
exponential of p is q. From the above definitions arise the exponentiation of q ∈ H1:

qt = expt log q (22)

A 3D point p = (px, py, pz)
> can be represented with a point-quaternion: p = (0, p)>.

With points, unit quaternion q does not only represent an element on the unit 4D
sphere, but also a rotation of angle θ/2 around axis ~v. The rotation of p with q is:

q ∗ p ∗ q̄ (23)

where q̄ = (s,−~v)> is the conjugate of q.
We denote by ◦ the composition of functions. Let us consider for instance functions
fi : R3 7→ R3:

fj(fi(p)) = (fj ◦ fi)(p) (24)

The operator Ω expresses the finite repeated composition of functions:

n

Ω
i=1
fi(p) = (fn ◦ · · · ◦ f1 ◦ f0)(p) (25)
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Chapter 1

Introduction

S
hape modeling in Computer Graphics is the use of computers to assist an artist
to create a numerical shape. Shape modeling may find applications in many dis-
ciplines, such as medicine, art, cinema or games. In the design process, the artist

brings a shape through stages by means of a series of inputs, until the targeted shape
is obtained.

Unfortunately the process of shape modeling is ill-defined: an initial shape can
take an infinite number of paths to produce exactly the same target shape. In practice,
shape modeling software provides the artist with a set of shape operations, and leaves
the choice of the path to the artist. It goes without saying that the behavior of the
shape under the proposed operations determines the efficiency of the modeling software.

Although existing techniques provide the artists with a rich set of shape behaviors,
this set is far from complete. The paths the artist can choose are limited. This thesis
attempts to define new behaviors, unified in a single framework called sweepers. We
are tempted to say that sweepers are intuitive, easy and natural to use for modeling
shapes, although this is very subjective. Rather we claim that sweepers allow the artist
to take new useful and predictable paths toward the target shape. The behaviors we
propose can prevent foldovers, preserve volume or change the shape’s topology.

Sweepers is a framework that belongs to a family of techniques called space defor-
mation. This family of techniques has the great advantage of separating the shape’s
behavior from the shape’s mathematical representation.

1.1 Context

On a computing device, an artist models a shape by means of a series of inputs. A
shape modeling technique can be characterized by the shape’s behavior in response to
these inputs. The shape’s behavior must be at least predictable and interactive.

On the other hand, the shape’s representation is a piece of mathematics that de-
scribes which points of R3 belong to the shape’s surface and/or volume. In most popular
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techniques, the shape’s behavior and the shape’s representations are symbiotic. Some
of these popular techniques are for example meshes, subdivision surfaces, NURBS, and
to some extent implicit surfaces. It can be observed for instance that for a subdivision
surface, a control point serves both as a tool for deforming the shape and a part of the
mathematics defining the surface.

This symbiosis between a shape’s behavior and its representation is an advantage
when it comes to time efficiency. However some operations would be very tedious
to perform by the artist if he/she were restricted to use the built-in behavior. With
the increasing performance of computing devices, it is realistic to handle higher level
operations with a computer. The necessity of a higher level of interaction has long been
recognized. In 1977, R. Parent defined an operation for meshes called a warp, that acts
on a set of vertices [Par77]. Later, A. Barr discovered that by deforming R3, a shape
embedded in that space would be subject to that deformation [Bar84]. His operations
are the first published of a very large family of techniques, referred to in the literature as
space deformation1. The advantage of a space deformation technique is that it entirely
describes a shape’s behavior, independently of the shape’s representation. This makes
space deformation a versatile way of specifying new shape behaviors for modeling. We
present an overview of existing space deformation techniques in Chapter 2.

1.2 Motivation

The literature on space deformation techniques is vast. The majority of existing tech-
niques are specialized in achieving particular behaviors. In our work, instead of propos-
ing a list of specialized or unrelated space deformation techniques, we define a unifying
framework called sweepers, in which we propose several techniques. If complexity and
simplicity were measurable quantities, we believe that the ratio between the complex-
ity of behavior and the simplicity of input is an important factor. In any non-virtual
handicraft, gesture is the basis of creation. By analogy with this, we focus our work on
defining deformations that take as direct input one or more gestures from the artist.
A gesture may be defined for instance using a mouse, or by means of any other user
interface. We use these gestures to achieve space deformations that satisfy rules auto-
matically, for example preventing surface foldovers or preserving volume.

For software robustness reasons or for compatibility with post-processing operations
on the shape such as texturing, rendering or animation, it is desirable for a shape to
exhibit some coherence. Objectively, coherency is described by a set of criteria that a
shape guarantees to satisfy. The set of acceptable criteria that describe coherency is
not strict, and depends on one’s standard. In the context of shape representation, we
believe that the following is a reasonable criterion:

A shape defines points inside and outside, separated by a boundary, without ambiguity.

Although such coherency need only to be satisfied by the end-product of the modeling
process, enforcing it during the modeling process gives to the artist some expectations
about his/hers shape’s geometry, at any time. We also believe that a technique capable

1The term Free-form has also been used, but we will not use it since it also includes operations of
another kind.

8



of producing incoherent in-between shapes would probably not be specific enough as a
dedicated tool for shape modeling. Thus we believe that the following is a reasonable
criterion in the context of an interactive modeling technique:

A point inside a shape remains inside that shape (and similarly for a point outside)2.

Although space deformation techniques perform versatile operations independently
from the shape’s representation, it is easily possible to maintain this coherency, with
the sole condition that the deformation be reversible, i.e. foldover-free. The foldover-
free property is also necessary for an inverse deformation to exist, which is useful for
defining an undo operation, or rendering the deformed shape with inverse-raytracing
(Chapter 5).

Finally, in a virtual modeling context, there is no material: no wax, clay, wood or
marble. A challenge for computer graphics is to provide a virtual tool that convinces
the artist that there is material. To complete the illusion, a shape must behave in
accordance with a suitable modeling metaphor. Volume is one of the most important
factors influencing the manner in which an artist models with real materials. We
introduce techniques that preserve volume, and help the artist believe he is interacting
with virtual material. Also, modeling while preserving the available amount of material
produces shapes with a style that other virtual modeling methods can only achieve with
more effort.

1.3 Limit of scope

A modeling technique is intuitive when it behaves in an expected way. Depending
on individual experience with modeling, artists will have different expectations. It is
difficult to claim objectively that one method is more intuitive than another without
a thorough psychological study. Proving the intuitiveness of sweepers is beyond the
scope of this thesis, and our judgment is based only on our experience.

1.4 Contributions

We organize our contributions in nine points. The first five are techniques strongly
related to our framework called sweepers. We have also developed techniques that can
be applied in conjunction with more general space deformation techniques.

• We have developed sweepers, a framework for modeling by deformation. A
sweeper is a geometric tool together with a motion path; its effect is to move
space underneath the tool along the path, smoothly. We describe a normalized
blending formula, allowing us to use multiple sweepers simultaneously, and with-
out artifacts. We provide efficient formulations for a single tool following a simple
path. We propose a solution to prevent the surface from self-intersecting, which
is part of the definition of sweepers.

2This means that a point is tagged explicitly or implicitly with the information of being inside or
outside the shape.
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• We have developed a technique called animated-sweepers, useful for animating
the modeling of a shape. It allows an artist to edit the keyframes of the defor-
mation, cameras and lighting until he/she is satisfied with the result.

• We have developed sweepers that change the topology of space, and allow con-
trolled changes of topology of the shape.

• We propose techniques for describing shapes dedicated to modeling with sweep-
ers. We have developed a mesh refinement and decimation algorithm that takes
advantage of our swept deformations. We also have applied sweepers to a point-
based shape description and to a discrete implicit surface, and we have performed
preliminary tests with inverse-raytracing.

• We have developed a technique called swirling-sweepers, for modeling while pre-
serving the shape’s volume. We have discovered that in conjunction with other
space deformation [Dec96], a rich set of tools can be used to define volume-
preserving swept deformations.

• We have developed a technique called swept-fluid, which stands out of the sweeper
framework. This technique uses the Navier-Stokes equations to define a defor-
mation, and also preserves volume.

• We have developed a technique called spherical-springs, useful for spreading
evenly the texture coordinates of a shape homeomorphic to a sphere.

• We have derived from our shape modeling framework a technique for animating
fluids.

• We have defined a formalism for handling rigid transformation.

1.5 Thesis overview

The first chapter reviews the background of space deformation techniques. The funda-
mental principles of sweepers are then described in Chapter 3, together with efficiency
improvements, techniques for changing a shape’s topology and techniques for anima-
tion. Volume preserving matters are then described in Chapter 4. We have discovered a
case of volume preserving sweepers which does not require us to compute the volume of
the shape: swirling-sweepers. Preserving the amount of material has led us to develop
a physically-based approach that achieves comparable results. The repeated applica-
tion of space deformations produces distortions of the shape’s surface. This causes a
few complications for displaying the shape, and we have developed several solutions: a
mesh refinement and decimation algorithm, a point-based representation, an inverse-
raytracing technique, a discrete implicit surface technique, and a relaxation technique
for spreading more evenly the texture coordinates of shapes homeomorphic to a sphere.
These rendering-related topics are described in Chapter 5. We have applied our formal-
ism to the more general topic of fluid dynamics, which we present in Chapter 6. Our
last chapter presents a formalism for handling rigid transformations, which we foresee
as an important part of the theory for developing future space deformation techniques.
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Chapter 2

State of the Art

S
pace deformation provides a formalism to specify any modeling operation by suc-
cessively deforming the space in which an initial shape S(k0) is embedded. A
deformed shape is given by the modeling equation, where ki parameterizes the

evolution of the shape:

S(kn) =

{

n−1

Ω
i=0
fki 7→ki+1

(p) | p ∈ S(k0)

}

(2.1)

where
n−1

Ω
i=0
fki 7→ki+1

(p) = fkn−1 7→kn ◦ · · · ◦ fk0 7→k1(p) (2.2)

The operator Ω expresses the finite repeated composition of functions1. The series
of functions fki 7→ki+1

: R3 → R3 constitute the shape’s history of deformation. Each
function deforms a point p of the shape S(ki) into a point of the shape S(ki+1). The
common feature of space deformation techniques is that they apply to the space in
which the model is embedded and therefore can specify shape behavior independently
of the shape. This means that they define a deformation of the portion of space where
there is no surface, if required. Note that the operations do not commute under func-
tion composition, ◦. Note also that the definition of an individual operation fki 7→ki+1

is independent of the shape’s history.

This chapter reviews existing space deformation techniques, organized in three
groups: axial deformations, lattice-based deformations and tool-based deformations.
For the sake of clarity, we present existing space deformations aligned with the axes
~ex, ~ey and ~ez and within the unit cube [0, 1]3, whenever possible. But a mere change of
coordinates enables the artist to place the deformation anywhere in space. Note that
affine transformations are the simplest case of space deformations. They are described
in Appendix A.

1(f ◦ g)(p) = f(g(p))
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2.1 Axial space deformations

Axial space deformations are a subset of space deformations whose control-points are
geometrically connected along a curve. The curve may be initially straight or bent. To
compare existing deformation techniques from the same point of view, we use ~ez as the
common axis of deformation, which leads to slight reformulation in a few cases.

2.1.1 Global and local deformations of solid primitives

A. Barr defines space tapering, twisting and bending via matrices whose components
are functions of one space coordinate [Bar84]. We denote (x, y, z)> the coordinates
of a point. We show in Figures 2.1, 2.2, and 2.3 the effects of these operations, and
we give their formula in the form of 4 × 4 homogeneous matrices to be applied to the
coordinates of every point in space to be deformed.

Tapering operation: The function r is monotonic in an interval, and is constant
outside that interval.









r(z) 0 0 0
0 r(z) 0 0
0 0 1 0
0 0 0 1









Figure 2.1: Taper deformation of a super-ellipsoid shape. A description of the shape
can be found in [Gla89].

Twisting operation: The function θ is monotonic in an interval, and is constant
outside that interval.









cos(θ(z)) − sin(θ(z)) 0 0
sin(θ(z)) cos(θ(z)) 0 0

0 0 1 0
0 0 0 1









Figure 2.2: Twist deformation of a super-ellipsoid.

Bending operation: This operation bends space along the axis y, in the 0 < z half-
space. The desired radius of curvature is specified with ρ. The angle corresponding to
ρ is θ = ẑ/ρ. The value of ẑ is the value of z, clamped in the interval [0, zmax].
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cos θ 0 sin θ ρ− ρ cos θ − ẑ sin θ
0 1 0 0

− sin θ 0 cos θ ρ sin θ − ẑ cos θ
0 0 0 1









Figure 2.3: Bend deformation of a super-ellipsoid.

A. Barr observes that rendering the deformed shape with rays of light is equivalent to
rendering the undeformed shape with curves of light. The curves of light are obtained
by applying the inverse of the deformation to the rays. Because the deformation he
proposes are not local, the portions of the rays to deform can be quite large.

2.1.2 A generic implementation of axial procedural deformation
techniques

C. Blanc extends A. Barr’s work to mold, shear and pinch deformations [Bla94]. Her
transformations use a function of one or two components. She calls this function the
shape function. Examples are shown in Figures 2.4, 2.5, and 2.6.









r(z) 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









Figure 2.4: Pinch deformation of a super-ellipsoid.









r(tan−1(x, y)) 0 0 0
0 r(tan−1(x, y)) 0 0
0 0 1 0
0 0 0 1









Figure 2.5: Mold deformation of a super-ellipsoid.









1 0 0 s(z)
0 1 0 0
0 0 1 0
0 0 0 1









Figure 2.6: Shear deformation of a super-ellipsoid.
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2.1.3 A generalized de Casteljau approach to 3D free-form defor-
mation

Y.K. Chang and A.P. Rockwood propose a polynomial deformation that efficiently
achieves “Barr”-like deformations and more [CR94], using a Bézier curve with coor-
dinate sets defined along ~ez at the curve’s control knots (z0, z1 . . . , zn) ∈ [0, 1]n+1. A
reference straight segment, z ∈ [0, 1], is deformed by specification of coordinate sets
(ci, ~ui,~vi, ~wi) along that segment. The shape follows the deformation of the segment,
as shown in Figure 2.7.

x
y

z

x
y

z

c

c
c

c

0

1

2

3

x
y

z

x
y

z

straight axis initial shape control points and handles deformed shape

Figure 2.7: Example of the deformation of Y.K. Chang and A.P.Rockwood applied to a
super-ellipsoid. There is no need to define a pair of handles for the end control point.

To compute the image q of a point p of the original shape, the matrix transforming a
point to a local coordinate set is needed:

Mi =









ui,x vi,x wi,x ci,x
ui,y vi,y wi,y ci,y
ui,z vi,z wi,z ci,z
0 0 0 1









(2.3)

where ~wi = ci+1 − ci , and ~ui, ~vi are the handles.

Using this matrix, the deformation of a point is obtained recursively with the de Castel-
jau algorithm for evaluating a Bézier curve:

f ji (p) = (1 − pz)f
j−1
i (p) + pzf

j−1
i+1 (p) (2.4)

where f 0
i (p) = Mi · p

The original generalized de Casteljau algorithm presented by Y.K. Chang and A.P.
Rockwood is a recursion on affine transformations rather than on points. As we show
in Figure 2.8, this method is capable of performing “Barr”-like deformations and more.
Note that away from the control axis, the deformation may not be bijective. The same
remark can be made about Sections 2.1.1 and 2.1.2.
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initial stretch taper swell twist bend

Figure 2.8: Deformation of a super-ellipsoid.

2.1.4 Axial deformation

The limitation of the methods presented so far is the initial rectilinear axis. If the
shape is initially excessively bent, the manipulation of an initially straight control axis
will not induce a predictable behavior of the shape. F. Lazarus et al. develop an
extension of axial-based deformations using an initially curved axis [LCJ94]. Let us
define a parametric curve C(u). A point p in space is attached to local coordinates
along the curve. The origin of this local coordinate system is the closest point to p on
the curve, and the axes are those of an extended Frenet frame that discards vanishing
points [Blo90]. To find the closest point to p on curves, B. Crespin proposes an efficient
algorithm based on subdivision [Cre99]. The axes are computed by propagating along
the curve a frame defined at one extremity of the curve. The axes consist of three
vectors: a tangent ~τ(u), a normal ~n(u) and a binormal ~b(u). The propagated frame is
computed as follows:

• the unit tangent at the origin is given by the equation of the curve:
~τ(0) = dC(0)

du
/‖dC(0)

du
‖.

• the normal and binormal are given by the Frenet frame, or can be any pair of
unit vectors such that the initial frame is orthonormal.

To compute the next frame, a rotation matrix is needed. The purpose of this matrix
is to minimize torsion along the curve. Although we provide a formula for a rotation
matrix in Appendix A, numerous constructions of the rotation matrix justify a less
expensive formulation:

R =





axx+c axy+bz azx−by
axy−bz ayy+c ayz+bx
azx+by ayz−bx azz+c



 (2.5)

where
(ax, ay, az)

> = ~τ(ui)×~τ(ui+1)
‖~τ(ui)×~τ(ui+1)‖ α = 1 − c

c = ~τ(ui) · ~τ(ui+1) β =
√

1 − c2
(2.6)

axx = αa2
x axy = αaxay bx = βax

ayy = αa2
y ayz = αayaz by = βay

azz = αa2
z azx = αazax bz = βaz

(2.7)

Given a frame at parameter ui, the next axes of a frame at ui+1 are computed as
follows:
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• the tangent is defined by the equation of the curve: ~τ(ui+1) = dC(ui+1)
du

/‖dC(ui+1)
du

‖.

• the normal is given by the rotation of the previous normal: ~n(ui+1) = R · ~n(ui).

• the binormal is given by a cross product: ~b(ui) = ~τ(ui) × ~n(ui).

The choice of the size of the step, ui+1 −ui, depends on the trade-off between accuracy
and speed. B. Crespin extends the axial deformation to a surface deformation [Cre99].

2.1.5 Wires: a geometric deformation technique

K. Singh and E. Fiume introduce wires, a technique which can easily achieve a very rich
set of deformations with curves as control features [SF98]. Their technique is inspired
by the armatures used by sculptors.

A wire is defined by a quadruple (R,W, s, r): the reference curve R, the wire
curve W, a scaling factor s that controls bulging around the curve, and a radius of
influence r. The set of reference curves describes the armature embedded in the initial
shape, while the set of wire curves defines the new pose of the armature.

On a curve C, let pC denote the parameter value for which C(pC) is the closest
point to p. Let us also denote C′(pC) the tangent vector at that parameter value.

The reference curve, R, generates a scalar field F : R3 7→ [0, 1]. The function
F which decreases with the distance to R, is equal to 1 along the curve and equals 0
outside a neighborhood of radius r. The algorithm to compute the image pdef of a point
p influenced by a single deformation consists of three steps, illustrated in Figure 2.9:

• Scaling step. The scaling factor is modulated by F. The image of a point p after
scaling is: ps = R(pR)+(1+sF(p))(p−R(pR)), where pR denotes the parameter
value for which R(pR) is the closest to p.

• Rotation step. Let θ be the angle between the tangents R′(pR) and W′(pR).
The point ps is rotated around axis R′(pR) × W′(pR) about center R(pR) by the
modulated angle θ F(p). This results in point pr

• Translation step. Finally, a translation is modulated to produce the image
pdef = pr + (W(pR) − R(pR)).

R’(p  )R

W’(p  )R RW(p  )

p
sp

r

R(p  )

p

R

3.translate

R
q

1.scaling

2.rotation

W

F>0F=0

Figure 2.9: Left: deformation of a point by a single wire: the reference curve is in
blue and the wire curve is in red. Right: deformation of a shape with multiple wires
(the three images on the right are from [SF98]). The first image shows the initial
shape, the second shows the reference curves and the third shows the wire curves and
the deformed shape.
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They propose different blending methods in the case when a point is subject to
multiple wires. These methods work by taking weighted combinations of the individu-
ally deformed point. Let us denote pi the deformation of p by wire i. Let ∆pi = pi−p.
The simplest deformation is:

pdef = p +
∑n

i=1 ∆pi‖∆pi‖m
∑n

i=1 ‖∆pi‖m

Reference curves Wire curves

Figure 2.10: Blending weights based on summed displacement magnitudes. This blend-
ing is not free from artifacts: notice the creases around the intersection in the upper-
right figure.

The scalar m is defined by the artist. This expression is not defined when m is
negative and ‖∆pi‖ is zero. To fix this, they suggest to omit the wires for which this
is the case. Their second solution is to use another blending defined for both positive
and negative values of m:

pdef = p +
∑n

i=1 ∆pi
∏

j 6=i ‖∆pj‖|m|

∑n
i=1

∏

j 6=i ‖∆pj‖|m|

Reference curves Wire curves

Figure 2.11: Blending weights based on multiplied displacement magnitudes. The de-
formation is defined at the intersection of the reference curves.

In order to use unmoved wires as anchors that hold the surface, they use Fi(p)
instead of ∆pi as a measure of proximity:

pdef = p +
∑n

i=1 ∆piFi(p)m
∑n

i=1 Fi(p)m

Reference curves Wire curves

Figure 2.12: Blending weights based on influence function. The unmoved wire holds
space still. This blending is not free from artifacts: notice the creases around the
intersection in the upper-right figure.

Other capabilities of wires can be found in the original paper [SF98]. Note that
the expensive part of the algorithm is computing the distance from each curve to each
deformed surface point.
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2.1.6 Blendeforming: ray traceable localized foldover-free space
deformation

As explained in the introduction, there are practical reasons for which a space de-
formation should be foldover-free. D. Mason and G. Wyvill introduce blendeforming
[MW01]. A deformation is specified by moving a point or the control points of a curve
along a constrained direction. Space follows the deformation of these control features
in a predictable manner.

They define the blendeforming deformation as a bundle of non-intersecting stream-
lines. The streamlines are parallel, and described by a pair of functions: bx,y : R2 →
[−dmax, dmax] and bz : [0, 1] → [0, 1]. Function bx,y controls the amount of deformation
for each individual z-streamlines, and the choice of function bz affects the maximum
compression of space along the streamlines. The deformation of point p = (x, y, z)> is

pdef = (x, y, zdef )
> (2.8)

where zdef = z + bx,y(x, y) bz(z)

It is the definition of bz together with a corresponding threshold dmax that prevents
foldovers, as shown in Figure 2.13. The following function is a possible choice for bz(z),
used in the example:

bz(z) =

{

16z2(1 − z)2 if z ∈ [0, 1]
0 otherwise

(2.9)

with dmax =
3
√

3

16
' 0.324

Functions permitting larger values for dmax can be found in the original paper. Since
bx,y is independent of z, any function with values in [−dmax, dmax] can be used for it,
regardless of the slope. Because the amplitude of the effect of a blendeforming function
is bounded by the dmax threshold, it is obvious that modeling an entire shape uniquely
with blendeforming functions can be rather tedious. In the original paper, the authors
also propose bending blendeforming functions, defined in cylindrical coordinates.

x

y

z

x

y

z

x

y

z

(a) (b) (c)

Figure 2.13: (a) Initial scene: two parallel planes. (b) Blendeforming, with bx,y(x, y) =
(x2−x+y2−y−1/2)2. The value of dmax guarantees that the two planes will never in-
tersect. (c) With dmax < d, foldover occurs: the lower plane intersects the higher plane.

18



2.2 Lattice-based space deformations

The limitation of axial-based or surface-based space deformation comes from the ar-
rangement of the controls along a curve or on a surface. Note that this statement is
untrue only for wires, which permits the blending of the controls [SF98]. Lattice-based
space deformations are techniques that allow control points to be connected along the
three dimensions of space. There are two ways of understanding lattice-based defor-
mation, related to the manner in which the artist expresses the deformation. Let us
denote the space deformation function by f .

In the first interpretation of lattice-based deformations, the artist provides pairs
of points: a source point and a destination point, (pi, qi). The deformation f will
interpolate or approximate the pairs in this way f(pi) = fp(pi) ≈ qi. The function
fp is a position field. A position field does not have any physical equivalent to which
the artist or scientist can relate, and requires a certain amount of imagination to be
visualized.

In the second interpretation of lattice-based deformations, the artist provides a
source point and a displacement of that point, (pi,~vi). The deformation f will inter-
polate or approximate the pairs in this way f(pi) = pi+ f~v(pi) ≈ pi+~vi. The function
f~v is a vector field. There is a convenient physical analogy to a vector field. Vector
fields are used in fluid mechanics to describe the motion of fluids or to describe fields
in electromagnetics [Rut90, Gri99]. This analogy is of great help for explaining and
creating new space deformations.

While the effect of using either a position field or a vector field is equivalent, the
vector field also gives more insight in the process of deforming space: in lattice-based
space deformations, the path that brings the source point onto the desired target
point is a straight translation using a vector. In this section on lattice-based space
deformation, we will therefore consider the construction of a vector field rather than a
position field whenever possible.

2.2.1 Free-form deformation of solid geometric models

The effect of Free-Form Deformation (FFD) on a shape is to embed this shape in a piece
of flexible plastic. The shape deforms along with the plastic that surrounds it [SP86].

The idea behind FFD is to interpolate or approximate vectors defined in a 3d
regular lattice. The vectors are then used to translate space. In their original paper,
T. Sederberg and S. Parry propose to use the trivariate Bernstein polynomial as a
smoothing filter. Let us denote by ~vijk the (l + 1) × (m+ 1) × (n+ 1) control vectors
defined by the artist. The smoothed vector field is a mapping p ∈ [0, 1]3 7→ R3.

~v(p) =
∑l

i=0

(

i
l

)

(1 − x)l−ixi
(

∑m
j=0

(

j
m

)

(1 − y)m−jyj
(

∑n
k=0

(

k
n

)

(1 − z)n−kzk
))

~vijk
(2.10)

Then the deformation of a point is a translation of that point

pdef = p + ~v(p) (2.11)
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In order for the deformation to be continuous across the faces of the FFD cube, the
boundary vectors should be set to zero. A drawback of using the Bernstein polynomial
is that a control vector ~vijk has a non-local effect on the deformation. Hence updating
the modification of a control vector requires updating the entire portions of shape
within the lattice. For this reason, J. Griessmair and W. Purgathofer propose to use
B-Splines [GP89].

In commercial software, the popular way to let the artist specify the control vectors
is to let him move the control points of the lattice, as shown in Figure 2.14(c). A
drawback often cited about this interface is the visual self occlusion of the control
points. This problem increases with the increase in resolution of the lattice. Another
drawback is the manipulation of control points, which requires high skills in spacial
apprehension from the artist. Clearly, practical FFD manipulation through control-
points can only be done with reasonably small lattices.

(a) (b) (c) (d)

Figure 2.14: FFD deformation. (a) Lattice of size 33. (b) Initial shape. (c) The
popular interaction with an FFD lattice consists of displacing the control points. (d)
The discrete vectors.

2.2.2 Extended free-form deformation (EFFD)

Due to the practical limit of the size of the FFD-lattice, the major restriction of an
FFD is strongly related to the arrangement of control-points in parallelepipeds. The
parallelepipeds are also called cells. To provide the artist with more control, S. Co-
quillart proposes a technique with non-parallelepipedic and arbitrarily connected cells.
The technique is called Extended Free-Form Deformation (EFFD) [Coq90].

To model with EFFD, the artist first builds a lattice by placing the extended cells
anywhere in space, and then manipulates the cells to deform the shape. An extended
cell is a small FFD of size 44. The transformation from the cell’s local coordinates
s = (u, v, w)> to world coordinates is:

p(s) =
∑3

i=0

(

i
3

)

(1 − u)3−iui
(

∑3
j=0

(

j
3

)

(1 − v)3−jvj
(

∑3
k=0

(

k
3

)

(1 − w)3−kwk
))

pijk
(2.12)

The eight corners pijk∈{0,3}3 of a cell are freely defined by the artist. The position of the
remaining 44 − 8 are constrained by the connection between cells, so that continuity
is maintained across boundaries. This is done when the artist connects the cells.
Because the lattice is initially deformed, finding a point’s coordinates s in a cell is
not straightforward. The local coordinates of a point p in a cell are found by solving
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Equation (2.12) in s using a numerical iteration. This can be unstable in some cases,
although the authors report they did not encounter such cases in practice. Once s
is found, the translation to apply to p is found by substituting in Equation (2.12)
the control points pijk with the control vectors ~vijk. Note that specifying the control
points, the cells and the control vectors is rather tedious, and results shown in the
paper consist essentially of imprints. An example is shown in Figure 2.15.

(a) (b) (c)

Figure 2.15: EFFD deformation, images from [Coq90]. (a)Control lattice. (b)Deformed
lattice. (c)Result: a sand-pie.

2.2.3 Free-form deformations with lattices of arbitrary topology
(SFFD)

R.A. MacCracken and K.I. Joy have established a method that allows the user to define
lattices of arbitrary shape and topology [MJ96]. The method is more stable than EFFD
since it does not rely on a numerical iteration technique.

Their method is based on subdivision lattices. We will refer to it as SFFD, for
subdivision FFD. The user defines a control lattice, L: a set of vertices, edges, faces
and cells. A set of refinement rules are repeatedly applied to L, creating a sequence of
increasingly finer lattices {L1, L2, . . . Ll}. The union of the cells define the deformable
space. After the first subdivision, all cells can be classified into cells of different type:
type-n cells, n ≥ 3. See [MJ96] for the rules.

Although there is no available trivariate parameterization of the subdivision lattice,
the correspondence between world coordinates and lattice coordinates is possible thanks
to the subdivision procedure. The location of a vertex embedded in the deformable
space is found by identifying the cell that contains it. Then, for a type-3 cell, trilinear
parameterization is used. For a type-n cell, the cell is partitioned in 4n tetrahedra,
in which the vertex takes a trilinear parameterization. Each point is tagged with its
position in its cell.

Once a point’s location is found in the lattice, finding the point’s new location is
straightforward. When the artist displaces the control points, the point’s new coordi-
nates are traced through the subdivision of the deformed lattice.

2.2.4 Direct manipulation of free-form deformations (DMFFD)

The manipulation of individual control points makes FFD and EFFD tedious methods
to use. Two groups of researchers, P. Borrel and D. Bechmann, and W.M. Hsu et al.
propose a similar way of doing direct manipulation of FFD control points (DMFFD)
[BB91, HHK92]. The artist specifies translations ~vi at points pi in the form (pi,~vi).
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The DMFFD algorithm finds control vectors that satisfy, if possible, the artist’s desire.
Let us define a single input vector ~v at point p. The FFD Equation (2.10) must satisfy

~v = B(p)(~vijk) (2.13)

Let ν = (3(l + 1)(m + 1)(n + 1)). The matrix B is the 3 × ν matrix of the Bernstein
coefficients, which are functions of point p. Note that their method is independent of
the chosen filter: instead of the Bernstein polynomials, W.M. Hsu et al. use B-Splines
and remark that Bernstein polynomials can be used. P. Borrel and D. Bechmann on
the other hand found that using simple polynomials works just as well as B-Splines.
The size of the vector of control vectors (~vijk) is 3(l + 1)(m + 1)(n + 1). When the
artist specifies µ pairs (pi,~vi), the FFD Equation (2.10) must satisfy a larger set of
equations:







~v1
...
~vµ






= B ·







~vijk
...

~vijk






where B =







B(p1)
...

B(pµ)






(2.14)

This set of equations can either be overdetermined or under determined. In either
case, the matrix B cannot be inverted in order to find the ~vijk. The authors use the
Moore-Penrose pseudo-inverse, B+. If the inverse of B> · B exists, then

B+ = (B> · B)−1 · B> (2.15)

It is however preferable to compute the Moore-Penrose pseudo-inverse using singular
value decomposition (SVD). The µ× ν matrix B can be written

B = U ·D · V > (2.16)

where U is an µ× µ orthogonal matrix, V is an ν × ν orthogonal matrix and D is an
µ× ν diagonal matrix with real, non-negative elements in descending order.

B+ = V ·D−1 · U> (2.17)

Here, the diagonal terms of D−1 are simply the inverse of the diagonal terms of D.

(a) (b) (c)

Figure 2.16: DMFFD deformation, images from [HHK92]. (a) Initial scene. (b) The
deformation is created according to the displacement of several vertices of the green
object. (c) Result. The authors do not describe how the vertices on the green object are
selected.
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The size of the basis, or, equivalently the number of control points, has a direct
effect on the locality of the deformation around the selected point. In their approach,
P. Borrel and D. Bechmann pursue the reasoning even further, and define a technique
suitable for n-dimensional objects [BB91]. In the context of shape animation, i.e. in
R4 with time as the fourth dimension, the Bernstein, B-Splines or simple polynomials
are inappropriate. They propose to use a basis that does not change the initial time,
t0, and final time, tf , of an object:

Bt(p, t) =
(

(t− t0)(t− tf ) , (t− t0)(t− tf )t , (t− t0)(t− tf )t
2 , . . .

)>
(2.18)

2.2.5 Simple constrained deformations for geometric modeling and
interactive design (scodef)

In simple constrained deformations (scodef), P. Borrel and A. Rappoport propose to
use DMFFD with radial basis functions (RBF) [BR94]. The artist defines constraint
triplets (pi,~vi, ri): a point, a vector that defines the desired image of the point, and

a radius of influence. Let φi(p) denote the scalar function φ( ‖p−pi‖
ri

) for short. The
motivation of using RBF is to keep the deformation local, in the union of spheres of
radius ri around the points pi. A naive vector field would be:

~v(p) =
n
∑

i=1

φi(p)~vi (2.19)

Unless the points pi are far apart enough, Equation (2.19) will not necessarily satisfy
the artist’s input ~v(pi) = ~vi if the functions φi overlap. However, this can be made
possible by substituting the vectors ~vi with suitable vectors ~wi.

~v(p) =
n
∑

i=1

φi(p)~wi (2.20)

These vectors ~wi can be found by solving a set of 3n equations:

~v>
i = (φ1(pi) . . . φn(pi)) ·







~w>
1
...
~w>
n






where i ∈ [1, n] (2.21)

Let us take the transpose, and arrange the n equations in rows. The following equation
is the equivalent of Equation (2.14), but with radial basis functions:







~v>
1
...
~v>
n






=







φ1(p1) . . . φn(p1)
...

φ1(pn) . . . φn(pn)






·







~w>
1
...
~w>
n






where i ∈ [1, n] (2.22)

Let Φ be the n × n square matrix of Equation (2.22). This matrix takes the role of
B in Equation (2.14). Since Φ can be singular, the authors also use its pseudo-inverse
Φ+ to find the vectors ~wi.
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2.2.6 Dirichlet free-form deformation (DFFD)

With DFFD, L. Moccozet and N. Magnenat-Thalmann propose a technique that builds
the cells of a lattice automatically [MMT97], relieving the artist from a tedious task.
The lattice cells are the cells of a Voronöı diagram of the control points, shown in
Figure 2.17. The location of a point within a cell is neatly captured by the Sibson
coordinates. The naive deformation of a point p is given by interpolating vectors
defined at the control points with the Sibson coordinate.

p +=
n
∑

i=1

ai
a
~vi (2.23)

Where ai is the volume of cell i stolen by p, and a is the volume of the cell of p. This
interpolation is only C0. They use a method developed by G. Farin [Far90] to define
a continuous parameterization on top of the Sibson coordinates. The interpolation is
made of four steps:

• build the local control net

• build Bézier abscissa

• define Bézier ordinates such that the interpolant is C1

• evaluate the multivariate Bernstein polynomial using Sibson coordinates.
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Figure 2.17: 2D illustration of the Sibson coordinates (a) Voronöı cells of the control
points. (b) Voronöı diagram is updated after the insertion of point p. (c) The ar-
eas stolen by the point p from its natural neighbors give the Sibson coordinates ai/a.
(d) Local control net, with Bézier abscissa.

2.2.7 Preventing self-intersection under free-form deformation

In FFD, EFFD and DMFFD, if the magnitude of a control-vector is too high, the de-
formation may produce a self-intersection of the shape’s surface (see a self-intersection
in Figure 2.13). Once the shape’s surface self-intersects, there is no space deformation
that can remove the self-intersection. The appearance of this surface incoherency is
the result of a space foldover: the deformation function is a surjection of R3 onto R3,
not a bijection. J. Gain and N. Dodgson present foldover detection tests for DMFFD
deformations that are based on uniform B-Splines [GD01]. They argue that a necessary
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and sufficient test is too time consuming, and present an alternative sufficient test. Let
us define qijk, the deformed control points of the lattice. If the determinants of all the
following 3 × 3 matrices are all positive, there is no foldover.

φijk = s det
(

qi±1jk − qijk , qij±1k − qijk , qijk±1 − qijk
)

where the sign s is 1 if (i± 1, j ± 1, k ± 1) are clockwise, else −1.
(2.24)

The idea underlying the test is that the determinant of three column vectors is the
volume of the parallelepiped defined by these vectors. A negative volume detects
a possible singularity in the deformation. A technique for efficiently testing several
determinants at once can be found in the original paper.

This test can then be used to repair the DMFFD. Let us define (pi,~vi), the pairs
of points and vectors defining the DMFFD. If a foldover is detected, the DMFFD
is recursively split into two parts: (pi,~vi/2) and (pi + ~vi/2,~vi/2). The procedure
eventually converges, and the series of DMFFDs obtained are foldover-free and can be
applied safely to the shape.

2.3 Tool-based space deformations

Lattice-based techniques are capable of building a wide range of vector fields. But when
dealing with a problem in animation, modeling or visualization, a technique tailored for
that specific problem will be more suitable. This section is about techniques that focus
on a particular unresolved problem of space deformation, and solve it in an original way.

2.3.1 Interactive space deformation with hardware assisted ren-

dering

Y. Kurzion and R. Yagel present ray deflectors [KY97]. The authors are interested in
rendering the shape by deforming the rays, as opposed to directly deforming the shape.
To deform the rays, one needs the inverse of the deformation that the artist intends
to apply to the shape. Rather than defining a deformation and then trying to find
its inverse, the authors directly define deformations by their inverse. Their tool can
translate, rotate and scale space contained in a sphere, locally and smoothly. Moreover
they define a discontinuous deformation that allows the artist to cut space, and change
a shape’s topology. A tool is defined within a ball of radius r around a center c. Let ρ
be the distance from the center of the deflector c to a point p.

ρ = ‖p − c‖ (2.25)

Translate deflector: To define a translate deflector, the artist has to provide a
translation vector, ~t. The effect of the translate deflector will be to transform the
center point, c, into c +~t.

fT(p) =

{

p −~t(1 − ρ2

r2
)2 if ρ < r

p otherwise
(2.26)

where θ ∈ R
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Rotate deflector: To define a rotate deflector, the artist has to provide an angle of
rotation, θ, and a vector, ~n, about which the rotation will be done. The reader can
find the expression of a rotation matrix, Rθ′,~n,c, in Appendix A. Let us call θ′ an angle
of rotation that varies in space:

θ′ = −θ(1 − ρ2

r2
)4

fR(p) =

{

Rθ′,~n,c · p if ρ < r
p otherwise

(2.27)

where ‖~t‖ ∈ [0,
3
√

3r

8
]

Scale deflector: To define a scale deflector, the artist has to provide a scale factor s.
The scale deflector acts like a magnifying glass.

fS(p) =

{

p − (p − c)(1 − ρ2

r2
)4s if ρ < r

p otherwise
(2.28)

where s ∈ [−1, 1]

Discontinuous deflector: To define a discontinuous deflector, the artist has to provide
a translation vector, ~t. The deflector is split into two halves, on each side of a plane
going through c and perpendicular to ~t. In the half pointed at by ~t, the discontinuous
deflector will transform c, into c+~t, while in the other half, the discontinuous deflector
will transform c, into c −~t. The effect will be to cut space. The deformation applied
to the rays is:

fD(p) =







p −~t(1 − ρ2

r2
)2 if ρ < r and 0 < (p − c) ·~t

p +~t(1 − ρ2

r2
)2 if ρ < r and (p − c) ·~t < 0

p otherwise

(2.29)

where θ ∈ R

Since this deformation is discontinuous on the disk separating the two halves of the
deformation, a ray crossing that disk will be cut in two, as we show in Figure 2.18(c).
Thus a shape intersection algorithm will have to march along the ray from the two
sides of the ray, until each curve crosses the separating disk. This deformation assumes
that the shape’s representation has an inside and outside test. Note that other authors
have extended FFD for dealing with discontinuities [SE04].
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(a) (b) (c) (d) (e)

Figure 2.18: (a) Discontinuous deflector as observed by the artist. Two arbitrary
rays are shown. (b) Simple case, where the ray of light crosses only one hemisphere.
(c) When the ray of light changes hemisphere, the curve of light is subject to a discon-
tinuity. (d, e) Example of application, images from [KY97].

2.3.2 Geometric deformation by merging a 3D object with a sim-

ple shape

P. Decaudin proposes a technique that allows the artist to model a shape by iteratively
adding the volume of simple 3D shapes [Dec96]. His method is a metaphor of clay
sculpture by addition of lumps of definite size and shape. His deformation function
is a closed-form, as opposed to a numerical method that would explicitly control the
volume [HML99].

Figure 2.19: Steps of the modeling of a
cat, image from [Dec96].

Loosely speaking, this technique inflates
space by blowing up a tool in space through
a hole. This will compress space around
the point in a way that preserves the out-
side volume. Hence if the tool is inserted
inside the shape, the tool’s volume will be
added to the shape’s volume. On the other
hand, if the tool is inserted outside the
shape, the shape will be deformed but its
volume will remain constant. This is illus-
trated for the 2D case in Figure 2.21. A
restriction on the tool is to be star-convex
with respect to its center c . The defor-
mation function is2 (see Figure 2.20):

f3D(p) = c + 3
√

ρ(p)3 + r(p)3 ~n (2.30)

• ρ(p) is the magnitude of the vector ~u = p − c.

• r(p) is the distance between c and the intersection of the tool with the half-line
(c, ~u).

• ~n = ~u/‖~u‖ is the unit vector pointing from c to p.

2The 2D case is obtained by replacing 3 with 2.
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If the tool was not star-convex in c, then r(p) would be ambiguous. The deformation
is foldover-free. It is continuous everywhere except at the center c. The effect of the
deformation converges quickly to identity with the increasing distance from c. The
deformation can be considered local, and is smooth everywhere except at c. An example
in 3D is shown in Figure 2.19. A feature of this space deformation which is rare, is
that it has an exact yet simple inverse in the space outside the tool:

f−1
3D (p) = c + 3

√

ρ(p)3 − r(p)3 ~n (2.31)

c

r
ρ

T

p
f(p)

Figure 2.20: The insertion of a tool at center c affects the position of point p. See the
deformation in Equations (2.30).

(a) (b)

Figure 2.21: (a) Deformation of a shape (green) by blowing up a tool (yellow) outside
the shape. The shape’s area is preserved. (b) Deformation of a shape by blowing up a
tool inside the shape. The shape’s area is increased by that of the tool.

2.3.3 Implicit free-form deformations (IFFD)

B. Crespin introduces Implicit Free-Form Deformations (IFFD) [Cre99]. Note that
though it is called implicit, the deformation is explicit. IFFD is rather a technique
inspired by implicit surfaces, a vast branch of computer graphics whose presentation
is beyond the scope of this manuscript [BBB+97]. The field values φ ∈ [0, 1] generated
by a skeleton modulates a transformation, M , of points. The deformation of point p
by a single function is:

f(p) = p + φ(p)(M · p − p) (2.32)

He proposes two ways to combine many deformations simultaneously. Let us denote by
pi the transformation of p by deformation fi. The first blending is shown in Figure 2.22.
For M , we have used a translation matrix.
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pdef = p +
∑n

i=1(pi−p)φi(p)
∑n

i=1 φi(p)

Reference segments Translated segments

Figure 2.22: Blending weights based on summed displacement magnitudes. The de-
formation is only defined where the amounts φ are not zero, and is discontinuous at
the interface

∑

i φi = 0. This blending is useful when the deformed shape is entirely
contained within the field.

The second blending attempts to solve the continuity issue, but requires the defi-
nition of supplementary profile functions, γi. The purpose of the index i is to assign
individual profiles to skeletons.

pdef = p +
∑n

i=1(pi−p)φi(p)γi(p)
∑n

i=1 φi(p)
(a)

(b)

Reference segments Translated segments

Figure 2.23: Blending weights based on displacement magnitudes and profile functions.
For control points, the technique works well. For segments, there is a discontinuity
near their intersection.

In order to produce Figure 2.23, the following γi function was used:

γi(p) =

{

1 − (1 − σ2)2 if σ ∈ [0, 1], where σ =
∑n

i=1 φi(p)
1 otherwise

(2.33)

2.3.4 Twister

I. Llamas et al propose a method called twister in which a twist transformation of
points is weighted with a scalar function [LKG+03], in a similar way to IFFD but
with a transformation restrained to a twist. With this restriction, they propose to
weight single twists along the trajectory of the transformation rather than weighting
the displacement. They define a twist by transforming an orthonormal coordinate
system (o, ~u,~v, ~w) into (o′, ~u′,~v′, ~w′). The axis of the twist is defined by a direction ~d
and point a on the axis, while the angle of rotation around the axis is α and the
amount of translation along the axis is d:

~d = ~g
‖~g‖ where ~g = (~u′−~u)×(~v′−~v) + (~v′−~v)×(~w′−~w) + (~w′−~w)×(~u′−~u)

α = 2 arcsin( ‖~u′−~u‖
2‖~d×~u‖)

d = ~d · (o′ − o)

a = o+o′−d~d
2

+
~d×(o−o′)
2 tan(α/2)

(2.34)

Their procedure for deforming a point p with a twist parameterized by t is:

29



1. Bring p into local coordinates: translate by − ~a and then rotate by a rotation
that maps ~d onto ~z.

2. Apply the twist in local coordinates: translate by t d along ~z and rotate by t α
around ~z

3. Finally bring p back into world coordinates: rotate by a rotation that maps ~z
onto ~d and translate by ~a

To weight the twist, they propose to use a piecewise scalar function:

t(p) =

{

cos2(π‖p − o‖/2r) if ‖p − o‖ < r
0 otherwise

(2.35)

For operations that require simultaneous twists, they propose simply to add the dis-
placement of the weighted twist. Details for defining a two-point constraint can be
found in the paper.

2.3.5 Scalar-field guided adaptive shape deformation and anima-
tion (SFD)

J. Hua and H. Qin create a technique called SFD [HQ04]. They define a deformation
by attaching space to the level-sets of an animated scalar field. The artist is offered
three different techniques for animating a scalar field. Since there are many ways of
attaching a point to a level-set of a scalar field, the authors choose the way that keeps
the shape as rigid as possible.

They define φ(t, p(t)), the scalar field which is animated in time, t. Since a moving
point, p(t), is attached to a level-set of the scalar field, the value of φ at p is constant
in time:

dφ

dt
= 0 (2.36)

The square of Equation (2.36) gives a constraint:

(
dφ

dt
)2 = 0 (2.37)

There are several ways of attaching a point to a level set while the scalar field is moving.
The simplest way would be to make a point follow the shortest path, found when the
magnitude of the point’s speed, ‖~v(t)‖, is minimized. Another possibility, chosen by
the authors, is to minimize the variation of velocity, so that the deformation is as rigid
as possible. Instead of using the divergence of the speed to measure rigidity, they use
an estimate by averaging the variation of speed between that point’s speed, ~v, and its
neighbors’ speed, ~vk:

(∇ · ~v)2 ≈ 1

k

∑

k

(~v − ~vk)
2 (2.38)
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Since this is a constrained optimization problem [Weia], there exists a Lagrange mul-
tiplier λ such that:

d

d~v
(

d

dt
φ(t, p(t)))2 + λ

d

d~v
(∇ · ~v)2 = ~0 (2.39)

According to the authors, λ is an experimental constant, used to balance the flow
constraint and speed variation constraint. Its value ranges between 0.05 and 0.25. We
rearrange this equation and expand the derivative of φ with the chain rule:

d

d~v

(

(∇φ · ~v +
∂φ

∂t
)2 + λ(∇ · ~v)2

)

= ~0 (2.40)

Let us define ~̂v, the average of the velocity of all the adjacent neighbors connected with
edges to point p. If we substitute (∇·~v)2 for its approximate given by Equation (2.38),
and then apply the derivative with respect to ~v, we obtain:

(∇φ · ~v +
∂φ

∂t
)∇φ+ λ(~v − ~̂v) = ~0 (2.41)

By solving Equation (2.41), the updated position is:

~v = ~̂v − ~̂v · ∇φ+ ∂φ
∂t

λ+ (∇φ)2
∇φ (2.42)

The algorithm deforms a set of vertices in n sub-steps. If n is set to one, the deformation
takes one step. In the first step, since all the speeds are zero, we suggest that they
could be initialized with:

~v = −
∂φ
∂t

λ+ (∇φ)2
∇φ (2.43)

The algorithm is:

for i = 1 to n do

for all pk in the list of vertices to update do

Update the scalar field φ(t+ ∆t, pk).

Deduce ∂φ
∂t

= φ(t+∆t,pk)−φ(t,pk)
∆t

Calculate ∇φ, possibly with finite differences.
Compute ~̂v according to neighbors’ updated velocities ~vk.
Deduce ~v according to Equation (2.42).
Update vertex positions with pk(t+ ∆t) = pk(t) + ~v∆t

n

Improve surface representation using a mesh refinement and simplification strat-
egy.
if φ(t+ ∆t, pk(t+ ∆t)) ≈ φ(t, pk(t)) then

remove pk from the list of vertices to update.
end if

end for

end for

31



(a) (b) (c)

Figure 2.24: SFD applied to a digitized model of a dinosaur, images from [HQ04].

Firstly, this technique is not a very versatile space deformation technique since it
requires an explicit surface in order to compute the divergence of the speed. Secondly,
the advantage of a large set of possible SFD shape operations (as large as the set of
possible animated scalar fields) is at the cost of making the artist’s task rather tedious:
specifying the animated field does not permit quick and repeated operations on the
shape. Note that the authors do not mention how the surface refinement interacts
with the update list. Also, results show the editing of imported shapes rather than
shapes entirely modeled from scratch.

2.4 Conclusion

The large number of space deformation techniques can lead quickly to the naive conclu-
sion that in any shape modeling by deformation scenario, the limitation of a technique
may be simply circumvented by using another technique. This reasoning has several
flaws. Firstly, from the point of view of a programmer, the amount of effort required
to implement a space deformation Swiss-army knife for shape modeling would be con-
siderable. Secondly, from the point of view of an artist, choosing quickly the most
appropriate space deformation would require a vast amount of knowledge of the un-
derlying mathematics of many techniques, which is a skill that should not be required.
Thirdly, from a researcher’s point of view, all space deformation techniques are not
necessarily designed for the specific purpose of shape modeling, and there are surely
efficient ways of dealing with specific problems. We will discuss this last point in
the remainder of this section, i.e. we will overview the suitability of individual space
deformation techniques for the purpose of interactive shape modeling.

Firstly, the subset of space deformations, whose effect on a shape is not local, makes
these techniques unsuitable for the task of modeling shapes, since an artist’s operation
on a visible portion of the shape will have effects on portions that are further away
[Bar84, Bla94, CR94, LCJ94].

Secondly, a large number of space deformation techniques requires the artist to
specify a rather large number of control parameters [SP86, Coq90, MJ96, MMT97,
HML99, HQ04]. We believe that increasing the number of parameters does not increase
the amount of control by an artist, but rather it makes the task longer and more tedious.
Many techniques illustrate their capabilities on imported models, that were either
digitized or pre-modeled with conventional modeling techniques with a few exceptions
[Dec96, HHK92, LKG+03]. We believe that the absence of a model entirely developed
in one piece with a single technique is some evidence that the technique is tedious to
use for the dedicated purpose of modeling shapes.
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Finally, many space deformation techniques do not prevent a surface from self-
intersecting after deformation, aside from a couple of exceptions [MW01, GD01]. A
self-intersecting surface is a rather annoying situation in modeling with deformation,
since it is impossible for a space deformation to remove a previously introduced self-
intersection. Thus we believe that space deformation operations for shape modeling
should satisfy all the following criteria:

• Its effective span should be controllable.

• Its input parameters should be reduced to their strict minimum: a gesture.

• It should be predictable, in accordance with a metaphor.

• It should be foldover-free, and even revertible.

• It should be sufficiently fast for existing computing devices.

To our knowledge, the literature does not contain techniques satisfying all the above
criteria. Rather than defining a set of unrelated techniques, we will specify a framework
in which we will define deformation operations that satisfy the above. We will illustrate
the modeling capabilities of our framework with techniques and examples.
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Chapter 3

Sweepers and Related Techniques

s

The work presented in Sections 3.2, 3.3 and 3.4 extends the work published
in SMI 2004 [AWC04] which was acknowledged with a best paper award.
The work on animation in Section 3.6 has been published in CGI 2004
[AW04].

S
weepers is a class of space deformations suitable for interactive virtual sculpture.
The artist describes a basic deformation as a path through which a tool is moved.
Our tools are simply shapes, subsets of 3D space. So we can use shapes already

created as customized tools to make more complex shapes or to simplify the modeling
process.

When a tool is moved it causes a deformation of the working shape along the path
of the tool. This is in accordance with a clay modeling metaphor, and is easy to
understand and predict. More complicated deformations are achieved by using several
tools simultaneously in the same region, using a blending formula. The deformation
produced by blended tools is smooth and its behavior is predictable.
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It is desirable that deformations for modeling are ‘foldover-free’, that is parts of
deformed space cannot overlap so that the deformations are reversible. Applying a
non foldover-free deformation to a shape may produce an incoherent shape. We have
a proof that our deformations converge to foldover-free deformations and we propose
a practical bound for interactive applications.

We have efficient formulations for a single tool following simple paths (translation,
scaling or rotation specified for instance with a mouse) and a pair of tools following
a path reflected about a mirroring plane. We can demonstrate the effects of multiple
tools used simultaneously.

Sweepers can also be keyframed for describing animations of deformable objects.
In the end of this chapter, we reformulate sweepers to take into account a varying time
parameter, and present three techniques for animation.

3.1 Definitions

Figure 3.1: Squirrel character modeled out
of an initial ball. The artist modeled only
one side, while the other is automatically
made at the same time thanks to the si-
multaneous tool. There are no discontinu-
ities caused by the symmetry.

The process a sculptor uses to create a
shape can be regarded as a definition of the
shape. From this point of view, a represen-
tation such as a NURBS or implicit surface
is merely an intermediate device between
the acts of modeling and rendering. Foley
and Van Dam remark, “The user interfaces
of successful systems are largely indepen-
dent of the internal representation chosen”
[FvDF+94]. This, surely, is evidence that
the representations are inherently unsuit-
able modeling interfaces.

Our thesis is that the primary represen-
tation of a model must allow straightfor-
ward and predictable editing by an artist.
By predictable, we mean that the edit-
ing operations must work in accordance
with a consistent metaphor that is clear to
the artist.

Existing mathematical representations
are not directly suitable for editing oper-
ations, while most existing editing oper-
ations are not predictable according to a
suitable metaphor. For most virtual mod-
eling tools, this observation results from the fact that the mathematical representation
is strongly linked to the editing operations; for example editing the control points of
a NURBS patch manually. Space deformations stand apart from this, and can be
used with any mathematical model, including implicit surfaces when the deformation
is reversible. However, space deformation has had more success adjusting existing
models than with creating entirely new ones, mainly because the deformation opera-
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tions have not been developed to create a rich set of features. With the exception of
[Dec96], [MW01] and [GD01], deformation operations do not prevent surfaces from self-
intersecting. This is crucial, since space deformation cannot remove a self-intersection
in a surface.

We see all the above as obstacles to the creativity of artists. This chapter introduces
a framework for defining operations for sculpture independent of the shape’s underlying
mathematical model. These operations can be applied in principle to any standard
model. All the examples in this chapter are deformations of an initially neutral shape,
a sphere1. These deformation operations are specified intuitively as transformations of
tools where a tool is any shape. They are continuous (at least C0 and in most cases
C2). They are local operations, within some user-defined distance of the tools and,
most importantly, they are foldover-free, preserving the shape’s coherency.

3.1.1 Terminology and notation

As mentioned in the introduction, space deformation provides a formalism to specify
any modeling operation by successively deforming the space in which an initial shape,
S(t0), is embedded. For the moment, t may be interpreted as time. A deformed shape
is given by the modeling equation:

S(tn) =

{

n−1

Ω
i=0
fti 7→ti+1

(p) | p ∈ S(t0)

}

(3.1)

where fti 7→ti+1
: R3 → R3 is a space deformation that deforms a point p of space

at time ti into a point of space at time ti+1. The operator Ω expresses the finite
repeated composition of functions ftn−1 7→tn ◦ · · · ◦ ft0 7→t1(p). With sweepers, the artist
describes the functions fti 7→ti+1

simply by moving tools. Before introducing sweepers
in Section 3.1.2, we present our terminology in the following section.

The motion of tools

We call influence an animated scalar field φt : R3 → [0, 1]. To let the user specify
influences conveniently, we compose the following C2 piecewise polynomial function,
µ : R → [0, 1], with the distance to the shape of a tool, dt : R3 → R:

µλ(d) =

{

0 if λ ≤ d
1 + ( d

λ
)3( d

λ
(15 − 6 d

λ
) − 10) if d < λ

(3.2)

We chose this function also because it is symmetric: µλ(d) = 1 − µλ(λ − d). Other
functions may be used. We will use the term tool to mean the shape of the tool. We
define the influence of a tool as follows:

φt(p) = µλ ◦ dt(p) (3.3)

The above composition is illustrated in Figure 3.2. For the moment, the reader may
envision the tool as a ball. Tools are the topic of Section 3.4. To animate a scalar

1The use of a sphere makes clear that all the features on our shapes were genuinely created with
our technique.
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field φt, the artist is only required to animate the position, orientation and size of the
tool. The tool’s motion determines a deformation. In the following reasoning, in order
to use the tool’s motion we will have to refer to the minimum of the derivative of µ,
which has the following value for our choice of µλ:

min(
dµλ
dd

) = −15

8λ
(3.4)

There is a wide range of choice for the function µ. If the reader wants to choose another
one, we advocate the use of a function whose derivative has a small minimum, justified
in Section 3.1.2. The scalar field φt has local support, and is C2 if the distance function
is smooth within a λ-neighborhood of the tool. We distinguish three zones defined by
φt:

• the inside Tt, where φt(p) = 1

• the coating Kt, where φt(p) ∈ (0, 1)

• the outside Ot, where φt(p) = 0

We represent the path swept by a tool with discrete keyframes {t0, . . . tn}, which corre-
spond to positions of the tool. We encode positions along the path and transformations
between the positions with 4 × 4 homogeneous matrices, which may be obtained by
multiplying translations, scaling and rotations. We distinguish two kinds of matrices:

• absolute transformations Mti , that encode the position of the tool at time ti. This
is a transformation from local tool coordinates to world coordinates.

• relative transformations Mti 7→ti+1
=Mti+1

·M−1
ti , that encode the displacement of

the tool from time ti to time ti+1. This is a transformation from world coordinates
to world coordinates.
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φt(p) = µλ ◦ dt(p)

Figure 3.2: 2D scalar field for a disk of radius 1, with λj = 1. Right: the distance field.
Middle: the function µλ, applied to the distance. Left: the resulting influence of a tool.

Combination of transformations

Loosely speaking, the scalar field φt(p) encodes the amount of deformation induced by
the tool at time t at p. To blend or to compute fractions of deformations, we were
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inspired by the formalism of M. Alexa [Ale02a], i.e. the multiplication operator � and
addition operator ⊕, which behave essentially like · and + for scalars. Although we use
Alexa’s operators, we do not necessarily evaluate them numerically as proposed in his
paper, since we are interested in combining particular kinds of matrices: translations,
rotations, twists and uniform or non-uniform scales.

The operator � is defined as α�M = exp(α logM) and the operator ⊕ is defined as
M⊕N = exp(logM+logN). Because the matrices Mi we combine are particular, they
can be defined by their logarithm logMi in a unique manner, provided in Chapter 7 and
Appendix A. Thus we combine our simple matrices Mi weighted by wi ∈ R as follows:

exp(
n
∑

i=1

wi logMi) (3.5)

where the exponential of a matrix is defined as follows:

expM = I +M + 1
2
M2 + 1

6
M3 · · · =

∑∞
k=0

Mk

k!
(3.6)

Although the above is a possible way to evaluate exp, note that simple matrices such
as rotation, translation, scale and twist have closed-forms for their exponential. The
following shorthand is equivalent to Equation 3.5:

w1 �M1 ⊕ w2 �M2 ⊕ . . . wn �Mn =
n
⊕

i=1

wi �Mi (3.7)

Note that if M is a translation, then α � M is a translation as well. This is also
true for scales, rotations and twists. For more general matrices, exp may be computed
numerically using a series expansions [Ale02a]. Note that When ‖I − M‖ < 1, the
logarithm series converges, and defines an inverse of the exponential. Since we define
matrices by their logarithm, the following expression is never computed:

log(I −M) = −M − 1

2
M2 − 1

3
M3 · · · = −

∞
∑

k=1

Mk

k
(3.8)

In the remainder of the thesis, when log is used, it will be understood to be restricted
to the unit ball about the identity. When compositions of transformations are used, it
is assumed that they satisfy this constraint. See Chapter 7 and Appendix A for further
discussion.

3.1.2 Single sweepers and solution to foldovers

In order for the deformation induced by the input gestures on a tool to be predictable,
we propose that the deformation should satisfy the following:

• the deformation should move every point of space that intersects the tool accord-
ing to the tool’s transformation Mti 7→ti+1

.

• the deformation should not affect points far away from the tool, i.e. to such
points should be applied the identity I.
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Naive equation with foldover

The influence of the tool φt is a scalar function that describes the amount of trans-
formation induced by the tool. φt can be used conveniently to interpolate in R3 the
matrices Mti 7→ti+1

and I using the � operator as follows:

fti 7→ti+1
(p) = (φti(p) �Mti 7→ti+1

) · p (3.9)

The above conveniently satisfies fti 7→ti+1
(p ∈ Tt) = Mti 7→ti+1

· p and fti 7→ti+1
(p ∈ Ot) =

I · p, and interpolates the transformations in-between.
The use of the deformation fti 7→ti+1

is however naive, since it may create a foldover.
Foldovers may produce an incoherent shape, whose surface self-intersects. Self-intersections
of the shape’s surface are undesirable, because they make the location of the inside and
outside of the shape ambiguous. Formally, a foldover occurs if:

∃p, q ∈ R3 , p 6= q | fti 7→ti+1
(p) = fti 7→ti+1

(q) (3.10)

If the transformation fti 7→ti+1
was a bijection, then it would not create foldovers.

Solution to foldovers

To illustrate a case where a foldover occurs, let us consider a simple scenario: ifMti 7→ti+1

is a translation of magnitude larger than the coating thickness λ; it would map points
from the inside Tti , onto points of the outside Oti+1

, thus folding space onto itself as
shown in Figure 3.3(left). However, if we decompose the transformation into a series of
s small enough transformations, and apply each of them to the result of the previous
one, foldovers can be avoided as shown in Figure 3.3(right). The decomposition in s
steps for a general transformation can be expressed as follows:

{

fti 7→ti+1
(p) = fτs−1 7→τs ◦ · · · ◦ fτ0 7→τs(p)

where fτk 7→τk+1
(p) = (φτk(p) �Mτk 7→τk+1

) · p (3.11)

There exist a finite number of steps s such that the above is foldover-free. Had we
found a closed-form expression for the deformation when s→ +∞, we would not need
to bother with finding a threshold to s. For local and C2 influences, computing this
closed-form is very tedious if not impossible, thus we propose a lower bound to s, and
create equally spaced sub-keyframes {τ0, . . . τs}, such that τ0 = ti and τs = ti+1. Note
that in Equation (3.11), it could be tempting to replace the operator ◦ with a matrix
product, but this would not work, since the influence function φt is a function of space
and time.

Algorithm

In the following reasoning, we will focus on a single interval [ti, ti+1], so for the sake
of simplicity let us denote by M the relative transformation Mti 7→ti+1

. The following
matrices are the s intermediate positions of the tool:

(

k

s
�M

)

·Mti , k ∈ [0, s− 1] (3.12)
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t i+1

t i

τ

τ

τ

τ 1

2

3

s

Figure 3.3: 2D illustration of our solution to foldovers. Left: the deformation maps
space onto itself. Right: the deformation is decomposed into small foldover-free steps.

The s in-between relative transformation matrices are all identical:

1

s
�M (3.13)

We propose the following as a lower bound to the required number of steps:

−min(
dµ

dd
)max
l∈[1,8]

||logM · pl|| < s (3.14)

where pl∈[1,8] are the corners of a bounding box around Kti , as shown in Figure 3.4.
It is apparent in Equation (3.14) that a good choice for the function µ is a function
whose first derivative has a small minimum. The following is an algorithm to deform
an array of points and normals:

Input: positions Mti and displacement M .
Compute the number of required steps, s
Find the points contained in the deformation’s bounding box, B
for each step k from 0 to s− 1 do

for each point p in the sub-deformation’s bounding box, Bk do

p = (
φτk

(p)

s
�M) · p

Deform the normal of the point if there is one.
end for

Place the tool at the next position
(

k+1
s

�M
)

·Mti

end for
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Mti+1

Mti

p2
p3

B0

p5

p1p0

p4

p7p6

Figure 3.4: Left: tool and its transformation. Right: the tool’s motion is decomposed
into s = 3 steps, with a bounding box for each step.

Normal deformation: In order to deform the normals, the co-matrix2 of the Jacobian
is needed [Bar84]. We provide closed-form solutions in Section 3.3. Let us recall that
the following expression is a convenient way to compute the co-matrix of J = (~jx,~jy,~jz),

where the vectors ~jx, ~jy and ~jz are column vectors:

comJ =
(

~jy ×~jz,~jz ×~jx,~jx ×~jy
)

(3.15)

3.1.3 Simultaneous sweepers

Applying more than one tool at the same time and the same place has applications in
modeling, as shown in Figure 3.1, where we modeled a symmetric object by applying
the same tool symmetrically about a plane. Manipulating tools simultaneously is also
useful for defining a deformable tool, which is composed of several rigid parts; for
instance a hand. The simultaneous manipulation of tools also allows the artist to
pinch a shape. Pinching will be useful when we extend our method to incorporate
topology changes, in Section 3.5.

Naive blending equation

Let us define n moving tools Tj, whose positions are defined at keyframes ti. To each
tool Tj corresponds an influence φj,ti . To each tool also corresponds a set of relative
transformations, Mj,ti 7→ti+1

, between keyframes ti and ti+1. We denote φj = φj,ti(p)
and Mj = Mj,ti 7→ti+1

for the sake of simplicity. The following expression provides a
piecewise smooth3 combination of all the transformations at any point p in space4:

{

I if
∑n

k=1 φk = 0
⊕n

j=1

((

1−∏n
k=1(1−φk)
∑n

k=1 φk
φj

)

�Mj

)

if
∑n

k=1 φk 6= 0
(3.16)

For a practical implementation of the above function, we suggest the use of the following
expression in which each log(Mj) needs to be computed only once for all the deformed

2Matrix of the co-factors
3as smooth as the φi.
4The operator

⊕

expresses a repetitive sum:
⊕n

i=1 Mi = M1 ⊕ M2 ⊕ · · · ⊕ Mn.
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points:

fti 7→ti+1
(p) =

{

p if
∑n

k=1 φk = 0

exp
(

1−
∏n

k=1(1−φk)
∑n

k=1 φk

∑n
j=1 (φj log(Mj))

)

· p if
∑n

k=1 φk 6= 0
(3.17)

where:

• 1
∑n

k=1 φk(p)
is required to produce a normalized combination of the transforma-

tions. This prevents for instance two translations of vector ~d producing a
translation of vector 2~d , which would send a point far away from the tools.
This unwanted behaviour was also identified by K. Singh and E. Fiume [SF98].

• 1 −∏n
k=1(1 − φk(p)) smooths the deformation in the entire space, required in

the boundary between Kj
ti and Oj

ti . Indeed, smoothness would be lost if we only
used the normalization above.

Figure 3.5 shows a comparison between a naive additive blending and the one just
described. An interesting feature of Equation (3.17) is that there is no scalar field
other than φj required to ensure locality and continuity in R3, as opposed to the
solution proposed by B. Crespin [Cre99] presented in Section 2.3.3.
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Figure 3.5: Scalar fields of three 2d tools. To illustrate the behaviour of our blending,
we combine the scalar fields instead of using them to modulate a transformation. (a)
Adding the scalar fields. (b) By multiplying each field with (1−∏(1− φk))/

∑

φk, the
sum of the fields is normalized.

3.2 Solution to foldover

Equation (3.17) is naive for similar reasons to the ones discussed for a single tool in
Section 3.1.2. If we decompose it in small steps, foldovers can be avoided:

fti 7→ti+1
(p) =

s−1

Ω
k=0

fτk 7→τk+1
(p)

where fτk 7→τk+1
(p) =

{

p if
∑

j φj,τk+1
= 0

exp
(

1−∏j(1−φj,τk+1
)

∑

j φj,τk+1

∑

j

(

φj,τk+1
log(Mj)

)

)

· p otherwise

(3.18)
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The following expression is a lower bound to the required number of steps, generalizing
the single tool condition:

−
∑

j

min(
dµj
dd

)max
l∈[1,8]

∣

∣

∣

∣logMj · plj
∣

∣

∣

∣ < s (3.19)

where plj∈[1,8] are the corners of the bounding box around K j
ti .

Algorithm

To speed up the computation, bounding boxes are used, as shown in Figure 3.6. In
some special cases discussed below, this algorithm can be speeded. The following is an
algorithm to deform an array of points and normals:

Input: tools’ positions Mj,ti and transformations Mj.
Compute the number of steps, s, using Equation (3.19).
Find the points contained in the deformation’s bounding box, B.
for each step k from 0 to s− 1 do

Compute the union of all the tools’ influence bounding boxes, Bk.
for each point p ∈ Bk do

σ = 0
ψ = 1
L = 0
for each tool Tj do

if φj 6= 0 then

σ = σ + φj
ψ = (1 − φj) ψ

L = L+
φj

s
logMj

end if

end for

if σ 6= 0 then

p = exp(1−ψ
σ
M) · p

Deform the normal of the point if there is one.
end if

end for

Place all the tools at their next position, defined by
(

k+1
s

�Mj

)

·Mj,ti

end for

Normal deformation: In order to deform the normals, we need to compute the
co-matrix of the Jacobian [Bar84]. Even though a closed-form can be derived from
the above transformation, its length makes it difficult to code and time consuming. In
practice, computing the Jacobian with finite differences works well enough. Computing
the deformation of the normal with multiple tools can be done efficiently by storing
the influences φj in an array, and then considering only the tools whose influence is
not zero.
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M1
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Figure 3.6: Left: two tools and their transformation. Right: the tools’ motions are
decomposed into s = 3 steps, with a bounded box for each step.

3.3 Fast expressions for simple sweepers

When using multiple tools simultaneously, the time of the scene is frozen in order to
move each tool one at a time. This is not however the case when using a single tool.

3.3.1 Single tool

In a single tool scenario, the transformations that are convenient to input for the
artist are pure translations, non-uniform and uniform scaling and rotations. With
these simple transformations, the deformations of a point and its normal are much
simpler to compute, as there is a closed-form to the logarithm of simple matrices. In
this section, in addition to efficient expressions for computing the number of required
steps, we provide fast deformation functions for a vertex and its normal. The formulas
that we give have been derived from the expressions of log and exp given in Appendix A.
For deforming the normal, computing the Jacobian’s co-matrix is not always required:
(comJ t) · ~n leads to much simpler expressions. Note that the normal’s deformations
do not preserve the normal’s length. It is therefore necessary to divide the normal by
its magnitude. We denote ~γt = (γtx, γ

t
y, γ

t
z)

> the gradient of φt at p.

If M is a translation:

The use of � can be simplified with translation vector ~d. The minimum number of
steps is:

−min(
dµ

dd
)‖~d‖ < s (3.20)

The s vertex deformations are:

fτk 7→τk+1
(p) = p +

φτk(p)

s
~d (3.21)

The s normal deformations are:

gτk 7→τk+1
(~n) = ~n +

1

s
(~γτk × ~n) × ~d (3.22)
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If M is a uniform scaling operation:

Let us define the center of the scale c, and the scaling factor σ. The minimum number
of steps is:

−min(
dµ

dd
)σ log(σ)dmax < s (3.23)

where dmax is the largest distance between a point in the deformed area and the center
c, approximated using a bounding box. The s vertex deformations are:

fτk 7→τk+1
(p) = p + (σ

φτk
(p)

s − 1)(p − c) (3.24)

Let ~χ = log(σ)
s

(p − c). The s normal deformations are:

gτk 7→τk+1
(~n) = ~n + (~γτk × ~n) × ~χ (3.25)

If M is a non-uniform scaling operation:

Let us define the center of the scale c , its direction of scale as the unit vector ~n, and
its scaling factor σ. The minimum number of steps is:

−min(
dµ

dd
)σ log(σ)dmax < s (3.26)

where dmax is the largest distance between a point in the deformed area and the plane
of normal ~n passing through c. The s vertex deformations are:

fτk 7→τk+1
(p) = p + (σ

φτk
(p)

s − 1)((p − c) · ~n)~n (3.27)

Let ~χ = log(σ)
s

(p − c). The s normal deformations are:

gτk 7→τk+1
(~n) = ~n + σ

φτk
(p)

s ((~v + (~v · ~χ)~γτk) × ~n) × ~v (3.28)

It is appropriate to remark here that the tool is also subject to the scale, and that the
influence function φt must be defined in an appropriate way, as described in Section 3.4.

If M is a rotation:

Let us define a rotation angle θ, center of rotation r and vector of rotation ~v =
(vx, vy, vz)

>. The minimum number of steps is:

−min(
dµ

dd
)θrmax < s (3.29)

where rmax is the distance between the axis of rotation and the farthest point from it,
approximated using a bounding box. The s vertex deformations are:

fτk 7→τk+1
(p) = p + (cos

φτkθ

s
− 1)~ξ × ~n + sin

φτkθ

s
~ξ (3.30)

where ~ξ = ~v × (p − r)

The s normal deformations are:

gτk 7→τk+1
(~n) = (~n · ~v)~v + ~v × (cos(h)~n × ~v − sin(h)~n)

+ θ~γ × (~n × ~ξ + ((cos(h) − 1)(~n × ~ξ) · ~v + sin(h)~n · ~ξ)~v)

where h =
φτk

θ

s

(3.31)
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3.3.2 Symmetric tool

With a symmetric tool, the transformation matrices are of the same type, so blending
them leads to simple expressions. Let us consider two tools T0 and T1, with influences
φ0
t and φ1

t . If the influence of both tools is zero at p, that is if φ0
t (p) = 0 and φ1

t (p) = 0,
then the deformation is the identity. If the influence of one tool is zero at p, that
is if φ0

t (p) = 0 or φ1
t (p) = 0, then the deformation equation is that of a single tool.

When both influences are not zero at p, that is if φ0
t (p) 6= 0 and φ1

t (p) 6= 0, then the
deformation induced at p by the tools’ motion must be computed using Equation (3.17).
In the rest of this section, we have simplified the blending equation for simple symmetric
transformations of the same type.

Translation

The number of steps is:

−min(
dµ

dd
)(‖~d0‖ + ‖~d1‖) < s (3.32)

Where φ0 and φ1 are not trivial, the deformation of a point is:

fτk 7→τk+1
(p) = p +

1

s
(1 − φ0φ1

φ0 + φ1

)(φ0
~d0 + φ1

~d1) (3.33)

Rotation, scale and non-uniform scale

Where φ0 and φ1 are not trivial, the deformation of a point is:

fτk 7→τk+1
(p) = exp(

1

s
(1 − φ0φ1

φ0 + φ1

)(φ0 logM0 + φ1 logM1)) (3.34)

3.4 Tool influence

An artist specifies a sweeper space deformation by moving tools. Each tool generates
an influence, that encodes the tool’s amount of transformation. The set of possible
tools an artist can use determines the modeling possibilities. There are two possible
ways of defining an influence. Either the influence is defined in a local coordinate
system of the tool, or is defined directly in world coordinates.

Matrix transformation of a scalar field

The influence at a point is defined by applying a smoothing function to the distance
from the point to the shape, as defined by Equation (3.3). There are two possible ways
of computing the distance to a shape. These two equations are equivalent in the case
where the eigenvalues of the matrix Mti are all equal, i.e. when Mti is isotropic. Let
us denote S the shape of the tool. The distance can be evaluated in local coordinates:

dti(p) = det(Mti)
1
3 min

q∈S
‖M−1

ti
· p − q‖ (3.35)

47



The scalar det(Mti) is the increase of volume since Mti is isotropic. Thus the factor

det(Mti)
1
3 is required to rescale the distance along each axis. The distance can also be

evaluated in world coordinates:

dti(p) = min
q∈S

‖p −Mti · q‖ (3.36)

Directly using the distance definition of Equation (3.35) is prohibitive, and an algo-
rithmic trick has to be used: clustering the points of the shape, deriving a closed-form
formula, or defining a numerical procedure. Using Equation (3.35) allows the pro-
grammer to precompute a data structure in local coordinates, and hence to speed up
the evaluation of distance functions. There is a drawback however with using Equa-
tion (3.35) when Mti is a non-uniform scale: a distance field scaled non-uniformly does
not satisfy the properties of a distance field any longer. If the smoothing function
µλ is applied to the non-uniformly scaled distance field, the slope of the influence is
also scaled non-uniformly, and the resulting slope is uncontrollable (it is a function of
space). Since we do not have a convenient way to show to the artist the slope of influ-
ence in space, we strongly recommend using Equation (3.36) in the case of non-uniform
scales. Figure 3.7 shows the difference between the scaled influence of a shape and the
influence of a scaled shape; recall that the artist is only shown the ellipsoid.

(a) (b) (c)

Figure 3.7: (a) Influence of a shape, a disk. White corresponds to a value of 1, black
corresponds to no influence at all. (b) Scaled influence of the shape. The slope of the
gradient is dramatically affected by the scale. (c) Influence of the scaled shape, using
the distance to a filled ellipse.

3.4.1 Ball tool

The distance to a ball has a simple expression in local coordinates, in a way similar to
that of Equation (3.35):

dsphere(p) =

{

0 if ‖M−1
ti · p‖2 ≤ 1

det(M
1
3
ti )(‖M−1

ti · p‖ − 1) otherwise
(3.37)

If the artist wishes to apply a non-uniform scale to the sphere, it would turn into an
ellipsoid, and Equation (3.37) would not be usable.

3.4.2 Filled ellipsoid tool

The ellipsoid is defined in local coordinates as a unit sphere, whose position in world
coordinates is encoded in a possibly non-uniform matrix Mti . To compute the distance
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to a filled ellipsoid, we use the numerical method described in [Ebe01].

dellipsoid(p) =







0 if ‖M−1
ti · p‖2 ≤ 1

min
q∈S

‖p −Mti · q‖ otherwise,
where S is the unit sphere at the origin

(3.38)

3.4.3 Mesh tool

The easiest tools that can be implemented are simple objects (e.g. point, ball, ellipsoid,
cube) for which it is possible to derive closed-form expressions for calculating their
distance to a point. It is however convenient for an artist to choose or manufacture
his own tools, as every artist has an original way of modeling. For this purpose, we
offer to the artist the possibility of baking pieces of clay in order to use them as tools
(see Figure 3.8). By baking, we mean precomputing a data structure such that the
distance field can be computed efficiently. Various algorithms exist, and presenting
them is beyond the scope of this thesis. More information can found in [Gué01]. In
our implementation, we precompute a BSP of the Voronöı diagram of the vertices, and
compute the distance using the surrounding triangles. For the sake of completeness,
the method implemented is described in this section.

Figure 3.8: Example of customized tools deforming a sphere.

Precomputed structure

The distance to a polygonal surface is the shortest distance to each triangle of the
surface. To avoid computing the distance to each triangle, some clustering of space
needs to be done: to each triangle, T , corresponds a polygonal cell, Vor(T ), such that
if p ∈ Vor(T ), then T is the closest triangle to p, else there is another triangle closer
to p. Ideally, we would like to compute the Vor(T ) cells, which unfortunately happen
to be very complex in shape. Our solution is approximate, but happens to be exact in
most cases.

1. We precompute a BSP of the Voronöı diagram of sample vertices on the tool’s
shape. Thus an initial guess can be found in log(N) (for N vertices). At each
leaf, the index of the corresponding vertex is stored. Border cells of the BSP can
be infinite, so we represent the vertices of the cells using projective geometry.

2. To compute the distance to the tool when modeling with it, the closest vertex is
fetched, and the tested triangles are the ones connected to this vertex. To cope
with the approximation of the surface with points, the query point can be jittered
within a neighborhood kmin, the minimum length of an edge. For each triangle,
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we use the point to triangle algorithm of [Ebe01]. The distance to the tool is the
smallest distance to each triangle.

This algorithm returns the distance to an empty tool, i.e. the shape is a membrane
and the distance is zero only on the surface of the shape. If the user wants to grab the
piece of clay with the tool, our distance algorithm must return the value 0 if the point
is inside the tool. Thus, we add an inside test.

Distance to a volume algorithm: The inside test depends on the triangle features to
which the query point is the closest (see Figure 3.9). The distance-to-triangle algorithm
that we use gives the feature to which the closest point belongs [Ebe01].

• If the closest point is on the inside of the triangle, the point is inside the tool if
it is behind the triangle.

• If the closest point is on an edge of the triangle, the point is inside the tool if
either: (a) the edge is convex and the point is behind the two triangles sharing
that edge, or (b) the edge is concave and the point is behind either one triangle
or the other sharing the edge.

• If the closest point is a vertex, the point is inside the tool if it is in front of all the
planes perpendicular to the concave edges around that vertex, as shows a simple
case in Figure 3.9(c).

(a) (b) (c)

Figure 3.9: Closest feature ((a) surface, (b) edge, (c) vertex), with corresponding planes
used for the inside test. In the case where the feature is a vertex, planes are considered
if edges are concave.

Limitation of the algorithm: This distance field is inaccurate in the case of a very
thin surface, i.e. when the closest point is found behind a triangle. It works fine in the
case where the surface is finely sampled or not too twisted.

Results

The shapes in Figure 3.10 and Figure 3.11 were modeled with sweepers in at most one
hour, starting with a sphere. In Figure 3.11(a), the first modeling step was to squash
the sphere into a very thin disk. In Figure 3.10(d), eyeballs were added and the mouth
was sculpted with a custom shape. The technique used for representing the surface of
these shapes is presented in Chapter 5.
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(a)

(b)

(c)

(d)

Figure 3.10: All these shapes were modeled with sweepers in at most one hour, starting
with a sphere. In (d), eyeballs were added.

3.5 Changing topology

The purpose of this section is to show that a space deformation can both prevent
foldovers and change topology: these are not contradictory properties. We present two
topology changing deformation techniques: one adds a hole, the other deletes a hole.
Describing the shape of a hole is beyond the scope of this section. Although shape
description is the topic of Chapter 5, it is important to make clear that we do not have
a satisfactory solution to the problem of finding a geometric representation of a shape
whose topology can be changed by the deformation techniques described here. The
examples shown here use an oversampled mesh with explicit topological change at a
precise point.

Our philosophy of modeling by space deformation is that the entire surface of the
final shape should be visible from the start on the initial shape: there is a bijection
from the initial surface to the final surface shown in Figure 3.12(a). No “new” surface
is revealed to the artist, as for instance when carving, shown in Figure 3.12(b). Consid-
ering this, changing the topology by deformation is more subtle than just “removing”
a portion of the shape to make a hole, as with CSG operations (Constructive Solid
Geometry, see for instance [Gla89]).

The topology of a manifold is described by its genus, loosely speaking the number
of holes in the surface. In our view, a modeling system that allows holes to appear
and disappear arbitrarily during the modeling of a shape provides low control over the
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(a)

(b)

(c)

(d)

(e)

Figure 3.11: All these shapes were modeled with sweepers in at most one hour, starting
with a sphere. In (a), the first modeling step was to squash the sphere into a very
thin disk.

targeted result, as for instance with implicit surface modeling5 [FCG02, AJC02].

The space deformations we have defined are diffeomorphisms of space, and as such
they preserve the topology of space, hence they preserve the number of holes of any
shape embedded in that space.

However, during the modeling process, the artist may want to increase or decrease
the genus of the shape. In this section we define deformations that allow the artist
to do that. Combined with the original sweepers, the genus of a shape is precisely
controlled.

In his observations on morphogenesis [Koe90], J. Koenderink presents two deforma-
tion paths between a sphere and a torus: the “pinched sphere”, shown in Figure 3.13(a),
and the “strangled torus”, shown in Figure 3.13(c). These two paths suggest a pair of
tools which are able to increase and decrease the genus of a shape. Eventually, such
tools have been created by A. Verroust and M. Finiasz, in the context of editing the
vertices of a polyhedral mesh [VF02]. In their implementation, the smoothness of the

5With implicit surfaces, the effect of uncontrolled topology on a shape is called unwanted blending.
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surface is not preserved.

a)

b)

Figure 3.12: Deforming a surface (a)
and Carving a volume (b). In the for-
mer, the entire surface of the final shape
is visible on the initial shape. In the
latter, obtained using an implicit sur-
face, the new surface appears behind the
carved out portion (in red).

Note that pinching is somehow the prac-
tical inverse deformation of strangling, as
shown in the pairs of sequences (a, d) and
(b, c) in Figure 3.13. An intrinsic property
of this pair of tools is that the change of
topology, insertion or deletion of a hole, is
located at points on the surface. This raises
the question: how can a point on a surface be
located using space deformation, since space
deformation is applied blindly to R3? The
answer lies in the use of a space deforma-
tion that is discontinuous along a segment
for pinching, and a space deformation that
is discontinuous along a disk for strangling.

As remarked by A. Verroust and M. Fini-
asz, pinching and strangling produce at some
stage of the operation a shape which is singu-
lar for two topologies. Thus a second trans-
formation has to be applied to produce a
non-singular shape. The latter doesn’t have to be discontinuous, and just helps to
pull the shape apart (see the transition from the third to the fourth columns of Fig-
ure 3.13).

a)

b)

c)

d)

Figure 3.13: Four deformation paths between a sphere and a torus. The pinched sphere
(a) and the strangled torus (c). Similar deformations can be obtained by strangling
(b) and pinching (d) the shape from the inside.
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3.5.1 Adding a hole
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Figure 3.14: 2D plot of the needles’ scalar fields. The
deformation is discontinuous along the segment joining
the tip of the needles.

The pinch-tool deformation
is made of two main steps:
pinching and pulling. The
pinching deformation is dis-
continuous only at two points
which move toward each
other: when they meet, the
shape is singular for two
topologies. Thus the pinch-
tool deformation is discon-
tinuous along a segment. Elsewhere, the deformation is smooth. Let us first focus
on the pinching deformation. The pinching deformation itself is made of two simulta-
neous deformations, that we refer to as needles. Each needle is defined with a scalar
field discontinuous only at one point, i.e. the tip of the needle. The two needles move
toward each other, until the tips meet and poke an infinitely small hole in the surface
of the shape. The moving scalar fields are shown in Figure 3.14.
In a local coordinate set, the discontinuous scalar field φ of a single needle whose tip
is centered at the origin and whose body is aligned with the axis ~ez is the following:

φ(p) = α(p)ρ(p) ∈ R (3.39)

where α is a cone-like field discontinuous at ø, and ρ is a sphere-like field centered at
ø that bounds the effect of a needle, as shown in Figure 3.15 and given as follows:

α(p) = β(a(p)−aout

ain−aout
) ρ(p) = β( r(p)−rout

rin−rout
) (3.40)

where a(p) = arccos(pz/r(p))
r(p) = ‖p‖

β(v) =







0 if v ≤ 0
1 if 1 ≤ v
v3(10 − v(15 − 6v)) otherwise

αin

αout

rin

rout

Discontinuity

Figure 3.15: Parameters that
describe the size of the discon-
tinuous scalar field of a sin-
gle needle: angles ain, aout and
radii rin, rout.

Note that the role of β is only to smooth out the
transition between the inside and the outside of the
needle, and any other C2 function could be considered.
For poking the surface, we choose to follow the sim-
plest path possible: in a local coordinate system, the
needles face each other and each tip follows the point
(0, 0, 1− u)> and (0, 0,−1 + u)>, where u is animated
monotonically from 0 to 1, so two fields φ weight two
opposed translations. Because of the discontinuous
point, the number of steps required to animate the
needles should be infinite; in practice however a large
number is used. After applying the deformation, the
local position of the shape between the two needles is
known, and the topology can be changed at a single
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point. Changing the topology at a point depends on
the shape’s description. In the case of a mesh, this has to be done explicitly, thus we
proceed as follows (see Figure 3.16):

• find the intersections between the surface’s triangles and the segment between
the two needle tips.

• if the number of intersections is not 2, abort.

• insert two extremely small triangles on the intersected triangles and tag the 6
new vertices as discontinuous to prevent their edges from splitting or collapsing.

• apply the pinch deformation, splitting an edge only if none of its vertices are
discontinuous. Now the two infinitely small triangles meet at a point.

• blow the infinitely small triangles into very small triangles in the plane perpen-
dicular to the needles.

• remove the polygon and insert vertices to make hexagons. Find the vertex corre-
spondence that minimizes the sum of squared distance (remember each hexagon’s
vertices are ordered in a cycle).

• merge vertices.

• enlarge the hole with a deformation.

Figure 3.16: Continuous pinching transformation, on a mesh. Close-up to the singular
point.

After the surface is pinched, the last deformation to apply will pull the shape apart.
For this, we use the transformation M(p), in which q is the normal projection of p on
the line segment joining the needle tips:

M(p) · p = p + φ(p)
p − q

‖p − q‖ (3.41)
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a) b) c) d) e) f)

Figure 3.17: Steps for pinching a mesh.

with the field:

φ(p) =







1 if d = 0
0 if dout ≤ d
β(dout−d

dout
) if d ∈ (0, dout)

(3.42)

where d is the distance from p to the segment joining the needle tips before pinching.

3.5.2 Removing a hole
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Figure 3.18: 2D plot of the strangling tool’s scalar field.
The deformation is discontinuous along the circle that
contracts on the surface of a disk.

As with the pinch-tool defor-
mation, the strangle-tool de-
formation is also made of two
main steps: strangling and
pulling. The strangling de-
formation is only discontinu-
ous on a disc. Elsewhere, the
deformation is smooth. Let
us first focus on the stran-
gling deformation. More pre-
cisely, the strangling deformation is discontinuous along a circle that shrinks into a
point, at which stage the surface snaps. A 2D slice of the moving scalar field is shown
in Figure 3.18. In a local coordinate set, the discontinuous scalar field φ used to weight
a scale in a discontinuous manner is the following:

φ(p) = α(p)ρ(p) (3.43)

where α is a cone-like field rotated around z which is discontinuous along a disk, and
ρ is a sphere-like field which bounds the effect of φ:

α(p) = β(a(p)−aout

ain−aout
) ρ(p) = β( r(p)−rout

rin−rout
) (3.44)

where r(p) =
√

p2

a(p) = arccos((p − (1 − t)~n) · ~n)

~n = p−(p·~z)~z
‖p−(p·~z)~z‖

β(v) =







0 if v ≤ 0
1 if 1 ≤ v
v3(10 − v(15 − 6v)) otherwise

(3.45)
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Figure 3.19: Continuous pinching transformation, on a mesh. Close-up to the singular
point.

3.5.3 Results and limitations

Snapshots of two simple shapes being modeled are shown in Figure 3.20 and Figure 3.21.
Note that once a hole is created, it is guaranteed to stay since sweepers are foldover-free.

In the case of a shape represented by an updated mesh, the tools we have defined
here are tedious for a programmer to implement, since the change of topology of the
singular shape has to be handled explicitly in both pinch and strangle cases. This issue
should be solved with further research to find an adequate shape description: this is
the topic of Chapter 5. Further research could also be done on a more general topology
changing tool, with more general discontinuous features.

(a) (b) (c) (d) (e)

Figure 3.20: (a, b) Pinch-tool. (c) Single tool sweeper. (d, e) Strangle-tool.

(a) (b) (c) (d) (e)

Figure 3.21: Making a hollow tube with a Pinch-tool.
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3.6 Animation

The beginning of this chapter focuses on techniques for modeling shapes using space
deformation. Space deformation is also a suitable framework for animating shapes, as
done for example in [Bar84, CJ91, MMT97, SF98]. Parameters of the deformation are
controlled by time curves. These methods can achieve complex deformations but at a
cost: either they are expensive to compute, or a lot of effort is required from the user
to specify them.

In this section, we show three possible ways to adapt sweepers to the context of
animation. We are primarily interested in animating the modeling of a shape, in order
to present a spectator with the artist’s view of the modeling process. This is valuable
for teaching modeling skills and also as an art form in its own right. The key feature
of our approach is the ability to keyframe a deformation with large distortions, to edit
the deformation, and finally to render it in high quality.

Metamorphosis, or the animation of a shape undergoing high distortions, has ap-
plications ranging from special effects to medical imaging and scientific visualization.
The most popular generic technique is mesh morphing [Ale02b], which transforms one
mesh into another. Given two shapes, mesh morphing finds some path joining them.
The quality of the result is influenced not only by the chosen path, but also by the
starting shapes. The motivation of this section is to give to the user more explicit
control of the path, which he/she will specify for achieving the desired shape. Space
deformation provides a convenient formalism for defining the deformation of a shape,
although this technique has not yet been used for animating a shape undergoing great
stretching and twisting.

3.6.1 Three techniques for animation

In this section, we reformulate sweepers in a way that is suitable for animation. We
recall that a sweeper is a geometric tool together with a motion path. The basic idea is
that the tool is placed somewhere in the region of a shape to be deformed and moved
along the path. The motion drags a part of space with the tool subject to rules that
prevent space foldover.

Space deformation provides a formalism for specifying any modeling operation by
successively deforming the space in which an initial shape, S(k0), is embedded. In this
section, the reader can interpret k as time. A deformed shape is given by the modeling
equation, that is Equation (3.1). We rewrite it using the parameter k instead of t, since
for the purpose of animating, the deformation parameter is not necessarily a monotonic
function of time:

S(kn) =

{

n−1

Ω
i=0
fki 7→ki+1

(p) | p ∈ S(k0)

}

(3.46)

where fki 7→ki+1
: R3 → R3 is the space deformation that deforms a point p of the shape

S(ki) into a point of the shape S(ki+1). Since we want to animate the modeling process,
we need the deformation to be continuous not only in space, but also in k, over the
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interval [k0, kn]. For this we reformulate Equation (3.46) into the animation equation:

S(k) =

{

n−1

Ω
i=0
fkki 7→ki+1

(p) | p ∈ S(k0)

}

(3.47)

where fkki 7→ki+1
(p) =







p if k ≤ ki
fki 7→ki+1

(p) if k > ki+1

fki 7→k(p) otherwise

where fki 7→k : R3 → R3 is the space deformation that deforms the shape S(ki) into the
shape S(k). Each deformation f kki 7→ki+1

has to be continuous in k ∈ [ki, ki+1]. This can
be achieved conveniently with sweepers, as we show below.

The deformation defined by a tool moving from Mki
to Mki+1

is swept using s steps,
as given by Equation (3.19), that subdivide the interval (ki, ki+1] into “small enough”
steps {κ0, . . . κs}. Let us denote M = Mki+1

M−1
ki

the transformation matrix. The
sweeper modeling-deformation is thus the composition of s functions:

fki 7→k(p) =
s−1

Ω
j=0
fkκj 7→κj+1

(p) (3.48)

where fkκj 7→κj+1
(p) =







p if k ≤ κj
fκj→κj+1

(p) if k > κj+1

fκj→k(p) otherwise

In order to use sweepers for animation, we have to define f kκi 7→k for k ≤ (κj, κj+1).
Since Mk can be assumed to be defined for all k, adapting sweepers to animation is
as simple as substituting Mki+1

for Mk in Equation (3.48). Figure 3.22 illustrates the
substitution of Mk1 for Mk.

k 0 k 1

k 0 k 1

k 2

k 2

k 0 k 1
f

k 0 k
f

M M
k

M

k

M

k

Figure 3.22: Since the movement of the tool is continuous in k, so is the deformation.
In this example, the tool’s translation and scaling are animated.

Thus, the sweeping of a tool defines a deformation that is smooth in both space
and time; smooth meaning the field φk is C2 in space, and the matrix Mk is C1 in k.

The movements of tools have parameters of their own, which has been assimilated to
the time parameter in the case of modeling. However, it can be used independently for
animation, providing several ways of animating a shape with a sweeping deformation,
as we show in the next sections.

59



Straight

By leaving the tool at a fixed position in the modeling space and animating only its
destination through time, the animator only has to specify a curve (see Figure 3.23),
the effect being to grab a portion of an object and to displace it straight from its
original position to an animated target position. In Figure 3.24, a tool grabs a head
smoothly, while the neck stays in place.

t

t

k

Figure 3.23: The dark curve represents the animated portion of the modeling space,
controlled by the user. The straight lines aligned with k bring the shape straight from
modeling space to animated space.

Figure 3.24: Deformation of a neck using a straight deformation. A rotation turns the
head, while the neck stays still. The facial expressions are procedural [KKM03].

Sliding-straight

By specifying a deformation in a local coordinate set, and animating the coordinate
set, the animator can slide a deformation through the scene, as shown in Figure 3.25.
For instance, if the deformation is a scale, it can be used for animating a bulge moving
inside an object. This approach has been used for instance by [CJ91], where instead of
moving the deformation relative to the object, it is the object that is moved relative to
the deformation. Also, we have implemented it with sweepers as a Maya plugin, which
was used in a short animation as shown in Figure 3.26.

t

t

k

Figure 3.25: Sliding a deformation through the scene. The curve controlled by the user
is symbolized in thick black.
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Figure 3.26: Screenshots from a short animation using a simple deformation plugin
under Maya. The bulge is animated by moving its locator inside the pipe.

Modeling

By identifying the deformation parameter k to the time parameter t, a user can easily
specify and control an animated sweeper. Every new deformation is composed with
the previous one, thus building up an increasingly complex function. As shown in
Figure 3.27, each function is not animated and is constant in t. The control-points on
the line k = t in this figure correspond to key positions Mti .

t

k

Figure 3.27: Animating the modeling deformation. To each control-point corresponds
a constant function, parallel with axis t. The only curve controlled by the user is
symbolized in thick black.

As time increases, the complexity of the deformation increases too. To provide quick
feedback to the user, we propose in the next sections a data flow structure illustrated
by an implementation.

3.6.2 Focus on animating a modeling

Let us place ourselves in the context of a user working on an animation. The sweeping
tool is controlled through eleven curves:

• 3 translation curves along X, Y, Z (float)

• 3 rotation curves around X, Y, Z (float)

• 3 scale curves along X, Y, Z (float)

• Thickness curve (float): the constant λ in Equation (3.3)
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• Active curve (boolean): if false, fti 7→t = I regardless of the ten other curves,
otherwise the tool behaves normally. This is useful for moving the tool around
the scene without interfering with the shape.

By modifying the control points of a curve driving the sweeping tool, the user is trans-
parently modifying the animation Equation (3.47). An example is shown in Figure 3.28.

Figure 3.28: Control of a deformation by keyframing the position of a tool. The green
curve is the tool’s motion trail.

It would be rather inefficient if the shape S(t) was to be recomputed from the initial
shape S(t0) every time a key between t0 and t has been modified, or every time the
user selects a different time in the time slider. To prevent this, we propose an efficient
architecture that caches intermediate shapes so that the user can work in a reasonable
amount of time, real-time in most cases.

We suggest placing a cached shape at every time where at least one key has been
set. As shown in Figure 3.29, the list of cached shapes does not necessarily correspond
to the control points of a curve.

Graph nodes

The cached shapes are handled by nodes in a scene graph, and are updated only when
necessary through the connections between the nodes. In fact, since our system has
been implemented in Maya 5.0, the nodes we describe in the following sections are
customized Dependency Graph (DG) nodes. The reader is referred to [Gou03] for a
description on how data is pulled through the connections only when required.

Shape node: The shape node is responsible for displaying the current shape S(t).
It possesses an array of connections to the cached nodes’ output shapes, sorted by
increasing time, and a connection to the current time. When the current time changes,
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t+ 8

t 0

S(t  )21S(t  ) S(t  )3S(t  )0cached shapes

Figure 3.29: Example of a configuration of cached shapes relative to the curves.

the shape node determines which interval (ti−1, ti] the value t belongs to, and asks
cache node i for its output shape.

Cache nodes: A cache node has, as input, the cached shape of the previous cache node.
If there is no previous cache node, it generates shape S(t0). A cache node is responsible
for computing and storing the cached shape S(ti) when requested by the next cache
node, and is also responsible for computing output shape S(t) when requested by the
shape node.

Tool node: Draws the tool in the real time modeling view, and will not be rendered
by default.

Tool transform node: The tool transform node connects all the animation curves,
and provides the matrix positions Mt to the cache nodes, so that they can deform the
shape. The tool transform node also provides this matrix to the tool node so that it
can be drawn at the right position.

The list of connected cache nodes represents a 4D buffer, and holds deformed shapes
along time. This buffer is used to compute a single shape: the one displayed in the
interface, at the current time.

Initialization

At initialization, there are two cache nodes at time t0 and t+∞. The cache node at
time t0 contains the initial shape, before deformation. The cache node at time t+∞
contains the current final shape. The curves are clear of any key. By themselves,
the two extremity caches define an inbetween function ft0 7→t+∞ which is the identity:
S(t) = S(t0). Keys can then be inserted on the curves while the buffer structure
updates.

Operations

The operations are performed on the tool as if it were a classic animated object, through
the eleven curves. These operations are performed on the scene graph via curve editing
callbacks.

Key insertion: When a control point is inserted on a curve at time ti, we first check
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whether a cache node already exists. If it does, we mark the node dirty. Otherwise,
we insert a node in the node list.

Key deletion: When a control point is deleted on a curve at time ti, we first check
whether another curve has a control point at that time. If it does, we mark the node
dirty. If not, we remove the node from the list.

Key modification: This is done by deletion followed by insertion.

t − 8 t 0 t 1 t 2 t+ 8

cacheIn
cacheOut

cacheIn
cacheOut

cacheIn
cacheOut

cacheIn
cacheOut

cacheIn
cacheOut

shape shape shape shapeshape

shape

Figure 3.30: Simplified data graph.

Sampling the matrix curves

Maya provides a mechanism for C1 interpolation of matrices, different from the one
in [Ale02a], which we use for sweeping transformations. Thus, using the foldover-free
condition with Maya’s interpolation is incorrect. To solve this, we sample the matrix
at every frame using Maya’s interpolation scheme, and we sweep the transformation
within that interval using the foldover-free condition. We have observed that, most of
the time, the number of substeps is equal to one.

Results

We have implemented the structure in C++ using the Maya 5.0 API [Gou03]. The
only difficulty of the implementation in Maya is the absence of a callback for detecting
which control points have been modified. However, since it is possible to set a callback
to know which curve has been modified, it is possible to circumvent this issue by
duplicating the curve nodes (eleven, for each parameter). By counting the number of
points, it is possible to know if a key has been modified, inserted or deleted, and by
comparing the control points one by one, the modified control points of the curve can
be found. Also, for rendering a custom shape, it is necessary to pass the custom mesh
to a built-in Maya node.

Regarding interactivity, the system is fast and allows the user to specify and modify
an animated sweeper with ease. Once all the cache nodes have computed their cached
shape, playing the animation in real time is just a matter of deforming the shape
within small time intervals (ti, ti+1]. Also, every cache is computed or updated only
when required, that is when the current time in the time slider is greater than ti+1. In
order to precompute all the cached shapes, or update all the cached shapes when the
first key has been modified, the user can select the last time tn on the time slider. This
operation can be slow if there are many deformations. However most of the time, the
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modeling is done locally both in space and time, allowing the computation to be done
in real time.

The title page animation of a sphere morphing into an Anubis statue has been done
conveniently with the technique described, and then rendered in high quality. The first
step flattens the bottom of the sphere using a vertical scaling. The tool is then disabled
and placed on another part to pull out the body of the statue. The rest of the morphing
is also done by pulling, scaling, twisting, disabling and enabling the tool.

Figure 3.31: Snapshot of the Maya dependency graph. Three keys have been set on
translation X, rotation X and scale X, at the same time parameter. To this key corre-
sponds a single cache node. Each curve has a duplicate used to modify the graph when
a curve is edited.

Figure 3.32: Snapshots of the Anubis animation. The 2D texture (a noise) has been
stretched with the deformation.

3.7 Conclusion

Sweepers is a new class of smooth and normalized space deformations that are pre-
dictable and preserve the shape’s coherency: deformation operations are defined by
combining transformations non-linearly in matrix logarithmic space, which allows us
to parametrize and decompose the deformations. In the case of simple transformations
for single tools, fast expressions can be derived to be used for real time modeling. We
have shown that a space deformation can both prevent foldovers and change topology:
these are not contradictory properties. Sweepers can also be extended to animation.
Because of the inherent motion parameter of sweepers, this extension is straightforward.
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Figure 3.33: Close-up: last frame of the Anubis animation.
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Chapter 4

Volume Preserving Modeling

The work presented in Section 4.1 was presented as a technical sketch at
SIGGRAPH 2004 [ACWK04b], and extends the work published in Pacific
Graphics 2004 [ACWK04a], acknowledged with a best paper award.

I
n a non-virtual context, when an artist models with a soft modeling compound, one
of the most important factors which affects the artist’s technique is the amount of
available material. This aspect was ignored in the previous chapters. The notion of

an amount of material is not only familiar to professional artists, but also to children
who play with Play-Doh r©at kindergarten and adults through everyday life experience.

In the context of modeling virtual shapes, in order to take advantage of people’s fa-
miliarity with the concept of an amount of material, a challenge for Computer Graphics
is to provide a technique that convinces the artist of the existence of a virtual material.
This perfects the illusion of a virtual shape behaving in accordance with a clay-modeling
metaphor. Also, we have observed that modeling by preserving the available amount
of material produces shapes with a style, i.e. fluid-like features, that other virtual
modeling methods can only achieve with more effort.

67



Volume preservation has been recognized for a long time in animation as a desirable
property for the animation of believable animal and human characters [TJ81]. [PB88]
use constrained optimization methods for objects discretized into lattices. [DC95] use
controllers for maintaining the implicit surface that coats a set of particles to a constant
volume during deformation. [FF01] achieve incompressibility in water simulation by
maintaining a divergence-free velocity field, thanks to the Poisson equation. [TBHF03]
rely on finite volume methods to simulate quasi-incompressible materials such as mus-
cular tissue.

Volume preservation has also been considered as a very useful constraint in the
intuitive modeling of shapes. [RSB95] propose an optimization method to adjust the
control points of the popular free form deformations (FFD) [SP86], but the technique
is restricted to shapes represented with tensor-solids. [HML99] also adjust FFD con-
trol points, but their method does not allow local editing. [AB97] propose a volume
preserving space deformation based on a model called DOGME. The deformation does
not have a local support, and requires the computation of the shape’s volume. [BK03]
preserve a volume only between the surface and a base surface. [DC03] introduce mass-
preserving local and global deformations for shapes represented by a mass-density field
sampled in a grid.

The limitation of existing methods is either that they only apply to a specific
type of geometric representation, or they only apply to shapes whose volume can be
computed. This chapter introduces two different approaches for defining a volume-
preserving deformation that preserve volume independently from the shape description.
In Section 4.1, our first method is based on the observation that a rotation modulated
by a scalar decreasing isotropically from the axis of rotation is implicitly volume-
preserving. In Section 4.2, our second method is based on equations borrowed from
incompressible fluid dynamics, for which incompressibility is expressed explicitly.

Limit of scope: In Computer Graphics, the preservation of volume is limited by three
main factors: memory capacity, computation time and numerical accuracy. Although
properly speaking there is only one way to preserve volume, which is when the volume
remains constant, in this chapter we may refer to the accuracy of a volume preservation
technique to quantify how closely the volume is preserved.

4.1 Swirling-sweepers

Swirling-sweepers is our first method that preserves volume: it has local support,
prevents local and global self-intersection of the surface and does not require any volume
computation. Most importantly, using the method is simple: the artist only has to
provide the trajectory of a point, for instance with a mouse. All of these properties
are necessary for interactive modeling if the user is to have the impression that he or
she is shaping a real material. Our method is the first to implement all four. Swirling-
sweepers is based on closed-forms, and is much more accurate than the technique
presented in Section 4.2.
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4.1.1 A basic deformation

We define a particular case of sweeper, a swirl, by using a point tool, c, together with
a rotation of angle, θ, around an axis ~v (see Figure 4.1). A scalar function, φ, and
a deformation are defined as before. Informally, a swirl twists space locally around
the axis, ~v, without compression or dilation. We prove in Appendix B that a swirl
preserves volume.

θ

c c
v v

λ

Figure 4.1: The effect on a sphere of a swirl centered at c, with a rotation angle θ
around ~v. The two shapes have the same volume.

4.1.2 Combining for complexity

Many deformations of the above kind can be naively combined to create a more complex
deformation

f(p) =
(
⊕n−1

i=0 (φi(p) �Mi)
)

· p
= exp

(
∑n−1

i=0 (φi(p) logMi)
)

· p (4.1)

It is important here to remark that the above blending is not the blending formula of
simultaneous tools defined in Equation (3.16), and only uses simple weights. The reason
for using the above simple blending equation as opposed to Equation (3.16) is that the
latter modulates the amount of the individual transformations locally, and attempting
to control the volume with it would be inappropriate. We provide a convenient way for
the artist to input n rotations, by specification of a single translation ~t. Let us consider
n points, ci, on the circle of center h, and radius r lying in a plane perpendicular to
~t. To these points correspond n consistently-oriented unit tangent vectors ~vi (see
Figure 4.2). Each pair (ci,~vi), together with an angle θi, define a rotation. Along with
radii of influence λi = 2r, we can define n swirls. The radius of the circle, r, is left to
the user to choose. The following value for θi will transform h exactly into h +~t (see
Appendix B.2).

θi =
2‖~t ‖
nr

(4.2)

With this information, the deformation of Equation (4.1) is now a tool capable of
transforming a point into a desired target. We show in Figure 4.2 the effect of the tool
for different values of n; in practice, we use 8 swirls.
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hh

4 swirls 8 swirls2 swirls

h

t t t

Figure 4.2: By arranging n basic swirls in a circle, a more complex deformation is
achieved. In the rightmost image: with 8 swirls, there are no visible artifacts due to
the discrete number of swirls.

Preserving coherency and volume: If the magnitude of the input vector ~t is too
large, the deformation of Equation (4.1) will produce a self-intersecting surface, and
will not preserve volume. The reason for self-intersection is explained in detail in
Chapter 3. The volume is not preserved because the blending operator, ⊕, blends the
transformation matrices, and not the deformations. To correct this, it is necessary to
subdivide ~t into smaller vectors. Ideally the number of steps should be infinite, but
this remark could be made about any animation techniques where time is integrated
in finite steps. To make computation cost reasonable, we propose a lower bound to the
number of steps proportional to the velocity and inversely proportional to the size of
the tool:

s = max(1, d4‖~t ‖/re) (4.3)

As the circle sweeps space, it defines a cylinder. Thus the swirling-sweeper is made of
ns basic deformations. Figure 4.3 illustrates this decomposition applied to a shape.

t t s/

t s/

t s/

h

h + t

input step ... step sstep 1

Figure 4.3: A volume preserving deformation is obtained by decomposing a translation
into circles of swirls. Three steps have been used for this illustration. As the artist pulls
the surface, the shape gets thinner. The selected point’s transformation is precisely
controlled.

4.1.3 Swirling-sweepers algorithm

We summarize here the swirling-sweepers algorithm, in which the function µ is the
piecewise polynomial defined in Equation (3.2):
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Input point, h, translation, ~t, and radius, r
Compute the number of required steps, s

Compute the angle of each step, θi = 2‖~t‖
nrs

Precompute the matrices Mi,j

for each step j from 0 to s− 1 do

for each point p in the tool’s bounding box do

M = 0
for each swirl i from 0 to n− 1 do

M+= µ2r(‖p − cij‖) logMi,j

end for

p = (expM) · p
end for

end for

The point cij denotes the center of the ith swirl of the jth ring of swirls. For efficiency,
a table of the basic-swirl centers, cij, and a table of the rotation matrices, logMi,j ,
are precomputed. We have a closed-form for the logarithm of the matrix, saving an
otherwise expensive numerical approximation:

~ω = θi~vi ~m = ci,j × ~ω (4.4)

logMi,j =









0 −ωz ωy mx

ωz 0 −ωx my

−ωy ωx 0 mz

0 0 0 0









(4.5)

Note that for the sake of efficiency, since logMi,j is sparse and mostly anti-symmetric,
we handle these matrices as pairs of vectors, 〈~ω, ~m〉. Once M is computed, we use a
closed-form for computing expM . Since the matrix M is a weighted sum of matrices
logMi,j , the matrix M is as sparse as the matrix in Equation (4.5). We show in
Chapter 7 that M is in fact the logarithm of a twist, and can be represented with a
pair, (~ωM , ~mM). If ~ωM = 0, then expM is a translation by the vector ~mM . Else, if the
dot product ~mM · ~ωM = 0, then expM is a rotation of center ~c , angle θ and axis
~v , as given by the following:

c =
~ωM × ~mM

~ω2
M

θ = ‖~ωM‖ ~v = ~ωM/θ (4.6)

Finally, in the remaining cases, we let l = ‖~ωM‖, and we use:

expM = I +M + 1−cos l
l2

M2 + l−sin l
l3

M3 (4.7)

Efficiency

Applying the exponential of the matrix to a point does not require us to compute
explicitly the exponential of the matrix. The formulas are given in Section 7.4.3. Also,
symmetrical objects can be easily modeled by introducing a plane of symmetry about
which the swirls are reflected (see Figure 4.9).
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4.1.4 Convolution swirling-sweepers

The influence function µλ used to define a swirl in Equation (3.3) can be chosen from a
set which is infinite. It is therefore possible to define families of swirling-sweepers based
on the choice of this function. In this section, we show that one loop in the procedure
proposed in the previous subsection may be removed, by making infinite the number of
swirls in Equation (4.1). This is achieved mathematically by integrating swirls around
the circle. In order for this to be possible, instead of defining the influence function φt
in Equation (3.3) using a piecewise polynomial, µλ ◦ dt, the influence function φt must
be defined as γλ ◦ dt, where γλ is an alternative function whose integral over a circle
has a closed-form. We use the following:

γλ(d) =
1

(1 + (d/λ)2)2
(4.8)

The coefficient λ is a user-defined parameter, which is a cheap means of giving “prop-
erties” to the material, shown in Figure 4.4. λ is proportional to the gradient of the
amount of rotation around the ring. The function of Equation (4.8) is numerically
stable, since it is continuous and bounded at the origin. Let us parameterize the circle
with α. The center of the swirls are c(α) = c+ r cosα~x+ r sinα~y, while the axes of the
swirls are ~v(α) = − sinα~x + cosα~y. The following expression gives the deformation of
a point:

f(p) = exp

(

1

2πr

∮

α

(γλ(‖p−cα‖) logMα dα)

)

· p (4.9)

where Mα denotes the 4× 4 rotation matrix of center c(α), axis ~v(α) and angle θ. The
matrix logMα is represented by a pair of vectors:

logMα = 〈θ~v(α), θc(α) × ~v(α)〉
= 〈θ~v(α), θr~z〉 (4.10)

Using the symbolic computational engine Mathematica r©, the integral in Equation (4.9)
on the circle gives the following expression:

Φcircle(p, c) =
1

2πr

∫

α

Φswirl(p, α) dα = θb〈~η, c × ~η +~z a〉 (4.11)

where a = (p − c)2 + λ2 + r2

b = 2λ4r
(a2−r2~η2)3/2

~η = 2~z × (p − c)

This integration is very similar to the one used in a different area of shape modeling,
i.e. convolution implicit surfaces [MS98]. The following is the deformation of a point
by a ring of swirls:

f(p) = exp(Φcircle(p, c)) · p (4.12)

The angle θ required to transform the point c into the point c+~t is the following:

θ =
‖~t‖(λ2 + r2)2

2λ4r
(4.13)

For the number of steps, Equation (4.3) may be used.
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Bounding box: Since the function γλ does not have a local support, there is no vol-
ume outside which the deformation has no influence. For speeding up the deformation,
it is however useful to define a bounding box. This bounding box can be specified by
considering a volume outside which the deformation can be neglected. If we assume the
ring is small compared to the shape, we use the center of the ring c , and approximate
the influence of the ring at a point p by the following:

∫∫∫

p

γλ(p − c) dp ≈ 2πr

(1 + (‖p − c‖/r)2)2
(4.14)

The radius for which this scalar function is smaller than a threshold, ε, specifies a
bounding sphere around the ring. The following gives that radius:

r

√

√

2πr

ε
− 1 (4.15)

initial shape λ = 0.50r λ = 0.60r λ = 0.70r

λ = 0.80r λ = 1.00r λ = 1.20r λ = 1.50r

Figure 4.4: Convolution swirling-sweepers: effects of control coefficient r for a move-
ment that pulls the shape. A value of 1.20r is a good practical choice. Values below
0.80r are not interesting from a clay-like modeling point of view. Note that the control
of the size of the tool, r, is left to the artist.

4.1.5 Convolution swirling-sweepers algorithm

With a closed-form solution to the integration over a ring, one loop has been removed
when compared to the algorithm in Section 4.1.3:

Input point, h, translation, ~t, and radius, r
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Compute the number of required steps, s

Compute the angle of each step, θ = ‖~t‖(λ2+r2)2

2λ4r

for each step j from 0 to s− 1 do

for each point p in the tool’s bounding box do

p = exp(Φcircle(p, cj)) · p
end for

end for

A possible direction for future work might be to look for a closed-form for the compo-
sition of rings, in order to get rid of the step loop.

4.1.6 Star-shaped swirling-sweepers

Swirling-sweepers allow the artist to control precisely the path of a selected point in
the scene. It is of great interest to the artist to be able to control a volumetric region
of space, defined for instance by the shape of a tool. To achieve this, we first need to
define an inverse to the volume-controlled space-deformation of P. Decaudin [Dec96],
that is presented in Chapter 2. The function and its inverse are:

fD : p → c +

(

1 +
ρ3

‖p − c‖3

)1/3

(p − c) (4.16)

f−1
D : p → c +

(

1 − ρ3

‖p − c‖3

)1/3

(p − c) (4.17)

This inverse function satisfies the simple relation f−1
D ◦ fD = I. The scalar function

ρ(p− c)3 defines a star-shape around the point c . We can use this function to define
a star-shaped swirling-sweepers step:

f ∗
τk→τk+1

= fD,τk+1
◦ fτk→τk+1

◦ f−1
D,τk

(4.18)

Loosely speaking, this function removes the star-shaped tool from the scene, applies
a simple swirling-sweeper and inserts the star-shaped tool back again in the scene.
Because the insertion and removal of the star-shape does not change the volume of
the scene outside of the tool, the function f ∗

τk→τk+1
is volume preserving. Note that

for multiple steps, the composition of the sub-function simplifies using the standard
property of conjugation:

f ∗
ti→ti+1

=
s−1

Ω
k=0

(fD,τk+1
◦ fτk→τk+1

◦ f−1
D,τk

)

= fD,τs ◦ fτs−1→τs ◦ f−1
D,τs−1

◦ fD,τs−1 ◦ fτs−2→τs−1 ◦ f−1
D,τs−2

◦ · · · ◦ f−1
D,τ0

= fD,ti+1
◦
(

s−1

Ω
k=0

fτk→τk+1

)

◦ f−1
D,ti

(4.19)

Interestingly, the star-shape function does not have to be applied at each step of the
deformation. The drawback of using a star-shaped tool is that current formula does
not allow simultaneous star-shaped swirling-sweepers. Also, this deformation is discon-
tinuous on the boundary of the star-shape, thus the tool cannot intersect the surface
of the modeled shape: the tool has to be completely inside or completely outside of
the shape. Some examples are shown in Figure 4.5.
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(a) (b) (c)

Figure 4.5: (a) With swirling-sweepers, the artist has control over a point. (b) With
Star-shaped swirling-sweepers, the artist has control over a volume, in this exam-
ple a ball. Notice the imprint of the ball in the shape. (c) Left: swirling-sweepers.
Right: Star-shaped swirling-sweepers.

4.1.7 Results

Swirling-sweepers is a space deformation technique that aims at taking advantage of the
artist’s familiarity with the notion of an amount of material. Swirling-sweepers use the
sweepers formulation: a combination of matrices raised to powers of scalar functions.
Combined with the original sweepers, the volume of a shape can be increased, preserved
or decreased.

We have implemented swirling-sweepers in C++ using OpenGL r©, on a Pentium r©

2400Mhz with 1GB of RAM. This implementation works in real-time. The computa-
tional time is a function of the magnitude of the input vector, because this determines
the number of sub-steps. Small vectors will produce extremely fast deformations. In or-
der to preserve the sampling of the deformed surface, we use the mesh update algorithm
proposed in Chapter 5, adapted for sweeping space deformations. Simple scenarios are
shown in Figure 4.7, and more elaborate results are shown in Figure 4.9. Swirling-
sweepers can also be used for the purpose of doing volume preserving animation, an
example being shown in Figure 4.6.

Figure 4.6: Swirling-sweepers applied to animation.

Limitations In our implementation, the tool cannot be too small compared to the
density of the mesh, i.e. the radius of a swirl should be comparable to the length of an
edge. In Figure 4.9, we compare the shapes’ volumes with unit spheres on the right.
For the mouse, goblin, alien and tree, the shapes volumes are respectively 101.422%,
99.993%, 101.158% and 103.633% of the initial sphere. This error is the result of
accumulating smaller errors from each deformation. For instance 80 swirling-sweepers
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have been used to model the alien in Figure 4.9. The small errors are due to the
finite number of steps, and to our choice of shape representation, which is described in
Chapter 5.

Figure 4.7: When pushed or pulled, a sphere will inflate or deflate elsewhere.

Figure 4.8: Snapshots of the modeling process of the alien character of Figure 4.9.

4.2 Swept-fluid

Swept-fluid is a volume-preserving space deformation technique that allows the artist to
grab a portion of the shape and move it while the shape’s volume is maintained. Since
our intuition and observations tell us that clay-like materials behave essentially like
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Figure 4.9: Examples of models created with swirling-sweepers.
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fluids, we explicitly base our space deformation on a simplified version of the incom-
pressible Navier-Stokes equations. Because with modern computing devices, we have
observed that a fine enough solutions to the Navier-Stokes equation could not be com-
puted at a high enough frequency for our application, we propose to compute the fluid’s
solution only once, and re-use the result multiple times. Our deformation is therefore
fast, and maintains to some extent the volume of a shape being modeled. Since it is a
space deformation, it can be applied to a wide range of geometric representations.

4.2.1 Basic equation

In CG, the incompressible Navier-Stokes equations are popular for animating fluids.
These differential equations describe the evolution in time of the fluid’s velocity. They
have a compact form, and are to some extent solvable with modern computing devices:

{

∂~v
∂t

= −(~v · ∇)~v + ν∇2~v − 1
ρ
∇p+~f

∇ · ~v = 0
(4.20)

where ~v is the velocity, p is the pressure, ρ is the density, ν is the kinematic viscosity
and ~f includes all the external body forces. One way to understand how to obtain the
first equation is to apply Newton’s Principle of Mechanics to a continuum, i.e. the
acceleration of a point is equal to the sum of the forces per unit mass [FLS89]. The
second equation simply means that the fluid is incompressible, i.e. the inflow entering a
point has to be equal to the outflow leaving that point. We refer the reader to [Rut90]
for a thorough insight into fluid mechanics, which is beyond the scope of this thesis.
Some specialization of these equations can be made. First, the quantities ρ and ν are
constants for the entire fluid. Second, external body forces are cumbersome vector
fields for the purpose of shape modeling. We therefore remove them:

{

∂~v
∂t

= −(~v · ∇)~v + ν∇2~v − 1
ρ
∇p

∇ · ~v = 0
(4.21)

In CG, these equations are usually solved in a discrete way, by sampling the velocity in
a grid. The most straightforward way of applying the solution of these equations to a
shape would be to embed the entire scene in a discrete grid and solve the equation for a
tool moving in the scene, in a similar way that liquid has successfully been animated in
CG [FF01, EMF02]. Techniques for animating fluids visually are capable of simulating
behaviors too rich for our purpose, and are far from real-time. We propose in the
following section a solution for precomputing the flow only around the tool. We will
assume that the inside and outside of the tool are filled with the same fluid, and
therefore both can be handled as a single fluid [Sta99].

4.2.2 Precomputed solution

Our objective is to allow the artist to interact with the shape via a tool, by applying
translations to the tool. With current computing devices, we cannot solve the Navier-
Stoke equations at a high enough rate over the entire scene, or in a neighborhood
around the tool, even using a fast technique [FSJ01]. Let us consider in the remainder
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of this section a single translation, ~t. We propose to precompute a solution around the
tool in a canonic situation, and re-use the solution as many times as required along
the trajectory of the tool.

Solving Navier-Stokes

To compute the fluid velocity, we use a Lagrangian method along the lines of [Sta99],
i.e. we solve for the velocity with respect to a static frame as given by Equation (4.21).
The velocity field of the flow is simply represented with a uniform discretization of
space into N 3 cells of size 1. The velocity is defined at the cell centers

~vijk, i, j, k = 0 . . . N − 1 (4.22)

Figure 4.10: The Navier-Stokes equations are solved only once. First, the tool is placed
in the grid. Second, cells intersecting the tool are set to a default velocity. Third, the
equations are solved.

In the usual scenario of objects moving in a fluid, cells intersecting a moving object
should be assigned the object’s velocity. Since we want to precompute a solution, we do
not know in advance the trajectory or the velocity that the artist will give to the tool.
We therefore choose some initial velocity for the tool ~vINIT = (1, 0, 0)>, and any other
velocity is set to zero (see Figure 4.10). Once the fluid is solved, we will see in the next
subsection how to adapt the obtained solution to any trajectory input by the artist.
The tool’s shape used in our examples is simply a ball. To solve Equation (4.21), we
proceed in steps exactly as described in [Sta99]. In the context of animating a fluid,
the computation of the velocity at each time step is decomposed into four steps. Since
we do not animate the fluid, we only apply these steps once to obtain the solution of
the first time step ∆t. Let us denote by ~v0 initial velocity:

First, we solve the convection term using the method of characteristics to get ~v1.
To make this step stable, we use the monotonic interpolant described in Appendix C.

Second, we solve the diffusion term and the incompressible term. The two systems
are of the form A · x = b. The linear equations proposed by [Sta99] are symmetric
and positive definite. As remarked by [FSJ01] and [FF01], an efficient solver is the
conjugate gradient method, with an incomplete Choleski preconditioning. For solving
the diffuse term, we solve a system of equations, i.e. the following for ~v2 defined at
each node of the grid:

(1 − ∆t ν ∇2)~v2 = ~v1 (4.23)

For solving the incompressible term, we solve for the pressure p the system to get ~v2:

(−∇2)p = (−∇ · ~v2) (4.24)
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where ∇ and ∇2 are discretized with centered derivatives, as described in Appendix C.2.
Once this is solved in p, the new velocity ~v3 in the grid cells is

~v3 = ~v2 −
1

ρ
∇p (4.25)

Smoothing the solution

Note that the velocity obtained by the above solver ~v2 is not defined everywhere in
R3, but only at the regularly spaced cells of the grid. A grid of vectors may be used
in a similar way to an FFD lattice [SP86]: but in our method the vectors are obtained
by solving a differential equation rather than specified manually one by one. Once
the grid of velocity has been computed, it has to be smoothed in order to be defined
continuously in space. We choose to use the trivariate cubic uniform B-Spline basis
functions described in Appendix C, because they have relatively local support, and are
second order continuous, which is an important property for smooth deformation of
the normals of shapes.

4.2.3 Sweeping the solution

To apply the precomputed solution to the scene, it is necessary to decompose the input
tool translation ~t into s small enough steps to prevent foldovers. Since the flow was
solved for some tool velocity ~vINIT, it needs to be modulated by an adequate constant.
The flow is then smoothed as described above and applied to the shape s times. At
each step, the grid is also moved by a fraction of the translation vector, 1

s
~t.

Precomputed grid

We have used a grid of size 723. The tool must be contained in the core of the grid in
order to compute an acceptable solution around it. We used a ball of radius 12. Our
choice for the kinematic viscosity ν and the density ρ is empirical, based on visually
pleasing quality and speed.

The density per grid cell, ρ, controls the locality of the effect of a tool. If the density
is too high, a tool centered in the middle of the grid may affect the velocity on the
faces of the cube. We do not want this to happen, since the velocity is 0 outside the
cube. At the other end, if the density is too low, there may not be enough cells to
represent accurately the velocity around the tool. In our examples, ρ = 1.0 × 10−6.

The viscosity is a way of blurring turbulence in the vector field, as a function of the
time step. Setting ν to zero would produce serious artifacts on the shape. On the other
hand, if ν is too high, the effect of the tool on the shape would barely be noticeable.
In our examples, ν = 2.

Adapting the solution

The solution is precomputed for a tool moving with velocity ~vINIT , defined in the
solver’s frame set. However, the user inputs a vector ~t , in world coordinates. We
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Figure 4.11: A deformation of arbitrary length is obtained by composition of steps.
Each step uses the precomputed fluid grid. Three steps have been used here.

Figure 4.12: The wireframe box contains the grid of the precomputed solution. It is
oriented with the direction of the tool.

describe a simple way to create a deformation of length ~t by composing the precom-
puted deformation many times. First, let us call ~vCENTER the vector evaluated at the
center of the grid, once the solution has been computed. It is important to notice that
after computation of the solution, the value of the velocity at the center ~vCENTER is
not guaranteed to be equal to its initial value ~vINIT, although it is expected to be very
close. Thus the deformation is decomposed into steps, each of length bounded in local
coordinates by ~vCENTER . Thus if we denote by W the 4x4 matrix transforming a
point in local grid frame set to the point in world coordinates, the number of required
steps is:

s = max(1, d ‖W−1~t‖
‖~vCENTER‖

e) (4.26)

The velocity in the grid needs to be modulated at each step to be applied to points,
otherwise the deformation would allow points to overshoot. The factor modulating the
velocity of each step is proportional to the input vector ~t and inversely proportional to
the number of steps and precomputed velocity:

l =
‖W−1~t‖
s‖~vCENTER‖

(4.27)

It can be quickly verified that in the particular case where the vector W−1~t is equal to
~vCENTER, then l = 1. The decomposition of one translation ~t into steps is illustrated in
Figure 4.11, and the decomposition of a trajectory is shown in Figure 4.12.

4.2.4 Results

In the examples shown, the shape is represented using a mesh, whose edges are collapsed
or split to maintain a minimum surface sampling density (see Section 5.1). Note that
our deformation is independent of the shape’s geometric representation.
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Figure 4.13: Examples of push (middle) and pull (right). The initial object is on the left.

Figure 4.14: Example of a shape modeled by deformation. Our tool can grab a portion
of the shape (the nose), and translate it, while the volume variation is limited: the
teddy bear’s volume increase is 109.301% of the initial teddy bear. Note that although
accumulation of error can be significant, the shape’s local behaviour in time observed
by the artist appears to preserve volume.

The locality of the effect of the tool is controlled by applying a uniform scale1

to the transformation matrix from local to world coordinates, W . The parameters
ρ and ν cannot be changed at will to create a rich set of deformations, since their
values are limited by the size of the grid; 723 in our examples. Also, the volume is
not extremely well preserved due to the discrete grid or slight numerical deviations in
the iterative solver. Simple effects resulting from applying a tool once are shown in
Figure 4.13. In Figure 4.14, the volume of the teddy-bear has increased by a factor
of 166.348% compared to the initial sphere. Although this volume variation has to
be split among the number of operations the artist applied to the shape, this result
is somehow disappointing. The technique presented in the previous section preserves
volume much more accurately.

Note that one motivation for using differential equations is to create a rich set of
material behaviors, by letting the artist play with parameters such as ρ and ν. However,
the discrete solution to the equations imposes severe restrictions on these parameters.

4.3 Conclusion

Two volume-preserving methods have been developed: swirling-sweepers presented in
Section 4.1 and Swept-fluid presented in Section 4.2. The former technique is not only
faster, but preserves volume more accurately than the latter.

In our experience, modeling by volume-preserving space deformation is much more
agreeable than using the techniques presented in Chapter 3, especially using swirling-

1Applying a non-uniform scale would affect the volume preservation.
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Figure 4.15: Exaggerated artifact, by choosing a too high value for the density ρ. The
boundary conditions have an effect on the flow.

sweepers. The notion of volume is familiar to most artists, and our experience shows
that using it increases the modeling speed: the models of Figure 4.9 were faster and
easier to produce than those of Figures 3.10 and 3.11.
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Chapter 5

Rendering

T
he common theme of Chapters 3 and 4 is to define techniques for deforming a
shape, regardless of the shape’s mathematical description. Since our deforma-
tions apply to space, they can already be applied to the control points of explicit

shape descriptions, e.g. meshes, NURBS or subdivision surfaces. The application we
are aiming at is however shape modeling, in which the number of deformations is pos-
sibly very large, and issues related to excessive deformation rise when the shape needs
to be rendered.

We identify four possible ways to display a shape during or after transformation
by space deformation: the first method consists of applying the deformation to the
vertices of an updated mesh, the second method consists of applying the deformation
to deformable particles, the third method consists of applying the inverse deformation
to the nodes of a discrete implicit surface and is similar to advection methods used in
fluid animation [Sta99], and the fourth one consists of applying the inverse deformation
to the rays of light, and was identified early by A. Barr [Bar84]. The four methods
are presented in the four following sections, and only the three first methods proved
sufficiently fast to be used in an interactive modeling system. We conclude this chapter
with a method that would be a good candidate for texturing without stretching the
texture applied to our shapes in future research.

The majority of examples shown in this thesis were made using the method we are
about to describe, since it was implemented early, and proved to be sufficiently fast
and accurate.

5.1 Updated mesh

The objective of this section is to provide a shape description for interactive modeling
which supports high deformation and does not break when highly stretched. A simple
way of representing a deformable shape is to place a set of samples on the surface of
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the shape: this makes the task of deforming the shape as straightforward as deforming
the points on its surface. Points are discrete surface samples, and need to be smoothed
with a splatting, approximation or interpolation scheme in order to display a continuous
surface or perform any other post-processing operation requiring surface continuity.

Our method will use some kind of surface patch: connectivity provides convenient
2D-boundary information for rendering the surface as well as surface neighborhood in-
formation, which enables the artist to define very thin membranes without having them
vanish, as shown in Figure 3.11(c). The reader however should be aware that point-
sampled geometry has recently ignited a lot of interest among researchers [PKKG03],
and we propose a point-sampled shape description in the next section.

The possibly large number of deformations applied by an artist requires some min-
imum surface sampling density. Although our deformations can be applied to the
control points of any existing high-order parametric surface, e.g. NURBS or subdi-
vision surfaces, we represent the modeled shape by a triangle mesh, locally refined
and simplified in order to maintain an adequate sampling density. The restriction to
triangular “C0 patches” also circumvents issues related to non-regular vertices and
smoothness maintenance across the boundaries that join patches. Also, polygons are
handled very efficiently by current hardware, which is relevant to us since interactivity
is among our objectives.

Thus, a scene is initialized with a polygonal model, e.g. a sphere with a homoge-
neous density of nearly equilateral triangles 1. In order to quickly fetch the vertices to
be deformed and the edges that require splitting or collapsing, these are inserted into
a 3D grid. Note that this spatial limitation is not too restrictive for the artist, as our
deformations allow us to translate the entire model rigidly and scale it uniformly.

To fetch the vertices that are deformed, a query is done with the tool’s bounding
box. Conveniently, this bounding box is also used in Equation (3.14). Since the
principle of our swept deformations is to subdivide a gesture into a series of smaller
ones, all the transformations applied to the vertices are bounded. To take advantage of
this step decomposition, we apply a modified version of the generic algorithm in [GD99].
Our method requires keeping two vertices and two normals per vertex, corresponding to
the current time τi and next time τi+1 of some small step fτi 7→τi+1

. Loosely speaking, our
surface-updating algorithm assumes that smooth curves run on the surface, and that
the available information, namely vertices and normals, should be able to represent
them. If this is not the case after deformation, then it means the surface is under-
sampled. On the other hand, if an edge is well enough represented by a single sample,
then it is collapsed.

Let us consider an edge e defined by two vertices (v0, v1) with normals (~n0, ~n1), and
the deformed edge e′ defined by vertices (v′

0, v
′
1) with normals (~n′

0, ~n
′
1). In addition to

the conditions in [GD99] based on edge length and angle between normals, we also base
the choice of splitting edge e′ on the error between the edge and a fictitious vertex,
which belongs to a smooth curve on the surface. The fictitious vertex is used only
for measuring the error, and is not a means of interpolating the vertices. If the error

1A simple way to obtain an homogeneous sphere polygonization consists of starting with an icosa-
hedron, putting all its edges longer than h in a queue, splitting them and putting the pieces longer
than h back in the queue. Each time a split is performed, the new edges are flipped to maximize the
smallest angle.
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between the fictitious vertex and the edge is too large, the edge e is split, and the new
vertex and normal are deformed. On the other hand if the fictitious vertex represents
the edge e′ well enough, then edge e is collapsed, and the new vertex is deformed. We
define the fictitious vertex as the mid-vertex of a C1 curve, since vertices and normals
only provide first order information about the surface. The following cubic polynomial
curve interpolates the vertices v′

0 and v′
1 with corresponding tangents ~t0 and ~t1 defined

below:

c(u) = (v′
0(1 + 2u) −~t0u)(1 − u)2 + (v′

1(1 + 2(1 − u)) +~t1(1 − u))u2 (5.1)

The only constraint on the tangent ~ti is to be perpendicular to the corresponding
normal ~ni. The following choice defines tangents of magnitude proportional to the
distance between the vertices:

~t0 = ~g − ~g · ~n′
1

~t1 = ~g − ~g · ~n′
0

where ~g = v′
1 − v′

0

(5.2)

With the above tangents, the expression of the middle vertex simplifies:

c(0.5) = ( v′
0 + v′

1 + (~g · ~n′
0 − ~g · ~n′

1)/4 ) / 2 (5.3)

With the fictitious vertex c(0.5), the tests to decide whether an edge should be split or
collapsed can be defined.

Too-long edge: An edge e′ is too long if at least one of the following conditions is
met:

• The edge is longer than Lmax, the size of a grid-cell. This condition keeps a
minimum surface density, so that the deformation can be caught by the net of
vertices if the coating thickness λj is greater than Lmax.

• The distance between the fictitious vertex and the mid-vertex of e′ is too large
(we used Lmax/20). This condition prevents the sampling from folding on itself,
which would produce multiple sampling layers of the same surface.

• The angle between the normals ~n′
0 and ~n′

1 is larger than a constant θmax. This
condition keeps a minimum curvature sampling.

Too-short edge: An edge e′ is too short if all of the following conditions are met:

• The edge’s length is shorter than Lmin (we used Lmax/2).

• The angle between the normals ~n′
0 and ~n′

1 is smaller than a constant θmin.

• The distance between the fictitious vertex and the mid-vertex of e′ is too small
(we used Lmin/20).
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Also, to avoid excessively small edges, an edge is merged regardless of previous condi-
tions if it is too small (we used Lmin/20).

We stress that the procedure for updating the mesh is applied at each small step,
rather than after the user’s deformation function has been applied. Because vertex
displacements are bounded by the foldover-free conditions, the update of our shape
description does not suffer from problems related to updating a greatly distorted trian-
gulation. Figure 5.1 shows a twist on a simple U-shape. Figure 5.2 shows the algorithm
preserving a fine triangulation only where required. Figure 5.3 shows the algorithm at
work in a more practical situation. The procedure outline is:

Compute the number of steps required, s.
for each step τi 7→ τi+1 do

Deform the points, and hold their previous values
for each too-long edge do

split the edge and deform the new point.
end for

for each too-short edge do

collapse the edge and deform the new point.
end for

end for

Figure 5.1: Example of our mesh-updating algorithm on a highly twisted U-shape. The
close-up shows a sharp feature, with finer elongated triangles.

Figure 5.2: Behavior of our mesh-updating algorithm on an already punched sphere.
The decimation accompanying the second punch simplifies the small triangles of the
first punch. The tool has been removed for better visualization.

5.1.1 Results and limitation

With the updated mesh method, we choose to ignore the history of functions applied
to the shape by the artist. We rather “collapse” the history by freezing it in the
current shape. In order to explain the major consequence of this assumption, let us
suppose the scene at a time tk, such that the shape S(tk) is shown to the user. The
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Figure 5.3: Close-up of the goat. Notice the large triangles on the cheek and the fine
ones on the ear. The initial shape is a sphere.

next deformation produced by the artist with the mouse is function ftk 7→tk+1
, and all

the mesh refinements and simplifications are performed in S(tk). This is however an
approximation: ideally the last operation should be concatenated to the history of
deformations, and the whole series should be applied to the initial shape S(t0), i.e.
k

Ω
i=0
fti 7→ti+1

should be applied to each new vertex. This would however become more

and more time consuming as the sequence of deformations gets longer (k gets larger)
until the modeling software becomes unusable. Measuring the deviation of our shape
from the ideal shape is beyond the scope of this work.

The approximation consisting of deforming S(tk) rather than S(t0) works well
enough in practice, and is fast enough for a highly interactive application. This method
proved quite successful, and most results of previous chapters were obtained using it.
This includes Figures 3.10, 3.11, 3.1, 3.8, 3.16, 3.19, 3.20, 3.21, 3.32, 4.1, 4.2, 4.3, 4.4,
4.5, 4.7, 4.8, 4.9, 4.14, 4.13.

5.2 Point-based representation

For representing shapes, point-sampled surfaces (e.g. extremal surfaces or Moving
Least Square (MSL) surfaces) are becoming popular in Computer Graphics because
connectivity can be ignored between surface elements [AK04]. This last statement is
almost true: the connectivity may be ignored for the purpose of purely editing the
surface; but when the surface needs to be displayed, neighborhood information has
to be reconstructed at a relatively high cost. This section introduces SOAP surfaces
(Second Order Adaptive Particle surfaces), a clean point-based surface description in
which neighborhood information is not required in order to display the surface. Our
technique is thus fast in displaying shapes and easy to implement. Moreover, with space
deformation editing tools, the surface can be edited interactively while maintaining a
displayable shape.

The SOAP surface representation is based on particles, i.e. surface patches that
bend and deform under strain, and that split if the strain is too high. Because there
is little surface data inter-dependence, the method is relatively short and simple to
implement. The definition of a patch is based on Differential Geometry [Lip69].
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(a) (b) (c)

Figure 5.4: Top: sample particles on the surface. Bottom: if the patches of the particles
are large enough, local overlapping fills the gaps.

5.2.1 Local surface parameterization

We show that to represent a surface with second order accuracy at a point, the required
data is: a point, two vectors and two scalars denoted with the n-tuple (s,~su,~sv, λuu, λvv).
Let us consider a surface defined locally for a point s(u, v), where u and v are local
arc-length parameters. The following expression is a second order Taylor expansion of
the surface:

s(u, v) = s(0, 0) + u
∂s

∂u
+ v

∂s

∂v
+

1

2
(u2 ∂

2s

∂u2
+ 2uv

∂2s

∂u∂v
+ v2 ∂

2s

∂v2
)

Let us define the two unit orthogonal tangents ~su = ∂s
∂u

, ~sv = ∂s
∂v

aligned with the
surface’s principal curvature directions and the surface normal ~n = ~su×~sv. A result of
differential geometry states that if the tangents are aligned with the principal curvature
directions, then ∂2s

∂u∂v
= 0. Thus we may simplify the above as follows:

s(u, v) = s + u ~su + v ~sv +
1

2
(u2λuu + v2λvv)~n (5.4)

The above defines a surface patch locally. We define a surface as the union of such
patches.

Initialization: Our initial shape is a sphere, since it has well known differential
properties. Let us consider the sphere of radius r centered at the origin. Let us consider
a point on the surface s(0, 0). Since points on the sphere are umbilical2, λuv = 0. The
other curvature coefficients are λuu = λvv = 1

r
.

5.2.2 Parameterization under deformation

Under the operations applied by the artist, the surface deforms, and the coefficients
of Equation 5.4 need to be updated. We show how this can be done. Let us consider
a continuous space deformation function f : R3 7→ R3 applied to the shape. Let us

2An umbilical point is a point at which the curvature of the surface is the same in every direction.
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denote by ~n′ the normal of the new deformed surface. A second order approximation
of the deformed surface is simply obtained with:

s′(u, v) = f(s) + u~σu + v~σv + 1
2
(u2luu + 2uvluv + v2lvv)~n

′ (5.5)

where ~σu = ∂f(s)
∂u

~σv = ∂f(s)
∂v

and luu = ∂2f(s)
∂u2 · ~n′

lvv = ∂2f(s)
∂v2

· ~n′

luv = ∂2f(s)
∂u∂v

· ~n′

Note that the new tangents ~σu, ~σv are not necessarily unit or orthogonal, like the
original tangents. Thus it is necessary to rearrange the above expression of a deformed
surface to obtain a similar form to Equation (5.4), in order to reduce the information
describing the surface. Let us reparameterize the surface such that the new tangents
~s′u and ~s′v are unit and orthogonal:

{

~s′u = αu~σu + αv~σv
~s′v = βu~σu + βv~σv

{

u = u′αu + v′βu
v = u′αv + v′βv

(5.6)

Let us rewrite the deformed surface (with dummy parameters u, v):

s′(u, v) = s + u ~s′u + v ~s′v +
1

2





(uαu + vβu)
2luu+

2(uαu + vβu)(uαv + vβv)luv+
(uαv + vβv)

2lvv



~n (5.7)

Thus locally, a second order approximation of the new surface is:

s′(u, v) = s′ + u ~s′u + v ~s′v +
1

2
(u2λ′uu + 2uvλ′uv + v2λ′vv)~n

′ (5.8)

where λ′uu = α2
uluu + 2αuαvluv + α2

vlvv
λ′vv = β2

uluu + 2βuβvluv + β2
v lvv

λ′uv = αuβuluu + 2(αuαv + βuβv)luv + αvβ
2
v lvv

In the above equation, the term in uv can be removed by choosing an adequate pair
of unit tangent vectors. The tangents are given by the two unit eigenvectors of the
following matrix, and are the two principal directions of the surface:

(

λ′uu λ′uv
λ′uv λ′vv

)

(5.9)

Therefore, the n-tuple (s,~su,~sv, λuu, λvv) suffices to represent the surface locally, and
can be recomputed at every particle each time the surface is deformed by the artist.

5.2.3 Local particle strain

In order to measure the strain that applies to a particle, we represent the accumulated
distortion with an ellipse embedded in the 3D space, whose shape is deformed by the
strain. We show that this ellipse is represented by the matrix of covariance of the
tangents, which constitutes enough information for splitting a surface particle. Let us
define the unit tangents of a particle in circular coordinates:

~τ(θ) = cos(θ)~su + sin(θ)~sv (5.10)
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Let us define the deformed tangents, where J is the Jacobian of the deformation intro-
duced in Section 3.1.2:

~τ ′(θ) = J · (cos(θ)~su + sin(θ)~sv) (5.11)

Let us study the matrix of covariance of the deformed unit tangents [GW92]:

C =
∫

θ
~τ ′(θ) · ~τ ′(θ)>dθ

=
∫

θ
J · (~τ(θ) · ~τ(θ)>) · J>dθ

= J · (1
2
(~su ·~s>u +~sv ·~s>v )) · J>

(5.12)

Since the Jacobian matrices of a series of deformations can be obtained by multiplying
by the Jacobian matrix of each deformation, the matrix of covariance may be initialized
with 1

2
(~su ·~s>u +~sv ·~s>v ), and updated as follows:

C ′ = J ′ · C · J ′> (5.13)

Since the tangents represent a 2D space, then detC = 0. Therefore one of the eigen-
values of C equals 0, let us say λ3. Since the characteristic polynomial is of the form
λ(a3λ

2+a2λ+a1) = 0, the two other eigenvalues λ1 and λ2 of C are found easily. Let us
call ~v1 and ~v2 their eigenvectors. Thus at any time the stretching can be computed and
a surface particle split along the eigenvector associated with the largest eigenvalue λ1:

C 1
2

= (~v1 , ~v2 , ~v1 × ~v2) ·





λ1/2 0 0
0 λ2 0
0 0 0



 · (~v1 , ~v2 , ~v1 × ~v2)
−1 (5.14)

Particle split

Under excessive strain, we will split the particles. Note that the split threshold should
be proportional to the curvature. The eigenvalue λ1 of C gives the principal strain.
The vector λ1

2
~v1 projected on the unit tangents gives the parameters of the offspring

particles, that is:

(λ1

2
~v1 ·~su, λ1

2
~v1 ·~sv)>

(−λ1

2
~v1 ·~su,−λ1

2
~v1 ·~sv)>

(5.15)

These coordinates can be used for defining the equation of the two new patches. Note
that the new tangents are not necessarily orthogonal, that the second derivatives are
not necessarily perpendicular to the new tangents, and that the equation must be
renormalized in a similar way to the procedure described in Section 5.2.2. Figure 5.4(c)
shows that the particles split along the direction of surface stretch.

5.2.4 Algorithm

Deforming a SOAP-surface is straightforward, since each surface sample is handled
individually:

Input: n tuple Si = (si,~su,i,~sv,i, λuu,i, λvv,i, Ci)
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Figure 5.5: Examples using a SOAP surface description.

for each tuple Si do

Deform the local parameterization, i.e si, ~su,i, ~sv,i, λuu,i and λvv,i
Accumulate the strain in Ci
if the strain is too large then

split the particle
end if

end for

5.2.5 Results and limitations

Some results are shown in Figure 5.5. Although the method is quick enough for in-
teractive modeling, there are still issues to be solved: we do not have a procedure to
merge the particles when the surface is over-sampled, nor do we have a procedure to
make sure no holes are left. However, this technique may benefit from existing active
research in point-sampled geometry; there exists for example a technique for simpli-
fying point-sampled surfaces [PGK02] and a technique for raytracing point-sampled
surfaces [AA03].

5.3 Discrete implicit

One of the properties of the shape description proposed in the Section 5.1 is that it
does not break when stretched. This property combined with the topology changing
deformations proposed in Chapter 3 enables the artist to alter and maintain the topol-
ogy of his shape in an explicit manner. But in a scenario where the artist would want
to experiment on his shape by changing the topology very often, this explicit topology
control can be a burden. The motivation of this section is to propose a shape de-
scription which easily changes topology, i.e. fuses portions of the shape that are close
enough and breaks the shape when it is too thin. Note that although in the shape
description proposed in Section 5.2 holes may appear, such holes are considered an
artifacts since their appearance is not controlled,

The shape description we propose in this section relies on a discrete scalar field.
This shape description is ideal for uncontrolled topology changes. The scalar field
d(p) holds the signed distance from the point p ∈ R3 to the surface of the shape, and
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describes the shape as follows:






d(p) > 0 if p is outside the shape
d(p) < 0 if p is inside the shape
d(p) = 0 if p is on the surface

(5.16)

To display the surface, the zero set of the scalar field d must be extracted. In the next
section we propose to do this with a marching cubes algorithm [WMW86]. Then we
present a method to deform this surface description.

5.3.1 Surface location

The information about the surface is discrete, located at the nodes of a regular grid in
the form of signed distances to the surface. To define a continuous scalar field in R3

whose zero set defines the surface, the discrete signed distance must be interpolated or
approximated within all cubic cells defined by eight nodes. The union of all the pieces
constitutes a shape that can be displayed with any polygon rendering engine. Ex-
tracting the piecewise polygons constitutes the marching cube algorithm. Since a cube
contains eight vertices that are inside or outside the shape, each possible configuration
can be encoded on 8 bits, and a static table translates each of the 256 configurations
into one out of 19 canonic configurations [NB93]. The location of the surface can
sometimes be ambiguous, thus we use the preferred polarity disambiguation strategy,
encoded in the table: for instance although Figure 5.6(III) and Figure 5.6(XV) are
the dual of each other, their corresponding triangulation is different in order to avoid
holes in the surface. We advise generating this correspondence table automatically to
reduce human errors, for instance using an algorithm that transforms each of the 256
configurations, and tests it against the canonic configurations until matching. Table
5.6 shows the nineteen canonic configurations with their corresponding triangulations.
Eleven extra figures are shown in light gray, and are the duals of some of the nine-
teen canonic configurations. To be displayed, the surface needs to be shaded, and the
normals to the surface are required.

5.3.2 Surface normal

Since the scalar d(p) is the signed distance from p to the shape, the gradient of the scalar
field d measured on the surface is perpendicular to the surface, and points outwards.
Thus in the following, normal and gradient on the surface are synonyms. Note that the
gradient does not need to be unitized since the magnitude of the gradient of a signed
distance field is equal to 1 at every point: this property defines a distance field.

Surface gradient along an edge

The vertices of the polyhedron produced by marching cube lie on the edges of the
regular grid. Because normals are required to shade a surface, it is important to have
an accurate estimate of the normal since the normals quality will dramatically affect
the visual quality of the shape. Let us consider a pair of vertices defining a cube edge
(v0, v1) aligned with axis ~ex, parameterized in u as follows: {(1−u)v0 +uv1, u ∈ [0, 1]}.
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Figure 5.6: The 19 canonic configurations with their corresponding triangulations.
Black symbolizes a vertex inside the shape while white symbolizes a vertex outside the
shape. The 11 extra light gray figures shown are the duals of some of the 19 canonic
configurations. Between two dual configurations, the orientation of the surface swaps.

We approximate the gradient ~γ = (γx, γy, γz)
> at parameter u along this edge with

the following expressions that were obtained by differentiating along x, y and z simple
polynomials that interpolate the distance:

γx = d1 − d0

γy = 0.5((1 − u)(d4 − d2) + u(d5 − d3))
γz = 0.5((1 − u)(d8 − d6) + u(d9 − d7))

(5.17)

The correspondence between the signed distances di and the nodes nearby the edge are
shown in Figure 5.7. The gradient along an edge aligned with axes ~ey or ~ez is simply
obtained by rotating the subscripts consistently.
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24
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Figure 5.7: Gradient of a discrete scalar field along an edge. The position along the
edge parameterized in u, where the gradient is evaluated, is symbolized by a cross.
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5.3.3 Deforming the surface

To deform the shape, a naive approach would be to deform the node locations since
they hold the signed distance to the shape. This approach would suffer the same
limitation as an explicit non-updated shape: in stretched areas the shape may become
under-sampled, and further modeling would not be possible. It is however possible to
use a semi-Lagrangian method, which preserves the sampling resolution and that is
used for advecting fluids [Sta99]. This method requires two grids swapped at every
time step.

In the context of a fluid, although the animated scalar value is a density rather
than a distance, the principle is the same. To find the new fluid density at each node,
the technique consists of tracing backward with a particle the inverse of the flow and
finding the location that would have landed exactly on the node. Since by tracing the
flow backward, the location found is not necessarily another grid-point, an interpolation
is used to get a value for the density between nodes (trilinear interpolation or higher
order interpolation schemes).

In the context of a deformed shape, the technique is similar. For each node, the
deformation’s inverse is applied to its location: the scalar value at the location obtained
gives the new value of the point. Since only the inverse deformation is required to
deform a discrete implicit shape, the function of a deformation can be defined only by
its inverse, as opposed to the function itself.

An inverse deformation

For a single tool, the deformation’s inverse function is simply obtained based on Equa-
tion (3.11) where the matrix Mτk 7→τk+1

of a sub-function is replaced with M−1
τk 7→τk+1

, and
the sub-functions fτk 7→τk+1

are applied in reverse order:

f−1
ti 7→ti+1

(p) =
0

Ω
k=s−1

f−1
τk 7→τk+1

(p)

where f−1
τk 7→τk+1

(p) = (φτk+1
(p) �M−1

τk 7→τk+1
) · p

(5.18)

For multiple tools, the inverse sub-functions are obtained in a similar manner, and are
applied in reverse order as well. The following gives the sub-functions:

f−1
τk 7→τk+1

(p) =

{

p if
∑

φj,τk+1
= 0

exp
(

1−∏j(1−φj,τk+1
)

∑

j φj,τk+1

∑

j

(

φj,τk+1
log(M−1

j )
)

)

· p otherwise
(5.19)

Maintaining a coherent structure

The signed distance field d(p) satisfies the following property: ‖∇d(p)‖ = 1, a special
case of the Eikonal equation [Bae01]. After the artist performs a deformation on the
shape and hence on the field, this property may not hold, and the scalar field must
be corrected. Fortunately there exist propagation procedures called the Fast Marching
Method (FMM) and High Accuracy Fast Marching Method (HAFMM) that can update
a field to make it satisfy the Eikonal equation within a bounded error. Presenting these
algorithms is beyond our scope, and practical information on their implementation can
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be found in [Bae01]. These methods require a forward and backward approximation
of the gradient at the nodes to extrapolate the distance value. Given a regular grid,
one can compute the expression of the gradient at the grid-points by defining along
each axis an nth order polynomial that interpolates the grid nodes, and differentiate it.
Hence a first order approximation of the gradient of d projected on an axis as shown
in Figure 5.8 is:

• Backward: d0 − dn1

• Forward: dp1 − d0

A second order approximation of the gradient is:

• Backward: 1
2
(dn2 − 4dn1 + 3d0)

• Centered: 1
2
(dp1 − dn1)

• Forward: 1
2
(−3d0 + 4dp1 − dp2)

The FMM and HAFMM methods can be restrained to update the discrete distance
field within a neighborhood of the surface, thus using them does not require updating
the entire grid.

y

x

0 p2p1n1n2d d d d d

Figure 5.8: Node positions for computing the gradient of d along axis x.

5.3.4 Algorithm

Compute the number of required steps, s
for each step k from 0 to s− 1 do

Compute the tool’s bounding box, Bk

Advect the scalar field of cells intersecting Bk, using an inverse
Update the distance with an FMM in a neighborhood of the surface
Update polygonization with a marching cube in cells intersecting Bk

Place the tool at next position
(

k+1
s

�M
)

·Mti

end for

5.3.5 Results and limitations

With a discrete implicit surface, the detail at which an artist can model a shape is
limited by the resolution of the grid. Since shape modeling needs to be decently
interactive, this limits the grid size to ≈ 5123 on current computing devices, and
the results are of much lesser quality than the ones achieved with the updated mesh
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method. However, the limited grid resolution presents an advantage since it enables the
artist to change the topology easily by blurring the detail of the geometry. Note that
with this approach, if we stored surface details such as color in the grid, they would be
subject to smearing artifacts for the same reason. Also, the frame rate achieved with
this technique on current computing devices is lower than with the updated mesh. A
possible direction for future work is to investigate the possibility of using an adaptive
grid, for instance inspired by [FCG02].

Figure 5.9: Examples of simple shapes modeled with a discrete implicit shape represen-
tation. Left: dog. Right: flower.

5.4 Ray-tracing

In the cases where the deformations fti 7→ti+1
can be inverted, authors have proposed an

alternative way to do rendering [Bar84, KY97]: by deforming the visualization instead
of deforming the shape description, i.e. by rendering the shape St0 in a deformed space
in which rays of light are not lines but curves:

(

n−1

Ω
i=0
fti 7→ti+1

)−1

(R3) =
n−1

Ω
i=0
f−1
tn−i−1 7→tn−i

(R3) (5.20)

With this method, the visualized shape does not suffer from problems related to surface
sampling with polygons, hence the motivation here is a method that is capable of
producing high quality results at a low memory cost. The trade-off however is that
the shape is slow to display because this requires efficient methods for rendering with
curves of light [Bar84, KY97, MW01]. The context of use for this fourth method is
that the artist first models the shape interactively with one of the shape descriptions of
Section 5.1, 5.3 or 5.2, and then this method is used for a final rendering. Note that for
rendering a shape in this manner, both the deformation function and inverse functions
may be required. Figure 5.10 shows this principle applied to a simple deformation.

5.4.1 Deformation inverses

We propose three different ways of computing the inverse of the function of our space
deformations for the simple case of a single tool. Let us denote by p a point and by
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−1

(a) (b)

f f

Figure 5.10: (a) Deformed scene, visualized with rays of light. (b) Equivalent unde-
formed scene, visualized with curves of light.

(a) (b)

(c) (d)

Figure 5.11: (a) Object visualized in the interactive modeler. (b) Object produced by
a ray-casting algorithm. (c) and (d) show the advantage of ray-casting over polygons:
the shape’s shading does not suffer from a poorly sampled surface.

p′ its image under the deformation. The forward relation between these points is the
following:

p′ = (φ(p) �Mti 7→ti+1
) · p (5.21)

In order to invert this function, it must be solved for p ∈ R3. Thus one must compute:

p = (φ(p) �Mti 7→ti+1
)−1 · p′ (5.22)

Using the right hand side of Equation 5.22 to directly compute p is not possible, since
the amount of deformation φ(p) at p is needed on the right hand side. However,
the matrix transformation Mti 7→ti+1

defines streamlines, that we can parameterize with
h ∈ R as follows: h�Mti 7→ti+1

. If a point p is mapped onto a point p′, then they must
belong to the same streamline. Thus we can conveniently reduce the dimensions of
the solution space. Let us rearrange this equation to make the streamline appear, by
applying φ to both sides:

φ(p) = φ((φ(p) �Mti 7→ti+1
)−1 · p′) (5.23)
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If we replace φ(p) by h, the equation can be solved along a streamline as follows:

φ((h�Mti 7→ti+1
)−1 · p′) − h = 0 , h ∈ [0, 1] (5.24)

Once h is found, the inverse image of p′ can be obtained: p = (h �Mti 7→ti+1
)−1 · p′.

Since there corresponds a scalar h to each point p′, we can interpret the solution as a
scalar field h(p′) associated with the inverse deformation. To find h(p′), we propose to
use a Newton-Raphson iteration, i.e. at each iteration, a new temporary value for h is
found by intersecting the tangent line to the above energy function with the abscissa.
Since in Section 3.3 the scalar function φ(p) is defined as µ ◦ d(p), the following is a
particular form of the Newton-Raphson procedure:

INVERTNEWTON()
h = 0
repeat

h0 = h
d = d((h0 �Mti 7→ti+1

)−1 · p′)
h1 = µ(d)

h −= (h0−h1)

1− dd
dh

(h0)µ′(d)

until |h1 − h0| ≤ ε
p = ((−h) �Mti 7→ti+1

) · p′

In the above, the derivative terms are expensive to compute. It appears however that
h1 and h are very close to each other while iterating since φ(M−1

ti 7→ti+1
·p′), the scalar field

transformed by Mti 7→ti+1
, is spatially very close to the unknown scalar field h(p′) that

defines the inverse transformation. Thus we propose a faster iteration that converges
in practice. If non-convergence is detected, the previous procedure can be used. Ta-
ble 5.12 shows that the following procedure is more efficient, since each loop is cheaper.

INVERTFASTER()
h = 0
repeat

h0 = h
h = φ((h0 �Mti 7→ti+1

)−1 · p′)
until |h− h0| ≤ ε
p = ((−h) �Mti 7→ti+1

) · p′

Newton-Raphson Faster N.-R.
translation 14 13

scale 17 16
rotation 74 76

Figure 5.12: Average number of iterations for inverse function procedures.
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In INVERTNEWTON or INVERTFASTER, the numerical expressions are ex-
pensive to compute; we propose a closed-form for an approximate inverse, already used
in Section 5.3. The advantage of using this procedure is that it can be generalized to
multiple tools. Most importantly, if the function itself never needs to be evaluated, we
can decide to define deformation functions by their inverse, and consider the following
expression to be exact:

INVERTCLOSEDFORM()
p = ((φ(p′)) �M−1

ti 7→ti+1
) · p′

5.4.2 Ray-casting algorithms

We have implemented a naive method that uses INVERTFASTER() for rendering
a deformed shape using ray-marching: it consists of taking steps along a curve of light
starting at the position of the camera, until intersection with the undeformed shape
is found.

A ray of light L intersecting the final shape S(tn) corresponds to a curve of light
(Mβ

t0 7→tn)−1(L) intersecting the initial shape S(t0), as shown in figure 5.10. Finding the
intersection with the sphere along the curve is delicate, since equally spaced samples lj
on L may not be equally spaced once undeformed into (M β

t0 7→tn)−1(lj). However, with

an upper bound on the expansion factor of each small transformation 1
n
� (Mβ

ti 7→ti+1
)−1,

the length of a step can be bounded. Let us denote by p(t) = s+~dt a ray. The bound is:

max(‖∂f(s + ~dt)

∂t
‖) (5.25)

Let us define a ray p(t) = s + t~d, and consider a simple translation deformation
f(p) = p + φ(p)~t. Using the definition of φ in Equation (3.3) and the bound on µ
of Equation (3.4), the following bound on the expansion is obtained:

‖ ∂
∂t

(f(s + ~dt))‖ = ‖ ∂
∂t

(p + φ(p)~t)‖ = ‖~d +~t ∂
∂t

(φ(p))‖
< 1 + ‖~t‖ ∂

∂t
(φ(p)) < 1 + 15‖~t‖

8λ

(5.26)

Thus with the expansion factors ei = 1 + 15‖~t‖
8λ

, the following is a naive algorithm,
illustrated in Figure 5.13:

1. undeform pi

2. while deforming pi, accumulate compression factor by multiplying them with
∏

j ej. The result gives the radius of a safety region, within which a step can be
taken for the next point pi+1 on the ray.

5.4.3 Results and improvements

The results shown in Figure 5.4 illustrate the advantage of using an inverse raytracing
as opposed to deforming the shape explicitly: computational effort is spent to generate
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Figure 5.13: (a) Inverse deformation applied to three points, from top to bottom. (b)
Deformation of the points, while accumulating compression factors from bottom to top.
All neighborhoods do not decrease equally.

a particular view of the shape. The major drawback of the method presented is that it
does not take into account the fact that space may be deformed anywhere, as opposed
to just near the shape’s surface. Thus light curves may take an incredibly complicated
path before reaching the shape, and make rendering unnecessarily slow. Although we
have not pursued further investigation, we propose possible improvements. Firstly, the
above method spends a lot of time deforming points that are far from the surface.
Deforming the portion of rays that are near the surface would reduce the cost, and
these portions may be found using the forward deformation of the shape presented in
Section 5.1. Secondly, our bound on the expansion defines a spherical neighborhood
at each point: using differential properties such as the displacement gradient tensor
would permit the definition of ellipsoidal neighborhoods whose principal directions are
aligned with the directions of strain. Thirdly, instead of marching along the ray until
the shape is found, rays may be deformed using an analogous algorithm to the one we
have used for updating a mesh describing a 2D surface in Section 5.1.

5.5 Texturing with spherical springs

In previous sections and chapters, the surface color of our shapes is uniform, and is
controlled only with global parameters, as illustrated for instance in Figure 5.14. Com-
puter Graphics applications often require the user to describe local surface properties.
It is however inappropriate to describe surface properties with geometry, and a pop-
ular and efficient approach is to apply 2D textures onto the surface using a mapping
technique. The aim of this section is to show that mapping textures onto our shapes
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is possible, and can be done in a controlled manner.

If we ignore topology changes and only consider foldover-free continuous space de-
formation, our shapes are homeomorphic to a sphere. Thus to each point on the surface
of our shapes si corresponds a point on the surface of the unit sphere xi . We use
this property to define a texture mapping on our shapes that minimizes a user-defined
energy, e.g. stretching. In the following we call parametric space the unit sphere, and
parametric coordinates its elements.

Figure 5.14: The surface property can
be controlled globally. Left: plastic
surface. Right: reflective surface.

The unit sphere is a space where geodesic
distances can be defined easily, as the length
of the shortest arc connecting two points. Dy-
namic elements can therefore be efficiently an-
imated in the sphere, provided that they are
represented adequately. We present in this
section the basic elements for dynamic simu-
lation in the unit sphere. The formulas ap-
ply to quaternions, and are very similar to
formulas for animating particles in Euclidean
space [WB01]. Spherical springs can be used
for texturing our shapes or imported shapes, and for performing any other task re-
quiring some minimization process in the unit sphere. In this section, we focus on
performing relaxation of the parametric coordinates of a shape homeomorphic to a
sphere. The first step is to introduce simple springs in the spherical texture space.
Because of its bent nature, it is undesirable to use linear distance springs between
two points in texture space: the points would have to be reprojected onto the sphere
very often, and the behavior of long springs would be unpredictable. We believe that
spherical springs is the most natural way to define springs in the unit sphere.

5.5.1 Quaternions

Quaternions are introduced in the preliminary section on notation. An excellent refer-
ence on quaternions is [DKL98]. The operations we perform on quaternions are inspired
from the formalism of [Ale02a], similarly to sweepers in Chapter 3. We use the loga-
rithmic space to perform a linear combination of unit quaternions. The advantage of
using unit quaternions instead of matrices is the availability of closed-form formulas
for the log and exp. In the following sections, we use the fact that explog p+log q is a
commutative combination of quaternions p and q.

5.5.2 Spherical forces

Spherical forces are defined between point-quaternions xi∈[1,n]. Each point-quaternion
corresponds to a vertex on the surface of the shape si. By acting on the quaternions
xi, the mapping from the shape’s surface to the sphere can be modified. By defining
springs between xi, this mapping can be made to minimize some criteria.

Given a scalar condition C(xi) which we want to be zero, C gives rise to a force
quaternion f , whose expression parallels the one for Euclidean forces [WB01], and is
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obtained from the expression:

f = (∇̇C)−kC (5.27)

where ∇̇ denotes the spherical gradient quaternion defined in the following subsection,
and where k is a stiffness constant of our choice. The expression of the logarithm of
the force is closer to the expression given by [WB01]:

log f = −k C log(∇̇C) (5.28)

From now on, all forces will be expressed with their logarithm: this yields more efficient
formulas since the log of a quaternion can be handled as a mere three-dimensional
vector. Moreover it simplifies the writing and makes more obvious the parallelism with
Euclidean physics.

Spherical gradient

The spherical gradient is the equivalent of the straight vector Cartesian gradient, but
constrained to the sphere; thus it is a unit quaternion.

Cy

Cx

y

p

−x

x

∆

C

∆.
C

Figure 5.15: Spherical gradient.

Let us consider a scalar function C(x), where x belongs to the unit sphere. As shown
in Figure 5.15, let us consider two great circles Sx and Sy that are orthogonal, defined
by the tangent vectors ~vx and ~vy, and the point x at which the great circles intersect,
such that p = ~vx × ~vy. The quaternion (0,~vy) defines a rotation of angle π of p in
direction ~vx along great circle Sx, and the quaternion (0,−~vx) defines a rotation of
angle π of p in direction ~vy along great circle Sy. In those terms, the spherical gradient
of a function C is the quaternion:

∇̇C = exp(
1

2
((∇C · ~vx)~vy − (∇C · ~vy)~vx)) (5.29)

In logarithm space:

2 log ∇̇C = (∇C · ~vx)~vy − (∇C · ~vy)~vx
= p ×∇C (5.30)

It can be observed that the spherical gradient has no component along p. In spherical
coordinates, the reader can verify that it also disappears for the parametric gradient:
the spherical gradient at p does not make the point p spin on itself.
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Angle spring

The angle spring aims at keeping a constant angle between two point-quaternions. Al-
though we do not use it for our examples, it is the most simple spring, and demonstrates
simply how a spherical force can be specified. Consider two mass points xi and xj,
connected with a spherical spring with rest angle θrest and stiffness coefficient ks ∈ R+

as shown in Figure 5.16. The condition we use is:

C(xi,xj) = θij − θrest (5.31)

To evaluate θij, we use arccos ∈ [0, π]:

θij(xi,xj) = arccos(~xi · ~xj) (5.32)

Thus the Cartesian gradient in ~xi of the condition C is:

∇C = ∇θij =
−~xj

√

1 − (~xi · ~xj)
(5.33)

The logarithm of the spherical gradient in ~xi, derived using Equation (5.30), is:

log(∇Ċ) =
~xi × ~xj

√

1 − (~xi · ~xj)
(5.34)

Substituting log(∇Ċ) for the above in Equation (5.28), the log of the force fj→i ∈ H1

that applies on xi, is simply the quaternion:

log fj→i = −ks arccos(~xi · ~xj)
~xi × ~xj

√

1 − (~xi · ~xj)
(5.35)

Note that by using the log instead of quaternion directly, the stiffness ks won’t suffer
from the periodicity of cos and sin, thus large forces are handled naturally. Although
a large stiffness may cause the physical integration to be unstable, the particles will
always stay on the sphere.

θrest

θiji

j

x
x

r

Figure 5.16: Spherical angle spring.

Solid angle spring

The solid angle spring aims at keeping the area of a spherical triangle xi,xj,xk propor-
tional to the area of a triangle on the surface of shape si, sj, sk. The area of a spherical
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triangle is called the solid angle, and is equal to the sum of the angles between the arcs
joining the quaternions. Since three arcs define two complementary spherical triangles
whose union cover the entire sphere, 4π, this force is defined to keep constant the area
of the spherical triangle whose vertices are clockwise oriented when observed from out-
side the sphere (see Figure (5.17)). If we define the arctan with values within [−π, π],
the effect is to flip the triangle smoothly if the vertices are wrongly oriented. Consider
three point-quaternions xi, xj and xk. Let Θijk be the solid angle of the triangle ijk,
and let Θrest be the solid angle at rest. The condition we use is:

C(xi,xj,xk) = Θijk − Θrest (5.36)

An efficient expression of Θijk is given by [vOS83], which we can further simplify for
points on the unit sphere:

Θijk = 2 arctan(
xi · (xj × xk)

1 + xi · xj + xj · xk + xk · xi
) (5.37)

Let us call α and β the numerator and denominator of the fraction inside the arctan.
As in [vOS83], we use the C++ function atan2 with α and β to compute the arctan.
The Cartesian gradient in xi of the solid angle is:

1

2
∇C =

1

2
∇Θijk =

(xj × xk)β − (xj + xk)α

α2 + β2
(5.38)

The following is the logarithm of the spherical gradient in xi (see the definition of the
spherical gradient in Equation (5.30)):

log ∇̇Θijk =
1

2
xi ×∇Θijk (5.39)

Similar formulas are obtained for the gradient in xj and xk by rotating the indices.
The logarithm of the force is obtained by replacing C and log ∇̇Θijk in Equation (5.28)
by the above values. In our examples, we have used a value Θrest proportional to the
area of the triangle joining the position vertices of the textured triangle in Euclidean
space aijk, and inversely proportional to the area of the shape A =

∑

aijk:

Θrest = 4π
aijk
A

(5.40)
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Figure 5.17: Solid angle spring.
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Triangle angle spring

The triangle angle spring aims at keeping the angles of a spherical triangle xi,xj,xk pro-
portional to the angles of a triangle si, sj, sk. Let us denote by ζijk the angle ̂xk,xi,xk.

C(xi,xj,xk) = ζijk − ζrest (5.41)

To evaluate ζijk:

ζijk = arccos

(

(xj − xi) · (xk − xi)

‖xj − xi‖‖xk − xi‖

)

(5.42)

The following is the logarithm of the spherical gradient in xi

log ∇̇C = log ∇̇ζijk
=

xi×(xk((xk−xi)·(xk−xj))/l
2
ik−xj((xj−xi)·(xk−xj))/l

2
ij)

lij lik
√

1−ζ2ijk

(5.43)

The logarithm of the force is obtained by replacing C and log ∇̇C in Equation (5.28)
by the above values. In our examples, we have used a value ζrest proportional to the
angle of the vertices of triangle in Euclidean space ̂sk, si, sk.

ζrest = arccos

(

(sj − si) · (sk − si)

‖sj − si‖‖sk − si‖

)

(5.44)

Particle damping

The damping of a particle pi is defined using its velocity vi ∈ H1, which is defined in
Section 5.5.3. Its effect is to keep the particle in place. Let kd ∈ R+ be the damping
coefficient. The damping is:

log di = −kd log vi (5.45)

where kd ∈ [0, m
δt

] (mass m and time step δt are defined later on). However, as remarked
[BW98], this damping is a simple viscous function that dissipates kinetic energy inde-
pendently of the type of motion.

Spring damping

To define the damping function for the force induced by a condition C, we propose
similarly to [BW98] to project the velocity on the force:

log di = −kd(log ∇̇C · log vi) log ∇̇C (5.46)

Combining forces

To compute the overall force applied on pi, we combine all the forces in logarithmic
space:

Fi = exp

(

∑

j

(log fj→i − kd log vi)

)

(5.47)
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5.5.3 Physical integration

For computing efficiency purposes, all the computations are done in logarithmic space,
thus the exponential is computed only once for each particle at each time step. Also,
combining quaternion logarithms is a natural way of expressing their simultaneous
effect. Note that in the following, the use of quaternions has to be done carefully,
depending on whether they represent vectors or positions.

Acceleration: To use an explicit Euler integration, we propose an adaptation of the
second law of motion for quaternions, i.e. in the spherical space a force is the logarithm
of a rotation:

log ai =
1

m

∑

j

log fj→i (5.48)

Velocity: At the beginning of the simulation, the logarithm of the velocity is initial-
ized to (0, 0, 0)>. Given a previous velocity log vi, the logarithm of the new velocity
at next time step δt adds up a portion δt of the acceleration. We choose the following
formula for computing the new velocity:

log v′
i = log vi + δt log ai (5.49)

Another possibility for computing v′
i would be to use v′

i = aδti ∗ vi, but this is not
necessarily better and would yield more time consuming formula.

Position: The new position is obtained by rotating the point using the velocity:

p′
i = vδti ∗ pi ∗ v−δt

i (5.50)

where
vδti = expδt log vi

v−δt
i = v̄δti , the conjugate.

(5.51)

5.5.4 Summary

All the computations are done in logarithmic space, and thus are quite efficient. For
each particle:

• compute the current acceleration (see Section 5.5.2 for computing forces):

log ai =
1

m

∑

j

log fj→i (5.52)

• compute the new velocity:

log v′
i = log vi + δt log ai (5.53)

• update the position:

dv = expδt log v
′
i

p(t+ δt) = dv ∗ p(t) ∗ d̄v
(5.54)
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5.5.5 Results and limitations

A simple example of the angle spring is shown in Figure 5.18. The motion integration is
done with a simple explicit Euler integration scheme described above [WB01]. One of
the advantages of using spherical springs on the unit sphere instead of using Euclidean
springs is apparent when the system is unstable: instead of sending the particles to
infinity, they stay on the sphere.

In Figure 5.19, we have used spherical springs on the parametric coordinates of the
vertices of a shape while it is being deformed interactively: the texture expands in
over-covered areas and contracts in under-covered areas. Since the spherical springs
energy minimization is done while the shape is deformed, the state of minimum energy
of the texture coordinates is quickly reached. Since a sphere does not map to a flat 2D
texture without distortion, we have used a cube mapping to apply 6 images onto the
unit sphere.

In Figure 5.20, we have used spherical springs to define texture coordinates of an
imported model. In this example, we have used spherical coordinates to apply the
chessboard image to the sphere. Note that since the spring relaxation algorithm is
performed in the sphere, it is independent of the type of texture mapping applied to
the sphere.

Note that we did not use arc springs in our examples. If we did, a problem would
occur when a triangle flips with the solid angle spring: at the transition state, the
vertices would gain extremely large velocities under the force of the arc spring. This
may be corrected by multiplying the arc spring condition with some function of the
solid angle.

Note that spherical springs do not generalize to topology changes. For instance
after insertion of a hole in the shape, the sphere presents two discontinuities: two
points that were originally distant become connected in the parametric space. With
one hole, handling a torus is probably better than using a sphere with two marked
discontinuities. At this stage, we do not have a solution to the general case.

Figure 5.18: Animation of three spherical springs with rest angles equal to π/2. At rest
(sixth picture), the triangle is an octant of the sphere.
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(left) (right)

Figure 5.19: Comparison without (left) and with (right) spherical spring. Notice how
the capsicums are less stretched on the right pictures, and how they are of comparable
size overall.

Figure 5.20: Spherical springs applied to an imported mesh (right). The initial texture
coordinates (left) were simply obtained by projecting the vertices of the mesh onto a
sphere placed at the center of the mesh.
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Chapter 6

Simulation of Smoke based on Vortex
Filament Primitives

The work presented in this chapter was done in collaboration with Fabrice Neyret1,
and was presented as a paper at the Symposium on Computer Animation
2005 [AN05].

C
hapter 4 introduces two space deformation techniques: swept-fluid based on
a physically plausible fluid model and swirling-sweepers, a technique which is
in appearance procedurally-based. The motivation of this chapter is to show

that there is in fact a link between swirling-sweepers and a physically plausible fluid
model. We define in this chapter a fluid model as a solid basis for defining future space
deformation techniques that intend to mimic fluid behaviour. We illustrate our model
in the more demanding context of animating an incompressible gas.

Various paths have been followed in order to adapt the simulation of gaseous phe-
nomena to the peculiar requirements of CG applications: Eulerian [KM90, FM96],
Lagrangian [MP89], semi-Lagrangian [Sta99, FSJ01] or spectral [Sta01]. A common
challenge is to obtain the fastest computation time for the maximum possible fluid res-
olution. Knowing that graphics applications often trade accuracy for efficiency can
help in choosing a scheme: e.g. the unconditional stability of [Sta99] permits us-
ing large time steps. Constraints due to the grids in Eulerian methods are released
by [SCP+04]. Mixed models can increase the apparent resolution by relying on simpler
models at small scales (carried by high level primitives), such as noise [Ney03, SSEH03]
or procedural models [WH91], or by combining such high-resolution simple 3D models
to interpolated 2D simulations [RNGF03].

A general problem (especially important for CG) is to obtain a living fluid: most
methods suffer numerical dissipation (intrinsic to Eulerian approaches, and due to

1CNRS Researcher in Computer Graphics, Member of the Evasion team from the GRAVIR-IMAG
laboratory, INRIA Rhone-Alpes project.
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resampling for Lagrangian approaches) in which small scale eddies die too quickly. To
counter this, vorticity confinement was introduced in CG by [FSJ01], and sub-grid
analytical models can be used [Ney03].

Another challenge is to ease the control of the fluid by an artist. The high-level
primitives of the mixed models mentioned above are naturally adapted for this. More
recently, techniques have been proposed to target specific states of the fluid by con-
trolling the whole field [FL04, MTPS04], or by controlling particles [REN+04, PCS04].

In this chapter, we introduce a new path to CG fluids: simulation in the 3D vorticity
space2. The vorticity space is dual to the velocity space as explained in Section 6.1.
But numerous fluid features appear more structured in vorticity space, as a multi-scale
combination of vortex filaments (like swirls, tornadoes) and vortex rings (like smoke
rings, explosion plumes, mushroom clouds). In numerous interesting situations the flow
is characterized by a few such primitives, which are tightly connected to the visible
features of the fluid: these primitives are thus interesting handles for user control. We
represent them as 1D curves, i.e. connected particles. Our model permits the user
to interactively create and modify such primitives. Procedural generation can also be
used (e.g. to introduce turbulent fluctuations, as a physically more reasonable feature
than the usual noise functions).

The velocity field can be reconstructed at any time from the vorticity filaments
thanks to the Biot-Savart law, Equation (6.3), i.e. the animated flow is totally defined
by a few animated curves. Thus, the motion can be simulated quickly. Moreover, these
curves can easily be edited, replayed for tuning, keyframed, interpolated, or even stored,
in the spirit of [PCS04]. Costly rendering can be done later at arbitrary resolution, and
this will not modify the animation contrary to Eulerian or semi-Lagrangian methods
(as mentioned in [LF02]).

Inconveniently, each vorticity element induces motion in the whole field so that com-
puting the Biot-Savart integral can be time consuming. Moreover, local self-induction
can cause numerical instabilities. In this chapter, we introduce a new formalization
which enables a higher order scheme, thus larger time steps. We also introduce an
approximation which permits analytical integration and also stabilizes the simulation.
Moreover, we propose a filament LOD (level of detail) scheme. Thus, our model allows
us to efficiently compute the velocity induced at any given location by all the filaments.

Our contributions are:

• The introduction of 3D vortex methods to CG fluids, using 1D-Lagrangian fila-
ments (well adapted to user control), with dynamic LOD.

• An original formalization of Biot-Savart based on twists, permitting a higher-
order solver, and a modified kernel weight yielding a fast and stable simulation.

• An original adaptive scheme for density particles permitting a high quality ren-
dering.

Section 6.1 reviews the concepts, equations and properties related to the vortical
aspects of fluids. In Section 6.2 we revisit these equations in order to permit a higher

2Note that this path has already been introduced in 2D by [GLG95]. But 3D vorticity is very
different since it is vectorial and highly spatially structured (see Section 6.1).
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order solver, and we detail our filament representation. Practical adaptations are pro-
posed in Section 6.3. In Section 6.4, we describe the representation and the simulation
of our vortex primitives, comprising an adaptive scheme, an LOD hierarchy and a
noise function. Smoke particles are treated in Section 6.5. We present our interactive
application in Section 6.6 and discuss results in Section 6.7.

6.1 The physics of vorticity and filaments

6.1.1 The Lagrangian vorticity expression of fluids

Figure 6.1: Flow in-
duced by a vortex ring
(in red). Smoke par-
ticles are generated in
the box.

Vorticity-based approaches – called Vortex methods – are al-
ready used in CFD (Computational Fluid Dynamics) [CK00].
They are especially suitable for turbulent fields and simula-
tion of eddies since they track thin features better. Because
the thickness of these features can be far smaller than any rea-
sonable grid cell step, they are also more accurate [CMOV02].
As a Lagrangian approach, they do not suffer from the numer-
ical dissipation which tends to kill small eddy structures when
using Eulerian approaches.

The vorticity ~ω is defined as ∇ × ~v where ~v is the ve-
locity. Assuming incompressibility, mass conservation can be
expressed as ∇ · ~v = 0. The Lagrangian formalism follows the
properties of fluid parcels represented by particles and advected
along the flow with velocity ~v. The Lagrangian formalism is
especially adapted to CFD since the non-zero vorticity is gen-
erally concentrated in loci (the vortices) which follow the flow.

In 2D, the Lagrangian vorticity form of the Navier-Stokes
equation for inviscid fluids is simply d~ω

dt
= 0. It means that once created, vorticity never

dies and is simply advected along the field. Handling the 2D case is simple since it
only requires vortices placed at isolated particles. It has been used in CG by [GLG95].
In 3D, the equation is:

d~ω

dt
= (~ω · ∇)~v (6.1)

The above means that while following the flow, vortices are stretched by its local
deformation. The 3D case is far more complicated since the vorticity is a vector and
spatially structured in filaments, often rings (i.e. closed loops). The strength of a
filament is defined as the circulation Γ, a scalar:

Γ =

∮

L

~v ·~t dl =

∫∫

S

~ω · ~n ds (6.2)

where S is a cross section of the tube and ~n is the normal to the surface of the section,
and L the border closed-curve of S and ~t is the tangent to the curve. This vortical
structure has several consequences [Bat67, Mar97]:
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• Firstly, since vorticity in a location induces a rotational motion everywhere in
the fluid, parts of the same filament induce each-other: filaments induce self-
deformation (e.g. oscillation modes) and global motion (e.g. a smoke ring moves
straight due to its self-induction). And of course, filaments interact with each
other. For example, two close parallel rings leapfrog through each other (i.e. one
sucks the other which will suck the first right after, and so on).

• Secondly, filaments never die3 and behave in a peculiar way when stretched: as
stated by Kelvin’s theorem [Rut90], the circulation Γ is constant both along the
filament and in time, which means that vorticity increases when the radius of
the filament decreases due to the stretching4. This behavior can be interpreted
as the conservation of the angular momentum. As the fluid motion creates ubiq-
uitous stretching, vortical areas quickly tend to concentrate into tubes, then to
increasingly thinner filaments. This complex structure of turbulent fluids is what
makes them so complicated to simulate, and explains why the classical methods
lose important features.

Due to stretching, vortex tubes are often assumed to have a small core, hence the
name filament. Thus they can be conveniently represented by a 1D curve together with
the circulation Γ, rather than a very concentrated explicit ~ω field. Since the circulation
is preserved over time, no equation is needed for the evolution of the vortex strength.

Lagrangian primitives used in vortex methods can be 0D (regular particles), 1D
(curves made of connected particles) and even 2D (since vorticity often starts as a
2D stretched layer between two fluid areas before degenerating into vortex tubes then
filaments). Note that 0D particles [Gha01] lose the filament coherency, and have to
explicitly track the effects of stretching.

6.1.2 Reconstructing the velocity field

Recovering ~v from ~ω, i.e. inverting ~ω = ∇× ~v, is not easy. A solution evaluated at a
point p is given by the Biot-Savart law:

~v(p) =
1

4π

∫∫∫

x

~ω(x) × (p − x)

‖p − x‖3
dx (6.3)

Three comments can be made about this formula:

• Firstly, this solution is not unique: Equation (6.3) only provides one divergence-
free solution, to which we can add any velocity field ~vh satisfying both ∇ ×
~vh = 0 and the fluid hypotheses (mass conservation and boundary conditions).
This harmonic field ~vh corresponds to a solution of the flow using the simplest
assumptions. It is solved separately by vorticity-based physical methods and in
our case we will assume it is given by the user or simply zero, so that in the
following we do not handle it explicitly and we only consider the Biot-Savart
solution.

3As long as the inviscid hypothesis is valid. In practice filaments are dissipated when they become
too thin.

4In particular, turbulence is made of a dense soup of very thin very rapidly rotating filaments.
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• Secondly, evaluating Equation (6.3) at p using numerical integration is expensive,
since it is performed with x over the entire space. To avoid this cost, Vortex-In-
Cell methods rely instead on a finite difference solver on a grid to invert ~ω = ∇×~v,
with the various drawbacks associated with grid sampling (including dissipation).
We introduce analytical integration and LODs to avoid this cost.

• Thirdly, the integrand diverges at p = x, which corresponds to the evaluation
of local self-induction. This can lead to a singularity5, or at least to numerical
instabilities. We will introduce a modified Biot-Savart kernel weight to avoid
this.

6.1.3 Boundary conditions

Incoming and outgoing flux are typically accounted for by the harmonic component
of the velocity field (i.e. by solving with the divergence-free irrotational assumption).
Regarding contact with borders, it has been shown [LNC91] that the interaction of
a ring filament with a border with slip condition (i.e. only the normal component of
velocity cancels) is equivalent to the interaction of the filament with its mirror image.
Note that a no-slip condition can be obtained by inserting vorticity near the boundary
so that the tangent component of the velocity cancels.

6.2 Our choice of representation and solver

In Vortex Methods, the Biot-Savart law is used to compute the velocity of particles at
any position p. We propose a new formalization of this law (detailed in Section 6.2.1),
introducing a whirl operator which lets us recover higher order information concerning
the trajectory of particles. This enhances the precision of our solver (presented in
Section 6.2.3) and thus permits larger time steps.

6.2.1 Our Biot-Savart reformulation

Let us denote by the scalar function βBS(x) = 1
4π‖x‖3 the Biot-Savart kernel weight. Let

us denote by R the 4× 4 matrix whose multiplication with a point p rotates p around
the center x, axis ~ω with an angle ‖~ω‖.

The matrix logR has a simple expression, which we give in Equation (6.4). We
show in Chapter 7 how to compute the exponential of it to obtain a rotation matrix.
It conveniently satisfies (logR) · p = ~ω × p − ~ω × x = ~ω × (p − x).

logR = 〈ω, x × ω〉 =









0 −ωz ωy xyωz − xzωy
ωz 0 −ωx xzωx − xxωz
−ωy ωx 0 xxωy − xyωx

0 0 0 0









(6.4)

5And it does for several theoretical filament models, which makes their theoretical study so com-
plicated.
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This matrix is sparse and it has only 6 degrees of freedom: it can be represented by
two 3D vectors ~ω and x × ~ω. We denote by 〈~ω, x × ~ω〉 the operator producing the
matrix (6.4) from these two parameters. Note that this operator is linear. It satisfies:

〈a1 + a2, b1 + b2〉 = 〈a1, b1〉 + 〈a2, b2〉 , 〈αa, αb〉 = α〈a, b〉

Thus, the Biot-Savart law can be re-written:

~v(p) =

(∫∫∫

x

βBS(p − x) 〈~ω, x × ~ω〉 dx

)

· p (6.5)

We call the integrand in Equation (6.5) the whirl of a vortex. The expression of this
matrix is:

ϕ(p, x, ~ω) = βBS(p − x) 〈~ω, x × ~ω〉

Note that ϕ is linear in ~ω: ϕ(p, x, ~ω) = ‖~ω‖ϕ(p, x, ~ω
‖~ω‖). ϕ represents a rotation

of center x, axis ~ω, with an angle proportional to ‖~ω‖ and decreasing away from the
center. Stated another way, it represents the effect of an atomic vortex element. The
angle of rotation is maximal at the vortex center x. The scalar βBS(p − x) describes
how the rotation magnitude decreases with distance. Note that the rotation matrix
can be recovered by exp(ϕ). We call the integral of ϕ the whirl of a fluid:

Φ(p) =
∫∫∫

x
ϕ(p, x, ~ω) dx

Thus, the Biot-Savart expression becomes:

~v(p) = Φ(p) · p (6.6)

Due to the linearity of 〈, 〉 the matrix Φ(p) is as sparse as logR, thus only 6 scalar in-
tegrals have to be calculated to obtain it. We will see in Section 6.4 that the expression
can be reduced down to 3 or even 1 scalar integral in some situations. Φ(p) encodes a
twist, i.e. a translation along a straight line together with a rotation about that line.

6.2.2 Spatial integral and field representation

Φ(p) has to be calculated at every point p to get the velocity induced by the vorticity
field {~ω(x), x ∈ space}. A numerical integration over the entire space would be very
expensive.

We draw on the classical vortex filaments assumption mentioned in Section 6.1.1:
we consider that the vorticity is concentrated in thin tubes (i.e. filaments) Ci and null
elsewhere. Note that ~ω = 0 at some location does not mean that there is no motion
there, since vorticity induces motion at a distance. The flow is thus entirely defined by
the set C = {Ci, i ∈ [1, n]}. We will consider curves parameterized in arc-length.

The filaments are considered as differential elements, i.e. 1D curves with a formal
radius r(u). The vorticity is locally tangent to the curves. Various analytical profiles
of the vorticity through a tube section are considered in the literature: e.g. constant or
Gaussian. Physics regards the circulation Γ as the only meaningful notion, which is the
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integral of the vorticity projected on a section (see Equation (6.2)). Thus, introducing

the notation ~Γ with ‖~Γ‖ = Γ and
~Γ

‖~Γ‖ = ~ω
‖~ω‖ , we can call the expression ϕ(p, x, ~Γ) the

whirl of a section and forget about ~ω and r. Kelvin’s theorem states that Γ is constant
along a filament and over time for inviscid fluids, even when considering stretching (see
Section 6.1.1). As circulation represents the intuitive notion of the strength of a vortex
filament, we treat it as a user-defined parameter.

However, we explain in Section 6.3.2 that it is still necessary to store and maintain
the filament thickness r(u) – which decreases with stretching – if we want to take
viscosity into account, since its effect is highly dependent on r. Viscosity will affect
the strength locally so that we also need ~Γ(u). Thus, each filament is defined by a
parametric curve holding positions, circulation and radius:

Ci = {{xi(u), ~Γi(u), ri(u)}, u ∈ [0, Li]} (6.7)

Thus we now simply have to compute 1D integrals representing the whirl of the fila-
ments:

Φ(p, C) =
∑

i

∫ Li

0

ϕ(p, xi(u), ~Γi(u)) du (6.8)

The set of filaments C is a parameter of Φ since the support of integration moves in
time.

ri

~Γi

xi

Figure 6.2: Parameters defining a element of the filament: positions xi, circulation
along a vector ~Γi and radius ri.

6.2.3 Time integration scheme

Let us consider a particle at location p in the fluid. The matrix Φ(p, C) in Equa-
tion (6.8) gives us access to the velocity at p through ~v(p) = Φ(p) · p, and thus to an
estimate of the trajectory of p during the time step δ t: p̃′ = p + τ ~v(p) , τ ∈ [0, δ ].
But the matrix Φ can provide more information than just the velocity. As we have
already mentioned in Section 6.2.1, Φ encodes a twist, i.e. a rotation combined with
a translation, whose matrix can be recovered with exp(Φ) (see Appendix 7). This
provides us with higher order information about the trajectory of p. Thus we compute
the new location p′ after a time step δt as:

p′ = f(p) = exp(δt Φ(p, C)) · p (6.9)
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Since f(p) is of higher order than a translation, the estimate p′ is more accurate than
p̃′. This allows us to make larger time steps and therefore gain speed. Moreover, if
the flow is a pure rotation, translation or twist, the reconstructed trajectory of p will
exactly follow it regardless of the length of time step δt.

Note that the two first terms of the series expansion of exp give the linear trajectory
(I + δtΦ) · p, so our scheme is asymptotically equivalent to a simple Euler integration
step.

We use the scheme based on Equations (6.8) and (6.9) for animating marker parti-
cles in the fluid as well as the points xi defining the filaments. The evolution of the set
of filaments C after a time step δt is thus simply defined by C ′ = f(C). This is simply
a restatement of Equation (6.1).

6.3 Practical approximations and extensions

To gain even more efficiency, we want to avoid costly numerical integrations by ob-
taining closed forms as much as possible for the Biot-Savart integrals along the vortex
primitives that we will define in Section 6.4.

For this, we replace the Biot-Savart kernel weight with another (see Section 6.3.1)
which eases analytical integration and which is more stable.

At this stage we will have a working incompressible inviscid fluid in an unbounded
space. We show how viscosity and boundary conditions can be introduced in Sec-
tion 6.3.2.

6.3.1 Changing the Biot-Savart kernel weight

The Biot-Savart kernel weight βBS has two drawbacks: it diverges at 0 (βBS(0) = ∞),
leading to numerical instabilities for particles that are very close to a vortex center
(typically, the neighbor nodes on the filament), and it generally disables closed forms
for integrals.

We propose to replace the Biot-Savart kernel weight βBS with another radial basis
function βMS which is defined and smooth around 0 and which eases the analytical
integration:

βMS(x) =
1

π(1 + x2/s2)2
(6.10)

This kernel weight βMS is proportional to the one introduced in [MS98] in the context
of convolution surfaces. The coefficient s is a user controllable parameter related to
the apparent thickness of the filament: the region closer than s to the curve tends
to rotate like a solid core. During simulation s should be roughly proportional to r,
but for stability it should not decrease below a threshold s1. Thus we model s(r)
as s0r + s1k(r) where k(r) is a function decreasing from 1 to 0 and s0, s1 are such

that s(r) is monotonic. We chose s0 = 1, s1 = 2
3

and k(r) = e−
3
2
r.

This kernel weight smooths the local self-induction, but it also slightly underes-
timates the induction on distant particles. The resulting animation is still visually
satisfactory. Note that changing the kernel weight β does not alter the incompressibil-
ity property.
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6.3.2 Viscosity, stretching and boundaries

Viscosity: It has two effects on fluids. Firstly, it spatially smears quantities (velocity,
vorticity, markers). As is often done, in this chapter we consider that this effect is
negligible at visible scales by assuming the fluid is inviscid, which yields the simple
equations we use. Secondly, it dampens filaments, and prevents them from becoming
infinitely thin with infinite vorticity, which makes real fluids free of singularities. This
is also the very mechanism which dissipates the vortical energy transmitted from higher
scales. This effect occurs at very small scales, but it is important to take it into account
in order to avoid singularities, endless accumulation of filaments and infinite growth of
energy. We model this as a radius-dependent damping of the filament strength, done
at each time step:

Γ′
i(u) = (1 − ν(ri(u)))

δt Γi(u) (6.11)

Where ν(r) is a damping function decreasing from 1 to 0 with a characteristic viscous

scale r0. In our implementation we use ν(r) = exp
− r

r0 . Weak filaments are faded out
to zero then destroyed. Note that independently from this physical decay, it is useful
to allow the user to decide when to fade and kill a filament as mentioned in Section 6.6.

Radius Stretching: In order to know ri(u), we need to compute the vortex stretching
during the animation of the filament. Let λ be the lengthening rate measured at a given
filament location. The volume conservation of a small cylindrical portion of filament
tells us that when its length multiplies by λ, its radius divides by

√
λ. Thus, we simply

compute at each time step: r′i(u) = ri(u)√
λ

.

Figure 6.3: A plume falling on the floor.

Boundary Conditions: In this chapter, we
only deal with flat motionless boundaries with
a slip condition. As explained in Section 6.1.3,
in the vortex formalism, one has simply to
simulate the interaction of filaments with
their mirror images through the border plane.
Thus, we need to compute the whirl Φ′(p) of
the mirrored filaments and its influence on a
given point p. Conveniently, it is equivalent
to compute the whirl Φ(p′) of the regular flow
at point p′ which is the mirror of p relative
to the plane. Let us denote by S the mirroring operator relative to the plane (i.e.
p′ = S ·p). Then the mirrored flow is Φ′(p) = S · Φ(S · p) · S. The total flow is simply
ΦTOT = Φ + Φ′. If p is on the plane with normal ~n then exp(ΦTOT) is a transformation
tangent to the plane, since ~n · (ΦTOT · p) = 0.

In practice, we only consider Φ′ for filaments and p close enough to a bound-
ary. Moreover, for moderately curved boundaries a tangent plane approximation can
be made.
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6.4 Our primitives of vorticity

The whirl Φ of a fluid is defined by Equation (6.8) as the sum of the whirl of each
filament. The purpose of this section is to describe how we represent the filaments
and how we compute their whirl, taking advantage of the adapted kernel weight βMS

defined in Equation (6.10). As we have seen in Section 6.2.3, from this whirl we can
compute the displacement and the velocity at every point p in the flow. This is used
to advect all the particles, including the filaments.

Every vortex element in the flow influences every particle. To save computations, we
introduce a hierarchy of models to represent filaments, and LODs for the finest model.

• The finest filament model consists of a set of connected particles. The computa-
tion of the filament whirl is based on the integration of ϕ on its segments. We
detail it in Section 6.4.2, as well as its LOD structure.

• The coarser level consists of a circular ring, treated in Section 6.4.1. A circle
is an approximation which makes sense since flow perturbations often start as
simple vorticity rings, which can remain circular for a while depending on the
environment. It also makes sense to approximate small rings by circles since the
extra detail would have little effect at distance. Conveniently, the whirl of a circle
can be computed analytically which makes it especially efficient.

• Similarly, a coarse model should be handled for straight filaments. In fact, this
case can be handled directly as the coarsest LOD level of the regular filament
model.

• For the coarsest level we introduce a vortex noise model consisting of isolated
vortex primitives. We detail it in Section 6.4.3.

For each of these models we describe how to evaluate their whirl and how to update
their structure through simulation.

6.4.1 Circular ring

Circular Ring Whirl: A circle is defined at each time by a center c, a radius rc, and
a vector ~z perpendicular to the circle plane. The symbolic integration of the section
whirl along the circle gives the following whirl, similar to Equation 4.11:

Φcircle(p) = rc
∫

u
ϕ(p, u) du = Γ b 〈~η, c × ~η + arc~z〉 (6.12)

where a = (p − c)2 + s2 + r2
c

~η = 2~z × (p − c) b = 2s4rc
π(a2−r2c~η2)3/2

Circular Ring Advection: The advection of our circular ring is done in three steps:
taking samples on that circle, advecting the samples, and fitting a circle to the newly
obtained positions. When the circle fitting error is too high according to a user-defined
criterion, it can be swapped with a closed deformable filament.
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6.4.2 Deformable filament

A deformable filament Ci is represented with a polygonal curve, i.e. vertices connected
by segments. The filament is simply deformed by advecting the vertices. The total whirl
Φi(p, Ci) generated at a point p by the polygonal curve is computed by summing the
whirls generated by each segment. In the next subsection we describe how to compute
the whirl of a segment. The polygonal curve to be used is determined according to
our LOD scheme and an error criterion, described in the two following subsections.
The result in p is reasonably valid for a neighborhood around p, and thus the LOD
can be computed only once for a cluster of many particles. These clusters are defined
using a floating grid which adapts to clouds of particles (typically, the smoke particles
described in Section 6.5).

For defining the LODs of a deformable filament we build a binary-tree of polygonal
curves, whose nodes are segments. The leaves represent the segments of the detailed
filament, and each internal node represents a segment which is the average of its two
children.

Segment Whirl: Let us define a segment (p0, p1) parameterized in u ∈ [0, 1]. Let us
denote by l the length of the segment. The symbolic integration of the section whirl
along the segment gives:

Φsegment(p) = l
∫

ϕ(p, u) du = Γ h(p) 〈p1 − p0, p0 × p1〉 (6.13)

where the scalar function h =
∫

βMS(p, u) du is:

h(p) =
s4

2a2π2

(

a0

d0 + s2
+

a1

d1 + s2
+
l2

a
(arctan

a0

a
+ arctan

a1

a
)

)

in which d0 = ‖p − p0‖2 d1 = ‖p − p1‖2

d = 1
2
(d0 + d1 − l2) a2 = d0d1 − d2 + l2s2

a0 = d0 − d a1 = d1 − d

Since a repeated evaluation of the above expression is expensive, an accurate approx-
imation is useful. If we denote by pmin and pmax the closest and farthest points from
point p on the segment, we can minimize and maximize terms in the integrand of Equa-
tion (6.13): if ‖βMS(pmin) − βMS(pmax)‖ < ε, the following is a good approximation, i.e.
it is a Riemann sum with two intervals [Weic]:

Φ̃segment(p) = Γ h̃(p) 〈p1 − p0, p0 × p1〉
where h̃(p) = 1

2
(βMS(pmin) + βMS(pmax))

(6.14)

Building the LOD Tree: The filaments deform during the simulation, so their LOD
tree has to be reconstructed at each time step. To build the tree bottom-up, all that
is required is a method for averaging pairs of neighbor segments. Our criterion is to
best preserve the whirl, i.e. the whirl of each level of the tree is as close as possible to
the whirl of the levels below, for any point where it will be evaluated later.

Finding a polygonal curve whose whirl best matches the whirl of a polygonal curve
with twice as many segments is an expensive minimization problem, that we cannot
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afford to solve interactively. We propose the following simple scheme which works well.
Other schemes could be used, such as an inverse-subdivision scheme [SNBW03].

• The starting point is a detailed filament with 2l segments. These correspond to
the tree leaves.

• For each pair of neighbor segments {2i, 2i + 1}, we define the parent segment i
with a length equal to the sum of the lengths of its children, and intersecting the
children at mid-length. For its circulation, we simply take the average.

• We repeat this step until the root is reached, i.e. a single segment for open
filaments, and at least three segments for closed filaments.

Choosing the LOD of a Whirl: Determining the LOD of the whirl to be evaluated
for a point p (and its neighborhood) is done top-down by subdividing the segments in
an adaptive non-uniform manner. The segment subdivision criterion is based on an
estimate of the error produced when using the whirl of a single segment Φe0 instead of
the sum of the whirls of its two children Φe1 and Φe2 . The exact geometric error is the
distance between the transform of p by the twist encoded by Φe0 and the transform of
p by the twist encoded by Φe1 + Φe2 (applying Equation (6.9)):

ε(p) = ‖ exp(δt(Φe1 + Φe2)) · p − exp(δtΦe0) · p ‖
In order to save costly computations, we rely on two approximations to estimate this
error. Firstly, we approximate twists with translations, i.e. a first order approximation
of the exponential: exp(M) ≈ I + M . Secondly, for computing the matrices Φei

we
estimate the costly integration of Equation (6.13) by bounding the kernel weight βMS

with a higher and lower bounds for each segment, as shown in Figure 6.4. Thus, an
approximation of the error is:

ε̃(p) = max
ijk

∥

∥βMS(q
j
1)Me1 · p + βMS(q

k
2)Me2 · p − βMS(q

i
0)Me0 · p

∥

∥

2

where

• Mei
is the matrix δt Γi 〈p1 + p0, p0 × p1〉, associated with edge i

• q0
i , q

1
i are the closest and farthest points from p on ei

Deformable Filament Advection: The leaf vertices of a filament are simply advected
like particles, and the binary-tree is updated at each time step. Whenever the leaf
segments themselves are too stretched and become undersampled, several solutions are
available:

• Add an extra LOD level by splitting all the segments.

• Resample the curve evenly.

• Wait for the filament to naturally vanish, since the over-stretching weakens it
(see Section 6.3.2).

• Let the user decide when to fade out the curve, e.g. by keyframing ν(t).
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Figure 6.4: The extremities of curve C (red) are bounds of the transformation of p by
the flow of segment e0. The edges of patch S (blue) are bounds to the transformation
of p by the flow of segments e1 and e2. Using C and S, a higher bound to the distance
d between the image of point p by a segment and its children can be found.

6.4.3 Noise vortices

The amount of detail that can be simulated with CFD methods is limited, since an
increase of resolution requires a significant increase of computing resources. In or-
der to circumvent this limitation, tricks can be used in CG for amplifying realism:
various kinds of noise functions have been proposed in the literature, such as Perlin
Noise [Per85], flownoise [PN01] and stochastic divergence-free fields [SF93, RNGF03].
But their visual quality suffers from the fact that the noise does not satisfy the fluid
properties: only the last kind is divergence-free, and all of them lack the temporal
coherence of eddies. In our formalism, a user can model an efficient and high quality
noise, by spawning noise vortices in areas where turbulence is wanted. A noise-vortex
consists of a position ci, an axis of rotation ai and a rotation amplitude Γi. It only
influences marker particles, within a radius of influence ri. It is advected in the flow
like the other particles.

An advected axis cannot be simply transformed using the Jacobian of the displace-
ment J(f) (where f is defined in Equation (6.9)) like a material tangent would: the
stretching of the flow would tend to align neighboring axes along the axis of the local
stretch. In order to keep unorganized noise axes, the eigenvectors of J could be used;
but cases where they are undetermined arise. We propose a simple scheme in which
these eigenvectors are attractors (when they exist): we attach a sort of local Frenet

frame (~t, ~n, ~b) to particles, composed of tangent, normal and binormal axes, updated
as follows:

~t′ = J ·~t ~n′ = J c · ~n ~b′ = ~t × ~n (6.15)

where J c is the cofactors matrix6 of J ; see [Bar84] for justifications. Then we define

6If we denote by {~j0,~j1,~j2} the columns of J , then the columns of J c are {~j1 ×~j2,~j2 ×~j0,~j0 ×~j1}.
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noise vortices among three categories, tangent-vortices, normal-vortices and binormal-
vortices, whose rotation axes are defined by one of the frame axes.

6.5 Smoke particles

In CG applications the visual fluid features consist of interfaces (water surface), distri-
bution of markers (smoke, cloud droplets, colors), or advection of objects (e.g., leaves).
Advection of passive7 objects is done easily with our method by simply evaluating
the whirl at the object location: this provides the new object position as well as its
rotation.

Figure 6.5: Left: two leapfrogging fila-
ment and noise particles. Middle: flow
simulated without the noise. Right:
with the noise particles.

The purpose of this section is to describe
our representation of marker densities. Eule-
rian methods can either treat this density8 as
an extra quantity to be updated at grid nodes,
or rely on particles spawned in the simulated
flow [FM97]. Naturally, Lagrangian methods
rely on particles, i.e. floating markers whose
position pi is carried by the flow.

Sizeless particles make it difficult to main-
tain a correct sampling of the visible features
through simulation, and complex heuristics
must be provided to generate new particles in
undersampled dense areas. This can result in visual artifacts, especially for highly
stretched flows. Instead, we consider blob particles [SF93] to which a reference size
si and a density ρi are associated. The fluid parcel corresponding to this volume will
distort in a complicated manner through time. [SF93] reproduced this effect on large
blobs using backwarped rays, but this technique does not easily apply to real-time
rendering.

Assuming small particles and that the magnitude of their strain is tiny compared
to the large scale motion of the fluid, we handle linear anisotropic distortion of blobs,
i.e. we simulate ellipsoid blobs. This enables long smooth particles, which gives a high
quality result at low cost (see Figure 6.6). When the stretching becomes too high for
the linear assumption, we split the particle.

The ellipsoid shape of our blobs is represented by a quadratic form Qi, whose
eigenvectors {~e0,~e1,~e2} and eigenvalues {λ0, λ1, λ2} give the ellipsoid principal axes
and radii. They can be recovered by diagonalizing the matrix Qi.

Stretching Smoke Particles: The strain added during a time step is given by the
Jacobian9 of the displacement J = ∇(f) where f is defined in Equation (6.9). The
ellipsoid shape of our blobs directly represents the accumulated distortion. Starting

7Cross-interaction between large objects and the fluid is a complex problem that is beyond of the
scope of this thesis.

8It is important to note that this is the smoke density, not the fluid density.
9Note that [Ney03] only considers the norm of the strain and thus does not capture the directional

information.
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Figure 6.6: Without (left column) and with (right column) particle distortion. Without
(top row) and with (bottom row) particle splitting.

with Qi = siI, at each time step we compute how the ellipsoid is deformed with
Q′
i = J(p) ·Qi · J>(p). Note that incompressibility yields det(J) = 1, so the volume of

the blob is preserved (aside from numerical errors).
Let us show that the matrix Qi gives the shape of an ellipsoid located at the

particle’s position. Let us define a parameterization of the unit sphere around the
particle:

x = (cosψ, sinψ cos θ, sinψ sin θ)> , (ψ, θ) ∈ [0, π] × [0, 2π] (6.16)

By definition of J , the vectors J · x are located on an ellipsoid. We can use this
parameterization to build the covariance matrix of all the points on the ellipsoid, by
integrating over the sphere using the solid angle dω:

C = 3
4π

∫∫

ω
J · x · (J · x)>dω

= J · ( 3
4π

∫ 2π

ψ=0

∫ π

θ=0
x · x> sin θ dθ dψ) · J>

= J · J>
(6.17)

Therefore, the covariance matrix of the vectors J · x is the symmetric matrix J · J>.
The eigenvalues and eigenvectors of C give the axes and dimensions of the ellipsoid
[GW92].

For clarity, we stress that the covariance of the Jacobian is not the rate of strain
tensor, often denoted eij in fluid mechanics. The rate of strain tensor describes an
ellipsoid at an instant in time, while the covariance of the Jacobian describes the
ellipsoid after an interval of time.

Splitting Smoke Particles: Let us denote by λ0 the largest eigenvalue of the matrix
Qi, corresponding to the main axis ~e0 of the ellipsoid. When λ0/si exceeds a threshold
the particle is too stretched, so it is split across the stretching direction~e0. Two children
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particles are generated in place of the parent particle with the same axes, and radii
(λ0/2, λ1, λ2), using a decomposition:

Q′
i =

(

~e0 ~e1 ~e2

)





λ0/2 0 0
0 λ1 0
0 0 λ2





(

~e0 ~e1 ~e2

)−1
(6.18)

Each child keeps the same reference size si, inherits half of the density ρi, and is placed
at point pi ± λ0

2
~e0 (~e0 is assumed to be unitary).

Drawing Particles: An ellipsoid particle is easy to render since its projection in screen
space can be obtained analytically. Given two orthogonal 3D unit vectors ~x, ~y contained
in the viewing plane, the 2 × 2 projected matrix Q2D is:

Q2D =

(

~x>

~y>

)

·Qi ·
(

~x ~y
)

(6.19)

Thus, to render a particle ellipsoid we simply render a 2D ellipse on a billboard facing
the camera: the size and orientation of the billboard are determined by Q2D eigenvalues
and eigenvectors. We only need a small texture containing a circular gradient of opacity,
which is shared by all the splatted particles.

6.6 Interactive design of flows

For our tests we have implemented an interactive editor allowing users to specify and
edit a flow. While simple enough, it illustrates how our representation allows a user to
design, edit and control a flow.

Geometric objects are of two kinds: vortex filaments, and smoke particles (plus
obstacles). Vortex filaments consist of curves that can be interactively inserted in
the scene, and loaded or saved on disk. Smoke particles are treated as in particle
systems editors: their initial position is spread interactively or procedurally within
simple volumes or on surfaces. Both types of objects have various associated attributes
controlling their behavior or their appearance.

The framework of our scene editor is similar to the one of a classical CG animation
system: the user can select the current time with a slider, then add or edit the geo-
metrical content, tune the attributes, keyframe geometrical or attribute data. When
playing part of an animation in the editor, the keyframed data is treated in a stan-
dard way, while the non-keyframed data is simulated in real-time. Both kinds are thus
naturally integrated. Combinations are easy to manage: the user can keyframe the
extinction of a simulated filament, or let a filament interpolate between a simulation
and a keyframed curve, or switch from one mode to the other for a period of time.

At any time, the flow can be rendered either in fast or high quality rendering. The
quality/efficiency ratio can be controlled in two ways. Firstly, by selecting the visual
effects: e.g., shadows, complex lighting. Secondly, by tuning the smoke particles’ global
attributes: sampling density, self-subdivision enabling, ellipsoidal distortion enabling,
and associated thresholds. As shown in the results, reasonable renderings can be
obtained in real-time.
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Figure 6.7: A vortex ring following a curve.

Thus, unlike usual fluid simulators – whose various limitations from the CG point
of view are mentioned in [LF02] – the framework in our fluid editor is similar to that of
a geometric modeler. In particular, the flow features are represented as compact vector
data.

This has several consequences:

• It is easy to store the entire animated scene and to edit it interactively, going
back in time to change a detail.

• Features are meaningful and easy to handle for the artist.

• The simulation is resolution-independent, and deterministic in practice, as op-
posed to grid-based fluid simulations where results change when the grid size
changes.

• It is easy to play several minutes of animation before reaching the relevant time
range to be rendered.

• It is easy to re-render a given simulation with new rendering attributes, or to add
new frames later.

6.7 Results

Features: The effects of vortex-induced motion, noise, collision on the floor, distortion
of smoke particles, and keyframed vortices, are illustrated on Figure 6.1, 6.3, 6.5, 6.6
and 6.7. Some snapshots are shown in Figure 6.8 and 6.10. The smoke sheet in a 3D
flow (Figure 6.8(c)) deserves some comments. As is done in real-world wind tunnels,
we have placed sources of smoke such that a thin sheet of markers interacts with the
3D flow.

Complexity and Performances: Let nf be the number of filaments, kf the total
number of filament segments at the finest level, k̃f the average number of filament
segments considered taking LOD into account, nn the number of noise particles, ns the
number of smoke particles, ñn the average number of noise particles acting on a smoke
particle.

The simulation cost can be estimated from the number of evaluations of Φsegment

as (kf + nn + ns)k̃f + nsñn. Its most significant component is nsk̃f . This means that
the simulation of filaments alone is almost free, which makes the interactive modeling
of flow features easy. All the simulation time is spent on smoke particles. Accounting
for particle distortion multiplies the cost by 4 due to the finite-difference estimation of
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the Jacobian. The grid LOD factorization yields a 15% saving. See below for possible
improvements.

The rendering cost decomposes into the splatting of smoke particles (comprising
the calculation of the ellipse shapes) and the shadow calculation (self and cast). The
shadows represent the main part of the rendering cost. We measured that the rendering
cost was roughly independent of the resolution (about 2% of overhead for 12 times more
pixels).

Benchmarks: The following performance measurements were done on a Pentium 4

processor at 2.8 GHz with a nVIDIA GeForce FX 5200 graphics board. Note that we
measure simulation and rendering with smoke particles.

Simulation and visualization of filaments alone in the flow editor is real-time.

• Heavy explosion (Figure 6.5). The field is defined by 2 circle rings and 100 noise
vortices. The smoke consists of about 5,000 non-deformable particles. The animation
is rendered (without shadows) at 16 fps.

• Smoke sheet (Figure 6.8(b)). The field is defined by 10 circle rings. The smoke
consists of about 30,000 deformable particles. The animation is rendered at 0.7 fps (or
3 fps using simple particles).

• Train smoke (Figure 6.8(a)). The field is defined by 20 circle rings and 20 filaments
made of 64 segments each. The smoke consists of about 30,000 deformable particles.
The animation is rendered (with shadows) at 12 seconds per frame, 29% of which is
due to shadows, and 70% to advection ( 1

4
) and distortion ( 3

4
) of smoke particles.

• Field of plumes (Figure 6.8(c) and (d)). The field is defined by 6 filaments starting
as circles then turning to deformable filaments made of 64 segments. 96 noise particles
per filament were used for e, and no noise for d. The smoke consists of about 50,000
particles. The animation is rendered at 7 seconds per frame for d and 23 seconds per
frame for e.

• Comparison with [FSJ01], a reference for smoke simulation. It is not really possible
to compare Eulerian and Lagrangian methods fairly, because there exists no standard
by which we can compare the two complexities. Moreover, what is an easy case for one
method corresponds to the difficult case for the other and vice versa (e.g. resolved detail
vs crowded volume). Still, we tried to produce two flows where apparent complexity
was roughly comparable to the examples of [FSJ01]. In the following we have upgraded
their timings according to our CPU clock.

• The field shown on Figure 6.9(left) is simulated at 0.9 fps. It resembles their
Figure 3 which would play at 0.1 fps.

• The field shown on Figure 6.9(right) is simulated at 24 fps. It resembles their
Figure 8 which would play at 1.6 fps.
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(a) (b)

(c) (d)

Figure 6.8: Various examples of animated flows.

Figure 6.9: Benchmarking with scenes close to [FSJ01] Figure 3 and Figure 8.

Possible Enhancements to Improve Performances:

• As we have seen, deformation of smoke particles is very costly. The deformation
of a particle could probably be estimated only once in a while. Moreover, the Ja-
cobian could be calculated analytically rather than requiring 3 extra evaluations
of Φ for each particle.

• Φ is evaluated billions of times. The floating grid only saves LOD estimations.
It should be possible to save a lot more by interpolating in grid cells the compo-
nents of Φ corresponding to distant vortices. In our formalism the results of the
integration Φ is a whirl operator and not directly a new point or velocity, so a
good quality interpolation can be expected.

• Smoke particles keep splitting with stretching, thus numerous diluted particles
tend to appear. In our application we remove particles under a chosen density
threshold, but this can lead to visual artifacts (vanishing smoke) since the ac-
cumulation of numerous diluted particles may be visible. Neighboring diluted
particles should be resampled and combined into bigger particles.
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6.8 Conclusion

Our method allows an artist quickly and easily to design and simulate flows such as
turbulent smoke by relying on a compact high-level primitive, the vortex filament, which
induces a velocity field. Filaments are geometric objects easy to edit and animate in a
modeling system. We also presented a rendering scheme based on deformable particles
to represent and render the smoke advected in this field. Our Lagrangian vorticity
scheme does not suffer from numerical dissipation and is not spatially bounded by a
static grid. The simulation is independent of the rendering, and the smoke resolution
can be chosen and changed afterwards without affecting the simulation. Our animated
examples show that very detailed results can be generated efficiently.

The issues faced by Vortex Methods in fluid engineering are also of interest for CG,
even if in our domain we can circumvent most of the constraints. These issues concern
complex environments and long simulations. For the former, complex boundary condi-
tions rather should be considered, and LOD should be extended to account for clusters
of filaments. For the latter, the complex interaction on filaments should be modeled,
especially their reconnections and collapses.

The presented fluid model shows how a space deformation is related to a visually
acceptable fluid. The next step in shape modeling by space deformation research would
be to define a set of useful operations that mimic fluid behaviour.
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(a) (b) (c)

Figure 6.10: Snapshots of sequences of smoke animation. Left: train smoke, (a) fila-
ments of vorticity, (b) rendering with simple particles, (c) rendering with deformable
particles. Right: field of plumes.
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Chapter 7

Hexanions

S
ome of the popular representations for rigid object motion include 4×4 real matrix
or a combination of vector and quaternion [Ale02a, DKL98]. But a real matrix is
capable of representing a too large set of transformations, including scaling and

shear. Another drawback with matrices is the accumulation of numerical errors which
make it deviate from a rigid transformation, and requires us to renormalize the matrix
once in a while. On the other hand, a drawback of using a combination of vector and
quaternion is the separation of the motion into two components that have to be sep-
arately. This component separation can make implementation on computing devices
unclear or unnecessarily long. While there are surely other alternatives for represent-
ing numerically rigid motion, we propose a formalism called hexanion. Hexanion is
an algebraic structure for a compact and natural representation of the rigid transfor-
mations: translations, rotations and twists. The number of dimensions of hexanion
space is six, which is also the number of degrees of freedom for rigid transformations.
We have recently discovered that this 6D representation of twists was already known
[BM98] and is in fact a Lie algebra [Gal01], although we have not found evidence of the
existence of the closed-form twist exponential or multiplication operator with points
and vectors [Gal01].

7.1 Motivation

The motivation behind the formalism of hexanions is the necessity to compute fractions
of a rigid transformation and combine multiple rigid transformations. For a transfor-
mation represented by a 4 × 4 real matrix, taking a fraction h can be done with the
following:

Mh = exp(h logM) (7.1)

where
expM =

∑∞
k=0

Mk

k!

logM = −∑∞
k=1

(I−M)k

k
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M. Alexa [Ale02a] proposes to use numerical methods to achieve this in the general
case. In the case of a rigid transformation, a matrix is however a poor representation.
A better choice is to use a hexanion, which can be interpreted as a shorthand for logM
when the matrix M is a twist (this is inaccurate, since log is undefined). A hexanion
is a 6D element, written with a pair of vectors:

〈~ω, ~m〉 (7.2)

The relation between a hexanion and the logarithm of a twist matrix is:

logM =









0 −ωz ωy mx

ωz 0 −ωx my

−ωy ωx 0 mz

0 0 0 0









(7.3)

We called the above the hexanion’s matrix form, and we denote it with round brackets,
(~ω, ~m). Note that in a hexanion, the part ~ω is in fact the logarithm of a quaternion.

7.2 Overview

The hexanion space is a real vector space, whose elements represent twists, also known
as screws. A twist is a translation of magnitude t in a direction along a line defined by a
point c and a unit vector ~n together with a rotation of angle θ about axis ~n. Mozzi and
Cauchy have proved that any motion of a rigid body in space at every instant is a twist
motion [Weib]. The following expression is the hexanion of the twist transformation
defined as above, illustrated by Figure 7.1:

〈θ~n, θc× ~n + t~n〉 (7.4)

Pure translation or rotation are obtained by setting either θ or t to zero. Combining
or interpolating twists with hexanions is as simple as vector algebra. For instance if
〈~ω, ~m〉 denotes the new position, a motion from the origin to 〈~ω, ~m〉 is described as
follows:

〈u~ω, u~m〉, u ∈ [0, 1] (7.5)

With the definition of operator ∗ described in the following section, the trajectory
parameterized in u of the point of a rigid object is simply described as follows:

〈u~ω, u~m〉 ∗ p, u ∈ [0, 1] (7.6)

7.3 Algebraic properties

In this section, algebraic properties of the hexanion are reviewed.
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θ

c

~n

t

Figure 7.1: A twist is a simultaneous translation and rotation about the same axis.
Although the point c is not unique, the hexanion of a twist is, since it features c × ~n.

Algebraic structure: Define the hexanion space, as the real vector space (R6,+, ·). A
pair of 3D vectors is a convenient notation for manipulating the elements of hexanion
space, denoted with angle brackets:

〈~ω, ~m〉

Consider two typical hexanions A = 〈~ωA, ~mA〉 and B = 〈~ωB, ~mB〉. Then λ · A is the
hexanion whose components are those of A multiplied by λ, i.e. 〈λ~ωA, λ~mA〉 and A+B
is the hexanion whose components are the sum of respective components in A and B,
i.e. 〈~ωA + ~ωB, ~mA + ~mB〉.

Exponential: In its matrix form, a hexanion can be raised to integer powers. The
integer powers of hexanion matrices are used for defining the exponential of a hexanion
matrix, as follows:

exp(~ω, ~m) =
∞
∑

k=0

(~ω, ~m)k

k!
(7.7)

The exponential of a hexanion is the 4× 4 projective matrix of a rigid transformation.
Conveniently, the exponential of a hexanion has a closed-form, proved in Section 7.5:

exp(~ω, ~m) =











I + (~ω, ~m) if ‖~ω‖ = 0

I + 1−cos ‖~ω‖
‖~ω‖2 (~ω, ~m)2 + sin ‖~ω‖

‖~ω‖ (~ω, ~m) if ~ω · ~m = 0

I + (~ω, ~m) + 1−cos ‖~ω‖
‖~ω‖2 (~ω, ~m)2 + ‖~ω‖−sin ‖~ω‖

‖~ω‖3 (~ω, ~m)3 otherwise

(7.8)

Note that the above is not a piecewise definition of the exponential, but it is a con-
venient formulation of the cases where the exponential simplifies, since we aim at
numerical applications. In some applications it can be useful to use a first order ap-
proximation of the exponential, which conveniently corresponds to the translation part
of the hexanion :

exp(~ω, ~m) ≈ I + (~ω, ~m) (7.9)
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Hexanion-point multiplication: We define the multiplication operator, ∗, of a point,
p = (px, py, pz)

>, by a hexanion 〈~ω, ~m〉, as follows:

〈~ω, ~m〉 ∗ p = exp(~ω, ~m) · p (7.10)

By using the approximation of the exponential, the above can be approximated if
necessary:

〈~ω, ~m〉 ∗ p ≈ p + ~m + ~ω × p (7.11)

Hexanion-vector multiplication: We define the multiplication operator, ∗, of a vec-
tor, ~v = (vx, vy, vz)

>, by a hexanion 〈~ω, ~m〉, as follows:

〈~ω, ~m〉 ∗ ~v = exp(~ω, ~m) · ~v (7.12)

By using the approximation of the exponential, the above can be approximated. If the
reader decides to use the approximation, he must realize that it does not preserve the
length of ~v, as opposed to the closed-form of Equation 7.12:

〈~ω, ~m〉 ∗ ~v ≈ ~v + ~ω × ~v (7.13)

Neutral: The neutral hexanion element is 〈0, 0〉. It also satisfies:

〈0, 0〉 ∗ p = p (7.14)

〈0, 0〉 ∗ ~n = ~n (7.15)

Hexanion inverse: The inverse of 〈~ω, ~m〉 is 〈−~ω,−~m〉. The inverse describes the
reverse motion. The inverse satisfies:

〈−~ω,−~m〉 ∗ (〈~ω, ~m〉 ∗ p) = p (7.16)

7.4 Hexanion subgroups

This section presents the hexanion-to-matrix conversion, the hexanion-point multipli-
cation and the hexanion-vector multiplication. The hexanion-to-matrix conversion is
also referred to as the exponential. Hexanions can be classified in three sets: transla-
tion, rotation and twists. Knowing the type of a hexanion can simplify computations.
In the general case, fast expressions can be derived for particular uses of hexanions.

7.4.1 Translation-hexanion:

The set of translations is a subset of the hexanion space. The hexanion of a translation
of vector ~m is:

〈0, ~m〉 (7.17)

136



Conversely, a hexanion 〈~ω, ~m〉 is a translation if ‖~ω‖ = 0. The exponential of a
translation-hexanion is much simpler than in the general case, and is defined as follows:

exp(0, ~m) =









1 0 0 mx

0 1 0 my

0 0 1 mz

0 0 0 1









(7.18)

The multiplication of a point, p, and a normal ~v by a translation-hexanion, 〈0, ~m〉,
produce simple expressions:

〈0, ~m〉 ∗ p = p + ~m
〈0, ~m〉 ∗ ~v = ~v

(7.19)

7.4.2 Rotation-hexanion:

The set of rotations is a subset of the hexanion space. Note that we refer to the set of
rotations about a point, more general than unit quaternions which are rotations about
the origin. The hexanion of a rotation defined by axis ~ω, center c, and angle ‖~ω‖ is:

〈~ω, c × ~ω〉. (7.20)

Conversely an element 〈~ω, ~m〉 is a rotation if ~ω · ~m = 0. The center, angle and unit axis
of rotation are given by the following equations:

c = ~ω×~m
‖~ω‖2

θ = ‖~ω‖
~n = ~ω

‖~ω‖

(7.21)

The exponential of a rotation-hexanion is simpler than in the general case, and is
defined as follows:

exp(~ω, ~m) = I +
1 − cos ‖~ω‖

‖~ω‖2
(~ω, ~m)2 +

sin ‖~ω‖
‖~ω‖ (~ω, ~m) (7.22)

The multiplication of a point, p, by a rotation 〈~ω, ~m〉, has a closed-form expression:

〈~ω, ~m〉 ∗ p = p + 1−cos ‖~ω‖
‖~ω‖2 ~ω × ~ξ + sin ‖~ω‖

‖~ω‖
~ξ

where ~ξ = ~ω × p + ~m
(7.23)

The multiplication of a vector, ~v, by a rotation 〈~ω, ~m〉, has a closed-form expression:

〈~ω, ~m〉 ∗ ~v = ~v + 1−cos ‖~ω‖
‖~ω‖2 ~ω × (~ω × ~v) + sin ‖~ω‖

‖~ω‖ ~ω × ~v (7.24)

7.4.3 Twist-hexanion:

Translations and rotations are particular cases of twists. Hexanion space is in fact the
set of twists. The hexanion of a twist is defined by a rotation angle θ around the axis
defined by direction ~n and center c, and a translation of magnitude t along ~n:

〈θ~n, θc× ~n + t~n〉 (7.25)
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Conversely, if we denote twists with the general 6D vector 〈~ω, ~m〉, the rotation part
and the translation part can be identified. We denote these parts Rot and Trs :

Rot〈~ω, ~m〉 = 〈~ω, 1
‖~ω‖2~ω × ~m × ~ω〉

Trs〈~ω, ~m〉 = 〈0, ~m·~ω
‖~ω‖2~ω〉

(7.26)

〈~ω, ~m〉 = Rot〈~ω, ~m〉 + Trs〈~ω, ~m〉 (7.27)

The exponential of a rotation-hexanion is given by the general case, as follows:

exp(~ω, ~m) = I + (~ω, ~m) +
1 − cos ‖~ω‖

‖~ω‖2
(~ω, ~m)2 +

‖~ω‖ − sin ‖~ω‖
‖~ω‖3

(~ω, ~m)3 (7.28)

The multiplication of a point p by a twist-hexanion 〈~ω, ~m〉 has a closed-form expression:

〈~ω, ~m〉 ∗ p = p+ ~m + ~ω × (~ω × (ap+ 1−b
‖~ω‖2 ~m) + a~m + bp)

where a = 1−cos(‖~ω‖)
‖~ω‖2

b = sin(‖~ω‖)
‖~ω‖

(7.29)

The multiplication of a vector, ~n, by a twist-hexanion 〈~ω, ~m〉, has a closed-form ex-
pression. Notice that this expression is exactly the same as in the case of the rotation-
hexanion, since a vector is a direction and is unaffected by translations:

〈~ω, ~m〉 ∗ ~v = ~v + 1−cos ‖~ω‖
‖~ω‖2 ~ω × (~ω × ~v) + sin ‖~ω‖

‖~ω‖ ~ω × ~v (7.30)

7.5 Closed-form exponential

We show here that the exponential of a hexanion’s matrix form has a closed-form.
Let us denote the matrix form of a hexanion by M = (~ω, ~m). The following is its
exponential:

expM =
∑∞

k=0
Mk

k!

= I +M +
∑∞

k=1
M2k

(2k)!
+
∑∞

k=1
M2k+1

(2k+1)!

(7.31)

If M is a translation, then the solution is expM = I + M . Now let us assume in the
following that M is not a translation. Using the relation between a hexanion and its
rotation component, the following equalities can be obtained:

M2k+1 = (−‖~ω‖2)k RotM
M2k = (−‖~ω‖2)k−1M2 (7.32)

In the exponential, the above can then be substituted for their values:

expM = I +M +
∞
∑

k=1

(−‖~ω‖2)k−1

(2k)!
M2 +

∞
∑

k=1

(−‖~ω‖2)k

(2k + 1)!
RotM (7.33)

Since we assume that M is not a translation, ~ω is different from zero, and terms can
be factored out from the sums:

expM = I +M − 1

‖~ω‖2

∞
∑

k=1

(−‖~ω‖2)k

(2k)!
M2 +

1

‖~ω‖

∞
∑

k=1

‖~ω‖(−‖~ω‖2)k

(2k + 1)!
RotM (7.34)
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In the first and second sums, parts of the cosine and sine of ‖~ω‖ can be identified:

expM = I +M − 1

‖~ω‖2
(cos ‖~ω‖ − 1)M 2 +

1

‖~ω‖(sin ‖~ω‖ − ‖~ω‖)RotM (7.35)

Using the relation between RotM and M to replace RotM , we obtain the final formula:

expM = I +M +
1 − cos ‖~ω‖

‖~ω‖2
M2 +

‖~ω‖ − sin ‖~ω‖
‖~ω‖3

M3 (7.36)

In the case where M is a rotation, the formula further simplifies using the equality
M3 = −‖~ω‖2M .

7.6 Hexanion product

Let us define two hexanions h0 = 〈~ω0, ~m0〉 and h1 = 〈~ω1, ~m1〉. They can be applied one
after the other to a point p as follows:

h1 ∗ (h0 ∗ p) (7.37)

In this section, we will define cases of the hexanion product operator h1 ∗ h0, whose
result is a hexanion, i.e. useful for collapsing a series of hexanions into a single one.
Each hexanion hi carries the point it multiplies along a trajectory. Since they are
arbitrary hexanions, there is a discontinuity along the trajectory followed by p, when
h0 ∗ p is suddenly multiplied by h1. By collapsing hexanions, some information about
the trajectory of p is inevitably lost. In the following section we propose convenient
formulas for the product of specific hexanions. We have not yet developed the complete
set of products. This may acknowledge some of the problems with hexanions.

7.6.1 Translation-translation

Let us define two translation hexanions h0 = 〈0, ~m0〉 and h1 = 〈0, ~m1〉. Their product
hS = h0 ∗ h1 = 〈0, ~m0 + ~m1〉 is commutative and is a translation.

7.6.2 Translation-rotation

Let us define two hexanions: a translation hT = 〈0, ~mT 〉 and a rotation hR = 〈~ωR, cR×
~ωR〉. Their product hS = hT ∗ hR is a twist (called also screw). The hexanion hS =
〈~ωS, ~mS〉 is given by

~ωS = ~ωR
~mS = ~mR + ~mT + ~mT×~ωR

2
+ ( ‖~ωR‖

2 tan(‖~ωR‖/2) − 1)~ωR×~mT×~ωR

‖~ωR‖2

(7.38)

7.6.3 Rotation-translation

Their product hS = hR ∗hT is a twist (called also screw). The hexanion hS = 〈~ωS, ~mS〉
is given by

~ωS = ~ωR
~mS = ~mR + ~mT − ~mT×~ωR

2
+ ( ‖~ωR‖

2 tan(‖~ωR‖/2) − 1)~ωR×~mT×~ωR

‖~ωR‖2

(7.39)
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7.7 Properties

The cube of a hexanion matrix is a rotation-hexanion matrix:

(~ω, ~m)3 = −‖~ω‖2Rot(~ω, ~m) (7.40)

The cube of a hexanion is related to the rotation component of a hexanion through the
following:

Rot(~ω, ~m) =
−1

‖~ω‖2
(~ω, ~m)3 (7.41)

The square of a hexanion matrix is not a hexanion matrix, but satisfies the following:

(Rot(~ω, ~m))2 = (~ω, ~m)2 (7.42)

In general, the operator ∗ is non-commutative

〈~ω0, ~m0〉 ∗ 〈~ω1, ~m1〉 ∗ p 6= 〈~ω1, ~m1〉 ∗ 〈~ω0, ~m0〉 ∗ p (7.43)

The following is a relation between the exponential of a hexanion and the matrix form
of that hexanion :

∂

∂h
Mh

∣

∣

∣

∣

h=0

= (~ω, ~m) (7.44)

The multiplications of a point or a vector by the matrix form have simple expressions.
The following expressions involve a matrix-point multiplication, and are useful for
developing the closed-form formulas for transforming a point or a normal. They should
not be mis-interpreted by the reader as the transform of a point or a normal:

(~ω, ~m) · p = ~ω × p + ~m
(~ω, ~m) · ~v = ~ω × ~v

(7.45)

In fact, (~ω, ~m) · p is the velocity of the twist at p. Note that the multiplication of a
point is a normal, thus (~ω, ~m)2 · p = ~ω × (~ω × p + ~m).

7.8 Matrix to hexanion conversion:

This conversion is not meant to be optimal, and is expected to be done only very few
times, for instance when importing a rigid transformation. As a guideline, we recom-
mend representing rigid transformations with hexanions and avoid this conversion. Let
us define three unit vectors ~x, ~y and ~z, forming a right-handed orthogonal system. Let
us define a position o. These define a 4 × 4 matrix of a rigid transformation from the
origin to that position.

M =









xx yx yx ox
xy yy yy oy
xz yz yz oz
0 0 0 1









(7.46)
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We know that this matrix can be written with only six components, in the form of a
hexanion:

〈θ~n, θ~c × ~n + t~n〉 (7.47)

Vector ~n is the unit eigenvector of matrix M associated with eigenvalue 1:

M · ~n = ~n (7.48)

The solution for ~n is:

~n =
~n0

‖~n0‖
(7.49)

where ~n0 =







~x + (1 − yy − zz, yx, zx)
> if 1 + xx − yy − zz 6= 0

~y + (xy, 1 − xx − zz, zy)
> if 1 − xx + yy − zz 6= 0

~z + (xz, yz, 1 − xx − yy)
> if 1 − xx − yy + zz 6= 0

(7.50)

Once unit vector ~n is found, point c and translation are found by solving the following:

M · c = c + t~n (7.51)

The solution for the magnitude of the translation is:

t = o · ~n (7.52)

The solution for the center, c, is the following:

c =











(0,szzy+sy(1−zz),syyz+sz(1−yy))

1+xx−yy−zz
if 1 + xx − yy − zz 6= 0

(szzx+sx(1−zz),0,sxxz+sz(1−xx))
1−xx+yy−zz

if 1 − xx + yy − zz 6= 0
(syyx+sx(1−yy),sxxy+sy(1−xx),0)

1−xx−yy+zz
if 1 − xx − yy + zz 6= 0

(7.53)

where s = o− t~n (7.54)

For any vector ~v non-aligned with vector ~n, the angle of rotation, θ, is given by the
following:

cos θ = ~u ·M~u
sin θ = (~n × ~u) ·M~u

(7.55)

where ~u =
~v − (~v · ~n)~n

‖~v − (~v · ~n)~n‖ (7.56)

There are many solutions for the angle θ, given by θ + 2kπ, k ∈ Z. With the matrix
form, the original value of θ is lost. The hexanion that describes a straight path between
between position matrix M0 and position matrix M1 is computed as above, with M
defined as follows:

M = M1M
−1
0 (7.57)
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7.9 Conclusion

Hexanions are useful for computing positions of a rigid object along its trajectory:

u〈~ω, ~m〉, u ∈ [0, 1] (7.58)

Hexanions can be used to interpolate two positions, where 〈~ω0, ~m0〉 and 〈~ω1, ~m1〉 may
be obtained using the matrix-to-hexanion conversion:

(1 − u)〈~ω0, ~m0〉 + u〈~ω1, ~m1〉, u ∈ [0, 1] (7.59)

Hexanions are very useful for weighted sums of rigid transformations:

∑

i φi〈~ωi, ~mi〉
∑

i φi
(7.60)

On a computing device, the most expensive part of hexanions is the computation of
the exponential. Depending on the scenario, this computation can be done only once
to obtain a 4×4 matrix, or does not need to be computed explicitly: to deform a point
or a vector, a closed-form formula can be used.

Limitations: At the beginning, we argued that having the translation and rotation
components merged in a single formalism was an advantage in terms of simplifying the
handling of a twist. From the point of view of a user who wants precise control, this can
be seen as an inconvenience: it prevents the choice of individual schemes to handle the
interpolation of the translation and rotation part of the motion. It is however possible
to express this separation in the hexanion formalism. The following describes a motion
straight from a point, c, to another point, p + ~m, accompanied by a rotation about a
center of rotation c:

〈~ω, (〈0, ~m〉 ∗ c) × ~ω〉 ∗ 〈0, ~m〉 (7.61)

Given the transformation, the description of the motion is straightforward:

〈u~ω, (〈0, u~m〉 ∗ c) × (u~ω)〉 ∗ 〈0, u~m〉, u ∈ [0, 1] (7.62)

From this and the above formulas we can develop a closed-form trajectory C(p), of a
point, p:

C(p, u) = p + u~m + 1−cos ‖u~ω‖
‖~ω‖2 ~ω × ~ξ + sin ‖u~ω‖

‖~ω‖
~ξ

where ~ξ = ~ω × (p − c)
(7.63)
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Conclusion

S
weepers, our main contribution introduced in Chapter 3, is a framework for defin-
ing swept deformation operations for shape modeling. It permits the description
of a family of shape interfaces based on gesture, between the artist and the math-

ematics describing the shape. Hence sweepers enables an artist to handle shapes in a
more efficient way rather than directly modifying a shape’s mathematical description.
Because sweepers are foldover-free, they easily maintain a shape coherency. We have
found that this is not in contradiction to changing the topology of a shape, which can
be done in a foldover-free yet discontinuous manner.

We also propose swirling-sweepers and swept-fluid in Chapter 4, two types of
swept-deformation for describing shape modeling interfaces that implicitly preserve
the shape’s volume. Subjectively, swirling-sweepers is the most effective modeling
technique defined in the sweepers framework.

The separation of the shape’s interface and the shape’s description leads us to
explore four alternative ways to describe a shape’s surface or volume for rendering:
an updated mesh, a point-sampled surface, a discrete implicit surface and inverse ray-
tracing. While our proposed methods are sufficient in a wide range of situations, more
research should be done in this area.

We have realized that sweepers can be used for the more general purpose of de-
scribing high order trajectories in continuums, and this has stimulated our interest
in other areas of Computer Graphics: we have derived from swirling-sweepers a tech-
nique for animating visual fluids in Chapter 6, and have used sweepers in the context
of keyframed animation in Section 3.6.

With modeling by space deformation, the separation of the shape’s description
from the set of operations performed on the shape identifies clearly two branches for
future research.

Firstly, the fluid model presented in Chapter 6 shows how a space deformation may
be related to a visually acceptable fluid. With the conclusion of Chapter 4 suggesting
that an operation on the shape mimicking an incompressible fluid provides an efficient
tool to the artist, future space deformation may investigate further fluid dynamics
and, more importantly, techniques for specifying small scale features on the surface
of the shape.

Secondly, the shape descriptions proposed in Chapter 5 possess both advantages and
inconveniences. To our knowledge, there is no satisfying shape description that can
be used as a “universal material”: simple to implement as well as capable of enduring
any operation desired by the artist, for example controlled and uncontrolled topology
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changes, sharp features, small and large scale editing and texturing. We suggest that
future research should focus on defining the requirement of a shape description for
shape modeling, and solve the related issues to produce a versatile shape description
suitable for shape modeling.
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Appendix A

Affine Transformations

This section describes the construction of 4 × 4 simple matrices. Visualizing these
matrices is of relevance for understanding and building more complex deformations.
The transformations of a point, p = (px, py, pz)

>, or a vector, ~v = (vx, vy, vz)
>, do

not involve matrix algebra, and their closed-forms are given. For some applications,
the logarithm of the matrix may be required, and their closed-forms are provided: the
product logM · p gives the velocity of p under the transformation.

A.1 Translation

Let us define a translation vector ~t = (tx, ty, tz)
>. The fourth homogeneous coordinate

of ~t is ignored. The translation matrix is:

T~t =









1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1









(A.1)

The deformation of a point and a normal are respectively:

T~t · p = p +~t
T~t · ~v = ~v

(A.2)

The logarithm of a translation matrix is:

log T~t =









0 0 0 tx
0 0 0 ty
0 0 0 tz
0 0 0 0









(A.3)

The logarithm of a translation at a point and a normal are respectively:

log T~t · p = ~t
log T~t · ~v = 0

(A.4)
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A.2 Scale

Let us define a scale factor s ∈ R. The matrix of a scale centered at the origin is much
more simple than that of a scale centered at a point, c. We describe the two cases.

A.2.1 Scale centered at the origin

Ss =









s 0 0 0
0 s 0 0
0 0 s 0
0 0 0 1









Ss · p = sp
Ss · ~v = s~v

log Ss =









log s 0 0 0
0 log s 0 0
0 0 log s 0
0 0 0 0









log Ss · p = log(s)p
log Ss · ~v = log(s)~v

A.2.2 Scale centered at a point c

Scale center =̧(cx, cy, cz)
>

Ss,c = Tc · Ss · T−c =









s 0 0 (1 − s)cx
0 s 0 (1 − s)cy
0 0 s (1 − s)cz
0 0 0 1









Ss,c · p = p + (s− 1)(p − c)
Ss,c · ~v = s~v

log Ss,c =









log s 0 0 −cx log s
0 log s 0 −cy log s
0 0 log s −cz log s
0 0 0 0









A.3 Non-uniform scale

Let us define a unit scale vector ~n = (nx, ny, nz)
>, along which the scale is performed.

The matrix of a non-uniform scale centered at the origin is much more simple than
that of a non-uniform scale centered at a point, c. We describe the two cases.
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A.3.1 Centered at the origin

Ss,~n = I + (s− 1)~n · ~n> =









1 + (s− 1)n2
x (s− 1)nxny (s− 1)nxnz 0

(s− 1)nxny 1 + (s− 1)n2
y (s− 1)nynz 0

(s− 1)nxnz (s− 1)nynz 1 + (s− 1)n2
z 0

0 0 0 1









Ss,~n · p = p + (s− 1)(p · ~n)~n
Ss,~n · ~v = ~v + (1/s− 1)(~v · ~n)~n

log Ss,~n = log(s)~n · ~n> =









log(s)n2
x log(s)nxny log(s)nxnz 0

log(s)nxny log(s)n2
y log(s)nynz 0

log(s)nxnz log(s)nynz log(s)n2
z 0

0 0 0 0









A.3.2 Centered at a point

Ss,~n,c = Tc · Ss,~n · T−c

=









1 + (s− 1)n2
x (s− 1)nxny (s− 1)nxnz (1 − s)(c · ~n)nx

(s− 1)nxny 1 + (s− 1)n2
y (s− 1)nynz (1 − s)(c · ~n)ny

(s− 1)nxnz (s− 1)nynz 1 + (s− 1)n2
z (1 − s)(c · ~n)nz

0 0 0 1









Ss,~n,c · p = p + (s− 1)((p − c) · ~n)~n
Ss,~n,c · ~v = ~v + (1/s− 1)(~v · ~n)~n

log Ss,~n,c = Tc · log Ss,~n · T−c

A.4 Rotation

Let us define a rotation of angle θ around unit axis ~n = (nx, ny, nz, 0)
>. We define

positive rotations to be clockwise in the viewing direction ~n. The reader should be
aware that it may is more convenient to use quaternions [DKL98]. The formulas below
may be obtained by factorizing the matrix of a rotation with a quaternion:

A.4.1 Centered at the origin

Rθ,~n = (1 − cos(θ))(~n · ~n>)

+









cos(θ) − sin(θ)nz sin(θ)ny 0
sin(θ)nz cos(θ) − sin(θ)nx 0
− sin(θ)ny sin(θ)nx cos(θ) 0

0 0 0 1









Rθ,~n · p = (1 − cos(θ))(~n · p)~n + cos(θ)p + sin(θ)~n × p
Rθ,~n · ~v = (1 − cos(θ))(~n · ~v)~n + cos(θ)~v + sin(θ)~n × ~v
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logRθ,~n =









0 −θnz θny 0
θnz 0 −θnx 0
−θny θnx 0 0

0 0 0 0









logRθ,~n · p = θ~n × p
logRθ,~n · ~v = θ~n × ~v

A.4.2 Centered at a point

Rθ,~n,c = Tc ·Rθ,~n · T−c

Rθ,~n,c · p = (1 − cos(θ))(~n · (p − c))~n + sin(θ)~n × (p − c) + cos(θ)(p − c) + c
Rθ,~n,c · ~v = (1 − cos(θ))(~n · ~v)~n + sin(θ)~n × ~v + cos(θ)~v + c

~a = θi~vi
~b = c ×~a

logRθ,~n,c =









0 −az ay bx
az 0 −ax by
−ay ax 0 bz
0 0 0 0









(A.5)
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Appendix B

Constant-Volume Swirl

B.1 Constant volume basic swirl

Let us prove that a basic swirl f(p), preserves the volume everywhere. The determinant
of the Jacobian of f , a scalar denoted det J is the ratio between the deformed volume
and the initial volume measured at a point (see Figure B.1):

det J =
ε→0

det(f(p+ε~x)−f(p),f(p+ε~y)−f(p),f(p+ε~z)−f(p))
ε3

= det(∂f
∂x
, ∂f
∂y
, ∂f
∂z

)
(B.1)

Thus to show that a swirl preserves volume, we need to show that the determinant of
the Jacobian, det J , is equal to 1 everywhere.

f(p + ε~z)

f(p)p + ε~x

p + ε~y

p

p + ε~z

f(p + ε~x)

f(p + ε~y)

Figure B.1: Left: an element of volume ε3. Right: the volume of the deformed element
is (f(p+ε~x)−f(p)) · ((f(p+ε~y)−f(p))× (f(p+ε~z)−f(p))). With ε→ 0, the volumes
ratio is the determinant of the Jacobian of f .

In this section, we denote by p a spatial element and by p it corresponding quater-
nion. Both are linked with the following relation: p = (0, p). A rotation of angle 2θ
around ~n and its powers in φ can be modeled with a quaternion:

qφ = (cos(φθ), sin(φθ)~n) (B.2)
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Hence the swirl deformation of a point p = (x, y, z)> is

f(p) = qφ ∗ p ∗ qφ (B.3)

We can assume without loss of generality that the rotation is centered at the origin.
To express the Jacobian, we need the three partial derivatives of f . The first partial
derivative of f is

∂f(p)

∂x
=
∂qφ

∂x
∗ p ∗ qφ + qφ ∗ ex ∗ qφ + qφ ∗ p ∗ ∂q

φ

∂x
(B.4)

The reader can verify the quaternion equality:

∂qφ

∂x
= −θ∂φ

∂x
(sin(φθ),− cos(φθ)~n) (B.5)

Using B.5, the leftmost term of the right side of Equation (B.4) is a quaternion:

∂qφ

∂x
∗ p ∗ qφ

= θ ∂φ
∂x

(− sin(φθ), cos(φθ)~n) ∗ p ∗ qφ

= θ ∂φ
∂x

(− cos(φθ)~n · p,− sin(φθ)p + cos(φθ)~n × p) ∗ qφ

= θ ∂φ
∂x

(−~n · p, cos(2φθ)(~n × p) − sin(2φθ)(~n × p) × ~n)

The reader can verify similarly that the rightmost term of equation B.4 is also a quater-
nion:

∂qφ

∂x
∗ p ∗ qφ = θ ∂φ

∂x
(~n · p, cos(2φθ)(~n × p) − sin(2φθ)(~n × p) × ~n)

The partial derivative of f in x is a vector:

∂f(p)
∂x

= 2θ ∂φ
∂x

(cos(2φθ)(~n × p) − sin(2φθ)(~n × p) × ~n) + qφ ∗ ex ∗ qφ

Let us introduce ~qx and ~u for the sake of simplicity:

qx = qφ ∗ ex ∗ qφ

~u = 2θ(cos(2φθ)(~n × p) − sin(2φθ)(~n × p) × ~n)

The partial derivative in x shortens to:

∂f(p)

∂x
=
∂φ

∂x
u + qx (B.6)

The two other partial derivatives of f are obtained by substituting x for y or z. Since
a rotation preserves lengths and angles, we can write:

~qx = ~qy × ~qz

Let us develop the determinant of the Jacobian by replacing ∂f(p)
∂x

, ∂f(p)
∂y

and ∂f(p)
∂z

by
their values:

det J = ∂f
∂x

· (∂f
∂y

× ∂f
∂x

)

= 1 + ~u · (∂φ
∂x
qx + ∂φ

∂y
qy + ∂φ

∂z
qz)
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We can assume without loss of generality that ~n = ~ex. This provides expressions for
the rotated canonic set:

~qx = ~ex
~qy = cos(2φθ)~ey + sin(2φθ)~ez
~qz = cos(2φθ)~ez − sin(2φθ)~ey

This assumption also provides a simple expression for the double cross product:

(~n × p) × ~n = y~ey + z~ez

We will now use the fact that the tool is spherical. We model the field function φ as a
function of the distance to the origin, d(p). The field can be partially derived:

∂φ(d(p))

∂x
=
∂φ

∂d

∂d(p)

∂x
=
∂φ

∂d

x

d(p)

With this, the determinant of the Jacobian becomes:

det J

= 1 + ∂φ
∂d

2θ
d(p)

(cos()~ex × p − sin()(y~ey + z~ez))·
(x~ex + (y cos() − z sin())~ey + (y sin() + z cos())~ez)

The above dot product expands to zero, hence det J is equal to 1 everywhere. Therefore
the deformation stretches space with no expansion or compression.

B.2 Swirl angle

The image of a point p in the center of a circle of swirls is given by Equation 4.1.
Since the point is at the center, one can substitute φi for 1/2 (using the notation of
Section 3.1.1):

f(p) =

(

n−1
⊕

i=0

(
1

2
�Mi)

)

· p (B.7)

The speed of this deformation at p is given by the logarithm:

~v =
n−1
∑

i=0

1

2
log(Mi) · p (B.8)

Since Mi is a rotation matrix, this simplifies (see Equation A.5):

~v =
θ

2

n−1
∑

i=0

(~vi × (p − ci)) (B.9)

By taking the Euclidean norm:

‖~v‖ =
θ

2

n−1
∑

i=0

‖p − ci‖ (B.10)
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Since the centers are equidistant to p:

‖~v‖ =
θ

2
nr (B.11)

Therefore the angle is :

θ =
2‖~v‖
nr

(B.12)
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Appendix C

Monotonic Mostly-C1 Interpolation

C.1 Monotonic Mostly-C1 Interpolation

An easy way of interpolating data is to use piecewise polynomials. The data consists
of a set of values fk defined at the locations k = 0, . . . N − 1. As done by [FSJ01], a
value at a point t ∈ [tk, tk+1] can be interpolated using a Hermite interpolant

f(t) = a0 + a1(t− tk) + a2(t− tk)
2 + a3(t− tk)

3

where
a3 = dk + dk+1 − 2∆k

a2 = 3∆k − 2dk − dk+1

a1 = dk
a0 = fk

and
dk = (fk+1 − fk−1)/2 , ∆k = fk+1 − fk

For convecting a field, it is important not to overshoot the data. [FSJ01] propose a
necessary but not sufficient condition to control monotonicity: their strategy is to set
the slopes to 0 whenever the slopes have a sign different from ∆k. Their interpolant is
not always monotonic and can overshoot the data, as shown in Figure C.1(b). Also, it
loses C1 continuity unnecessarily in cases where the slope of two joining polynomials
could be set to 0.

We propose a sufficient condition, by clamping the slopes in a interval propor-
tional to ∆k. By doing this, our interpolant will always be monotonic, and will be C1

continuous as long as it stays monotonic.
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if (∆k < 0) else
{ {

if (3∆k > dk) if (3∆k < dk)
dk = 3∆k; dk = 3∆k;

else if (dk > ∆k/2) else if (dk < ∆k/2)
dk = 0; dk = 0;

if (3∆k > dk+1) if (3∆k < dk+1)
dk+1 = 3∆k; dk+1 = 3∆k;

else if (dk+1 > ∆k/2) else if (dk+1 < ∆k/2)
dk+1 = 0; dk+1 = 0;

} }

(a) (b) (c)

Figure C.1: Standard cubic Hermite interpolation (left) and Fedkiw et al. interpolant
(middle) produces overshoots, while our interpolation scheme (right) guarantees that no
overshoots occur.

C.2 Discretization

We represent the vector field of the flow in a uniform discretization of space into N 3

voxels, with spacing 1. We define the divergence as:

(∇ · u)i,j,k = (ui+1,j,k − ui−1,j,k +
ui,j+1,k − ui,j−1,k +
ui,j,k+1 − ui,j,k−1) / 2

(C.1)

We define the discrete gradient as:

(∇p)i,j,k = (pi+1,j,k − pi−1,j,k,
pi,j+1,k − pi,j−1,k,
pi,j,k+1 − pi,j,k−1) / 2

(C.2)

We define the discrete Laplacian as:

(∇2p)i,j,k = pi+1,j,k + pi−1,j,k+
pi,j+1,k + pi,j−1,k+
pi,j,k+1 + pi,j,k−1 − 6pijk

(C.3)
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[Gué01] A. P. Guéziec. “Meshsweeper”: Dynamic point-to-polygonal-mesh dis-
tance and applications. IEEE Transactions on Visualization and Com-
puter Graphics, 7(1):47–61, January/March 2001.

[GW92] R. Gonzalez and R. Woods. Digital Image Processing, chapter 3, pages
148–156. Addison-Wesley, 1992.

[HHK92] W. M. Hsu, J. F. Hughes, and H. Kaufman. Direct manipulation of free-
form deformations. In Proceedings of SIGGRAPH’92, volume 26(2) of
Computer Graphics Proceedings, Annual Conference Series, pages 177–
184. ACM, ACM Press / ACM SIGGRAPH, July 1992.

[HML99] Gentaro Hirota, Renee Maheshwari, and Ming C. Lin. Fast volume-
preserving free form deformation using multi-level optimization. In Pro-
ceedings of the fifth ACM symposium on Solid modeling and applications,
pages 234–245. ACM, June 1999.

[HQ04] J. Hua and H. Qin. Scalar-field-guided adaptive shape deformation and
animation. The Visual Computer, 1(1):47–66, April 2004.

[KKM03] Scott A. King, Alistair Knott, and Brendan McCane. Language-driven
nonverbal communication in a bilingual conversational agent. In 16th
International Conference on Computer Animation and Social Agents
(CASA 2003), pages 17–22, May 2003.

[KM90] Michael Kass and Gavin Miller. Rapid, stable fluid dynamics for computer
graphics. In Proceedings of SIGGRAPH’90, pages 49–57, August 1990.

[Koe90] Jan J. Koenderink. Solid Shapes. MIT Press, 1990.

[KY97] Y. Kurzion and R. Yagel. Interactive space deformation with hardware
assisted rendering. IEEE Computer Graphics and Applications, 17(5):66–
77, September/October 1997.

159



[LCJ94] Francis Lazarus, Sabine Coquillart, and Pierre Jancène. Axial deforma-
tions: an intuitive deformation technique. In Computer-Aided Design,
volume 26(8), pages 607–613, 1994.

[LF02] Arnauld Lamorlette and Nick Foster. Structural modeling of natural
flames. In Proceedings of SIGGRAPH 02, pages 729–735, July 2002.

[Lip69] Martin M. Lipschutz. Differential Geometry. McGraw-Hill, 1969.

[LKG+03] I. Llamas, Byungmoon Kim, Joshua Gargus, Jarek Rossignac, and
Chris D. Shaw. Twister: A space-warp operator for the two-handed edit-
ing of 3d shapes. In SIGGRAPH, volume 22(3) of ACM Transactions on
Graphics, Annual Conference Series, pages 663–668. ACM, August 2003.

[LNC91] T. T. Lim, T. B. Nickels, and M. S. Chong. A note on the cause of
rebound in the head-on collision of a vortex ring with a wall. Expt. in
Fluids, 12(1/2):41–48, 1991.

[Mar97] Daniel Margerit. Mouvement et dynamique des filaments et des anneaux
tourbillons de faible épaisseur. PhD thesis, INPL, 1997.

[MJ96] R. A. MacCracken and K. I. Joy. Free-form deformations with lattices of
arbitrary topology. In Proceedings of SIGGRAPH’96, Computer Graphics
Proceedings, Annual Conference Series, pages 181–188. ACM, ACM Press
/ ACM SIGGRAPH, August 1996.

[MMT97] L. Moccozet and N. Magnenat-Thalmann. Dirichlet free-form deforma-
tion and their application to hand simulation. In Computer Animation’97,
pages 93–102, June 1997.

[MP89] Gavin Miller and Andrew Pearce. Globular dynamics: A connected
particle system for animating viscous fluids. Computers & Graphics,
13(3):305–309, 1989.

[MS98] Jon McCormack and Andrei Sherstyuk. Creating and rendering convolu-
tion surfaces. In Computer Graphics Forum, volume 17(2), pages 113–120,
June 1998.

[MTPS04] Antoine McNamara, Adrien Treuille, Zoran Popović, and Jos Stam. Fluid
control using the adjoint method. In Proceedings of SIGGRAPH’04, vol-
ume 23(3), pages 449–456, August 2004.

[MW01] David Mason and Geoff Wyvill. Blendeforming: Ray traceable localized
foldover-free space deformation. In Proceedings of Computer Graphics
International (CGI), pages 183–190, July 2001.

[NB93] P. Ning and J. Bloomenthal. An evaluation of implicit surface tilers. In
IEEE Computer Graphics and Applications, volume 13(6), pages 33–41.
ACM, 1993.

160



[Ney03] Fabrice Neyret. Advected textures. In Symposium on Computer Anima-
tion, pages 147–153, August 2003.

[Par77] R. Parent. A system for sculpting 3d data. In Proceedings of SIG-
GRAPH’77, volume 11(2) of Computer Graphics Proceedings, Annual
Conference Series, pages 138–147. ACM, ACM Press / ACM SIG-
GRAPH, July 1977.

[PB88] John C. Platt and Alan H. Barr. Constraint methods for flexible models.
In Proceedings of SIGGRAPH, Computer Graphics Proceedings, Annual
Conference Series, pages 279–288. ACM, August 1988.

[PCS04] Frédéric Pighin, Jonathan M. Cohen, and Maurya Shah. Modeling and
editing flows using advected radial basis functions. In Symposium on
Computer Animation, pages 223–232. ACM/Eurographics, August 2004.

[Per85] Ken Perlin. An image synthesizer. In Proceedings of SIGGRAPH’85,
pages 287–296, July 1985.

[PGK02] Mark Pauly, Markus Gross, and Leif P. Kobbelt. Efficient simplification of
point-sampled surfaces. In Proceedings of the conference on Visualization
’02, pages 163–170. IEEE Computer Society, 2002.

[PKKG03] Mark Pauly, Richard Keiser, Leif P. Kobbelt, and Markus Gross.
Shape modeling with point-sampled geometry. In Proceedings of SIG-
GRAPH’03, volume 22(3), pages 641–650. ACM, July 2003.

[PN01] Ken Perlin and Fabrice Neyret. Flow noise. Siggraph Technical Sketches
and Applications, page 187, August 2001.

[REN+04] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger,
S. Hoon, and R. Fedkiw. Directable photorealistic liquids. In Symposium
on Computer Animation, pages 193–202, July 2004.

[RNGF03] Nick Rasmussen, Duc Quang Nguyen, Willi Geiger, and Ronald P. Fed-
kiw. Smoke simulation for large-scale phenomena. In Proceedings of
SIGGRAPH’03, volume 22(3), pages 703–707, July 2003.

[RSB95] Ari Rappoport, Alla Sheffer, and Michel Bercovier. Volume-preseving
free-form solids. In Proceedings of Solid Modeling, pages 361–372. ACM,
May 1995.

[Rut90] Aris Rutherford. Vectors, Tensors and the Basic Equations of Fluid Me-
chanics. Dover, 1990.

[SCP+04] Maurya Shah, Jonathan M. Cohen, Sanjit Patel, Penne Lee, and Frédéric
Pighin. Extended galilean invariance for adaptive fluid simulation. In
Symposium on Computer Animation, pages 213–221, July 2004.

161



[SE04] Sagi Schein and Gershon Elber. Discontinuous free form deformations.
In Proceedings of Pacific Graphics, pages 227–236. IEEE, October 2004.

[SF93] Jos Stam and Eugene Fiume. Turbulent wind fields for gaseous phenom-
ena. In Proceedings of SIGGRAPH’93, pages 369–376, August 1993.

[SF98] Karan Singh and Eugene Fiume. Wires: a geometric deformation tech-
nique. In Computer graphics, Proceedings of SIGGRAPH’98, Computer
Graphics Proceedings, Annual Conference Series, pages 405–414. ACM,
ACM Press / ACM SIGGRAPH, July 1998.

[SNBW03] F. F. Samavati, M. Ali Nur, R. Bartels, and B. Wyvill. Progressive curve
representation based on reverse subdivision. In the 2003 International
Conference on Computational Science and Its Applications, May 2003.

[SP86] T. Sederberg and S. Parry. Free-form deformation of solid geometric
models. In Proceedings of SIGGRAPH’86, volume 20(4) of Computer
Graphics Proceedings, Annual Conference Series, pages 151–160. ACM,
ACM Press / ACM SIGGRAPH, August 1986.

[SSEH03] Joshua Schpok, Joseph Simons, David S. Ebert, and Charles Hansen. A
real-time cloud modeling, rendering, and animation system. In Sympo-
sium on Computer Animation, pages 160–166, August 2003.

[Sta99] Jos Stam. Stable fluids. In Proceedings of SIGGRAPH, pages 121–128.
ACM, August 1999.

[Sta01] Jos Stam. A simple fluid solver based on the FFT. Journal of Graphics
Tools, 6(2):43–52, 2001.

[TBHF03] J. Teran, S. Blemker, V. Ng Thow Hing, and R. Fedkiw. Finite vol-
ume methods for the simulation of skeletal muscle. In Eurograph-
ics/SIGGRAPH Symposium on Computer Animation’2003, pages 68–74.
ACM, 2003.

[TJ81] Frank Thomas and Ollie Johnston. The illusion of life. Hyperion, 1981.

[VF02] Anne Verroust and Matthieu Finiasz. A control of smooth deformations
with topological change on a polyhedral mesh based on curves and loops.
In Shape Modelling International, pages 191—198. ACM, IEEE Computer
Society Press, May 2002. Banff, Alberta, Canada.

[vOS83] A. van Oosterom and J. Strackee. The solid angle of a plane triangle.
In IEEE Transactions on Biomedical Engineering, volume 30(2), pages
125–126, February 1983.

[WB01] Andrew Witkin and David Baraff. Physically based
modeling, online siggraph 2001 course notes, 2001.
http://www.pixar.com/companyinfo/research/pbm2001/.

162



[Weia] Eric Weisstein. Lagrange multipliers. From Mathworld – A Wolfram Web
Ressource http://mathworld.wolfram.com/LagrangeMultipliers.html.

[Weib] Eric Weisstein. Screw theorem. From Mathworld – A Wolfram Web
Ressource http://mathworld.wolfram.com/ScrewTheorem.html.

[Weic] Eric W. Weisstein. Riemann sum. From MathWorld–A Wolfram Web
Resource http://mathworld.wolfram.com/RiemannSum.html.

[WH91] Jakub Wejchert and David Haumann. Animation aerodynamics. In Pro-
ceedings of SIGGRAPH’91, pages 19–22, held in Las Vegas, Nevada; 28
July - 2 August 1991 1991.

[WMW86] G. Wyvill, G. McPheeters, and B. Wyvill. Data structure for soft objects.
The Visual Computer, 2(4):227–234, August 1986.

163


