Tutorial: Game Design Fundamentals

speaker: Noah Falstein

- 13th GDC in a row

- first Lucasfilm games (now LucasArts), DreamWorks, now consults for these and others

http://www.theinspiracy.com – author's site will have most articles he's written put up in coming months

- networking is important in the industry

- still small enough that there's a lot of sharing (incl. never-before-done stuff – one upmanship – "while you copy that, I'm on to the next big thing")

• Clear overall vision

• Keep your audience in mind – seems fundamental but easy to get hung up on the technology

• Focus on the experience (consider how the player feels & thinks when playing the game)

• Concentrate on the decisions made (by the player)

• (A good game has) Meaningful decision & Clear goal(s)

• Identify your constraints: (free rein is very rare)

- Creative

- Technical

- Business/marketing

- People, skills, personalities

- Internal politics (often the single most important, unfortunately)

• Suspension of disbelief

• Not reality, but illusion of reality - design game to immerse player in another world

• Creative plagiarization

- take only what is appropriate (i.e. not just any element of a movie, book or other game)

• Trip Hawkins (started 3DO) – "Simple, Hot, Deep"

- easy to start playing, get adrenaline, brain & heart engaged

• Sid Meir's rule – should be fun for player, not computer or designer

- think about how player (or you) will/would feel

- e.g. lots of fancy computations with no real benefit to user

- a catastrophic trap that cannot be avoided or known about in advance

- use what people do/try in testing to guide things to do & avoid doing in designing the game

• Albert Einstein – "make it as simple as possible and no simpler"

- too many games suffer badly from creeping featurism

- stick to core vision, throw away (most of) the rest

- e.g. analogy to Dungeons & Dragons (role playing board game), make it fun for the players, not the Dungeon Master (who runs the game)

Classical Structure:

- almost all good games have these elements and those that don't can be improved by applying them

- not only for adventure-type games - action/arcade type games as well

• Acts of increasing complexity & tension

• Choices widen then narrow

• Fractal structure

- (recursive – overall may (for example) have choices widen & narrow, but also in sub-parts of a game too (e.g. overall goal, each screen/room/level, etc.)

• Concentric design

– start in a small "area" (location, skills, ...) which expands/widens but can still always go back

• Alternate solutions, minimal waste

- no single "weakest link" that loses the whole game if player fails to do it

• Exploration and discovery

• Clear Goals (better than "wide open" exploration and discovery)

• Familiar, yet new (e.g. similar controls & overall/grand scheme objective, new scenarios with interesting twists/additions)

• Easy to learn, hard to master

• Negative feedback (when you start doing well, your choices/capabilities narrow/decrease (but see next point!)

- reasonable but limiting/damping runaway success

- e.g. in Civilization II, as your population increases, you have to do/spend more resources to keep your population happy (could easily have been the other way around – success -> happy population but this is positive feedback & game dynamics would be totally different)

- e.g. running out of ammunition

• Don't penalize

- e.g. never take away points for doing something you don't want, in worst case, add some kind of bonus that counts down to 0 rather than penalizing points if something isn't done

• Consider marketing/distribution effects

- e.g. everything up to distribution may be perfect, but if you only distribute girl-games in (mostly male-visited) game stores, you won't sell anything (Blue Moon Inc. went belly-up because they failed to consider this)

Demo example "Medal of Honor" (playstation)

- 4 people to start, ~12 after 1 year, ~25 at end

- 2 years total, 1 year pre-production, mad scramble in 2nd year, insane last 3 months (not really enough people to start & not enough done in 1st 6 months – drastically affected back end)

some problems:

- originally wanted many onscreen characters but in the end, because of the AI, the game engine was limited to 4 animated characters on screen at once – had to (and were able to) work around this but it could have easily killed the game if the basic play design was not one that could be modified do adhere to the unforeseen tech. limitations

<aside>: For action games, the game controller action/feel is one of the hardest things to do well.

Avg. pay of a game designer?

$0 but a cut of the profits

$14000 & all the Jolt you can drink

$45000 & "additional design credit"

$83000 & stock

$200000, 15% of royalties & a Ferrari

"I don't care, I'm not in it for the money" -- correct answer, most people do this

Don't bother to do it just for the money, you'll consistently be underbid by those who do it because they love it. There are far better ways to spend effort/learning to make $$

Pecking orders [pecking order for what? - not sure]

- Developer, Publisher, Distributor, Retail

- CEO, VP Production, Director of Development or Executive Producer, Producer/Project Leader

- Lead Designer, Designer, Assistant Designer/Level Designer

- Exception: Owner/Designer (he owns the Ferrari)

Team Structure
(first 4 are the key/critical parts any team)

Producer/Project Leader

Design

Programming

Art

(Writing)

(mainly for story-based games)

(Video Production)

Sound/Music

Testing

Design Structures

Designer/Project Leader

Lead Designer but not Project Leader

Co-Designer or Producer and [?Designer?]

Designer/Programmer

Consensus or Cabal

Where Ideas Come From

Copy what's hot

Conversions (ports) and sequels

Licenses (e.g. Lion King) and celebrities (Michael Jordan)

Technology driven (e.g. game engine)

CEO's pet idea

Internal pitches

"Do something fun"

What happens to projects?

(speaker's estimates from 15+ years in the industry)

14%
killed in design phase

12%
run into technical hurdles and crash

11%
die when company folds/is bought

15%
are destroyed by meddling executives

23%
run late/over budget and self destruct

21%
are released and lose money

 3%
break even or are profitable

 1%
are big hits

*Note: many would argue that *less* than (the above estimate of) 4/25 released games are break even or better

Platform & Market Issues

PC versus Console different
(mostly markets/targets, even between consoles)

CD vs. Cartridge

(cartridge holds very little compared to CD)

Arcade and location-based

Education (market)

(very special/different market – schools yet

 another different distribution mechanism

 –important to know/deal with from the

 beginning)

Online only, hybrid, offline only

How to get a design job 1

Start as a
programmer

 "

tester

 "

production assistant

 "

artist

 "

writer

 "

junior designer (hard without previous design experience)

*Work your way up on their dime, not yours

How to get a design job 2

Build marketable skills

Play games, analyze and discuss

Develop good communication skills

Research companies on the web

Look for jobs at GDC

Make personal contacts whenever possible

Be persistent but not obnoxious

Shortcuts:

Make a killer demo (but realize it's very unlikely that it'll be done as a real game)

Make a bunch of killer demos (portfolio)

Put together a team and get funding

DO NOT:

Insist on lead design job

Knock on doors with your closely guarded concept

- it's the implementation and execution that's hard, decent/good ideas are a dime a dozen.

- much better to be generally good at coming up with reasonable ideas than to have one great one

Take any job and work on design anyway (can kill a career – everyone in game industry knows everyone else)

<aside> Industry turnover – 1 new job every year for 5 years is not uncommon

Experiences/tips from guest speaker Brian Upton (from Redstorm – they also publish)

- Early on, was part of a really well-funded startup (author Tom Clancy) with ~20 people. They tried to put out 4 titles in the first year

–> REALLY stupid – *way* too much

- design is important – found they really needed to have a designer on each project – without it they would get, many individually cool things that when put together were no good as a whole (but don't go too far the other way – designer must work closely with programmers etc.)

<aside> "an engineer/programmer in game industry could probably make 50% more just by leaving the game industry. If you're not doing it because you love it, don't bother."

- discussed "Rainbow 6"

- done while Tom Clancy was working on the book (ending in game is different than book because they didn't know

- uses some form of physics with collision detection

- *many* problems (see below for some & tape for all)

- advice: 1) hit the ground running 2) clear, written design with milestones. Otherwise, too much time gets lost easily in first half of time that makes the second half nearly impossible

Nowadays:

Once an idea "treatment" (initial design doc) is finally accepted, they pick a producer, lead designer, lead artist & lead programmer (who does a tech. design doc)

~2-3 months of pre-production

- produce a demo or maybe a prototype along with tech. design doc

- produce a schedule, budget (including milestones), resources, complete design doc (typically ~100-300 pages about "what", not "how"/implementation)

- present this to marketing group (normally a publisher for companies that publish)

Brain storming (tutorial group exercise)

- ideas not egos

- nothing too odd or silly

- it's normal to wander – some

- critique concepts not people

- good to have a reason why

Tutorial: Getting What You Need Out of Your Development Contracts

(this tutorial was really poorly organized and amounted mainly to a bunch of tips/comments while trying to walk through problems with a flawed sample contract handed out in the tutorial).

Less than 10% of projects get additional money (e.g. from royalties) after their advance $$ from publisher

Line #s refer to flawed sample contract handed out in tutorial.

Line 18 – doesn't sound like you're selling anything but actually is arguably a "work for hire" i.e. you're developing for the publisher and it all goes to them, source, sequels, everything, even if you or they stop part way through

Line 61 – "game" covers all expansions, not even necessarily a *game*. Could include all sequels and more

– Separate your game and your product:

– "Husker's Revenge" (the game)

– "Husker's Revenge II for playstation – standalone [i.e. non-online] edition"

– If you already have a full game (e.g. in beta), don't get an advance, get a "guarantee" – publisher guarantees to sell <x> number of copies worldwide and pays at 30, 60, 90 days after shipping. Royalties are much higher this way (i.e. with a nearly complete game).

– The deal you make depends on the risk you're asking the publisher to assume

– Publisher really wants a line of products, not just a "one-of"

– Key thing is the marketing of the game. If it's the best game in the world, it's a loser unless it's marketed *heavily*.

– Using publishers for *only* distribution or going straight to a distributor is possible but is a bad way to go – much harder to keep tabs on everything and many tough things to deal with (e.g. pubs/distributor's people don't know the product well & don't want to push it hard – publisher knows how to overcome these issues).

– Payments according to milestones

– not instantaneous, it takes time to get the $$

– publisher needs time to evaluate & accept a milestone (e.g. 2 weeks)

– once accepted, often another 30-60+ days before milestone $$ is actually paid

– Need change control agreement (in sample contract?) that allows you to change the contract (but want to still remain within the contract) by mutual agreement due to circumstances that arise.

** This is secondary only to defining exactly *what* the product you're selling/licensing is.

– Whether you're paid based on income received or by a set predicted (minimum) # of units makes a huge difference.

– 25-30% is an unreasonable amount to be "reserved for return" to deal with returned games. 10% is much more reasonable. You want this type of limit if possible– publishing side is publishing risk (shouldn't be yours).

– It's very hard to get royalty statements that are clear (& even really correct!) from publishers – royalty chasing is a *terrible* pain. Never undertake an audit (for royalties) lightly – there may be a "one investigation per issue" and/or you may be wasting time unless you get someone who knows how to do this type of thing properly (an accountant familiar with royalty contracts and the game industry)

Foundation of royalty payment section:

Good to have a generalized statement similar to

"licensing of a product in a form not explicitly set in this license will be negotiated separately in mutual good faith"

(e.g. versions for cell phones, gameboy, etc. that might not be foreseen)

– Worth at least twice the royalties for a complete or near-complete game as for something that needs additional funding for development. The royalties typically start low for small unit counts to cover marketing costs and should grow dramatically with higher numbers of units. Such "royalty risers" might start at ~12%.

– Don't have anything in royalty section that you can't look into/verify (i.e. make sure you get publisher to agree to provide the *particular* information you'll need (for an auditor) to validate/audit their royalty statement.

– Publisher breaks even well before developer in terms of $$ (break-even for developers is essentially what the up-front (i.e. pre-royalties) payments from the publisher get you).

– $1000000 for developer is ~160000 units, for publisher, it's ~60000 units (~$15/unit?)

Line 517: assignment

Shouldn't give blanket rights to sell to just anyone (otherwise could be to a company that knows nothing about games, want's some small piece and will just trash the rest or wants to trash the whole thing just to remove it as potential competition).

– The agreement doesn't say anything about guaranteeing that the publisher must market and ship the game – should have a section that ensures this.

– "Conversions" deal with future possibilities like rights if publisher goes bankrupt or wants to port to a new platform or use in a new way (e.g. old Apple II games are now appearing on color gameboys)

– source code access – often want right to *access* the source code (e.g. for ports) but you *don't* want to give up the *rights* to the source. Could put the source in escrow instead of physically giving to publisher so it can be accessed under certain circumstances to avoid them back-engineering etc. (e.g. in case they decide to develop the game/idea themselves, possibly with another developer)

– You also have to have/get the rights to things like artwork, music, etc. you use and may even have to license these from elsewhere (e.g. Disney for Mickey Mouse)

– If you get to court over an issue, the game is basically dead anyway

– Rule of thumb: if there's a new/change in publisher –> 3 month delay

– Additional funding (new publisher or not) takes time to negotiate and even if it's done in good faith, it might be 3+ months before you get more money.

Line 501: termination (by publisher)

– if a publisher wants to cancel, there's not much you can do except sue for breach of contract, so you really want to include a section that:

1) retains your rights to the game and

2) provides some funding to make up for potential lost revenues to complete game development

– Shop your idea to different publishers to try to get an auction situation

– more for developer

– increases bargaining power/leverage and pressures publisher to seriously and promptly explore all options

– Major publishers release 25-35 games/year each costing ~$2 million to make and 2-3 times that to market

– Do you want to make art or do you want to make money? Publishers are in it for the money only

Copyright

– two competing business models

– "work for hire" – publishers have the copyright and all rights to the work

– licensed work – need to license to make copies, create derivative works, use for public show/performance, sell copies or derivative works, [didn't catch last one] (i.e. all 5 copyright rights)

– may split things up – e.g. do it as a work for hire but keep the engine and the tools (and license the engine and needed tools to the publisher)

– most publishers, when you go to them with pre-existing engine and tools will be reasonable about dealing with you about them in the contract

– if developer has some engine & tools publisher will want some rights to get access to and to benefit from new & modified engine & tools if they're created and/or enhanced while developing (since they're paying for the enhancements)

– if you do a work for hire, you want to make sure you retain some of the rights you'd have if you had the copyright (e.g. ancillary rights (movie, TV show, music, sequels, franchising)

– bring only a design doc and publisher will want a "work for hire" and would license you the rights you bargain for

– bring a working demo and you'll probably get/have the copyright (& associated rights) and license to them, possibly including guaranteed non-exclusive access to source & consulting services. Publisher will probably want worldwide non-exclusive *royalty-free* rights (so they can go to another developer instead of you if they like want). You may be able to get "passive" royalties even in this case, depending on the particular case and relative risks involved. Passive royalties mean that you'd get (small) royalties from a game that the publisher gets another developer make (e.g. if you don't do playstation games and the publisher wants to make it available on that platform and has to hire someone else to do it – you also usually want right of first refusal/opportunity for such things.

Development, manufacture, distribution, marketing

Publishers look at:

– cost of development (to them)

– quality of product

– talent and experience of team

– often have a "key person(s) clause" to ensure that the team they've agreed to working on the project is part of the deal

– milestones

– what happens when things go wrong

Publishers want to ensure that game will be ready on time (typically 18 months ?from the time a contract is finalized?) – lateness causes problems with publisher's stock value, marketing plans, etc.

Publishers want list of key people:

– producer/team leader

– lead programmer(s)

– lead artist

– lead designer

and to ensure they'll see the project through to the end

Milestones – “green light” to continue

– give funds for design doc (typically $100000 to $300000) then look at that and if they want, set a real list of milestones to meet for future funding

– this isn’t about the money already given out already, it’s about the publisher’s option to kill the deal and the fees to do it

– deemed approvals – a submitted milestone is deemed approved (i.e. milestone passed/accepted) automatically after <n> days if the publisher hasn’t responded by then –– want this as a developer but very rare, usually deemed unapproved instead.

Approval time periods

– e.g. 10 business days (i.e. 2 weeks), 20 business days, depends on who you’re dealing with. Important, because they can be used to delay to pressure developer if pub wants to do so.

– extensions can typically be granted in cases of delays due to third party (e.g. publisher waiting for some kind of license approval from Disney)

– if publisher is providing items like full motion video, other things (e.g. from a licensor, Tony Hawke t-shirts) the developer must ask for such things in sufficient time to meet the milestones on time.

Lateness meeting milestones

– may increase threshold for royalties (i.e. point before royalties are paid)

What if it’s late and publisher wants to terminate for breach of contract?

Developers typically required to:

– get E & O insurance (not certain what this is – protects against developer going under I think)

– grant audit rights (to ensure money is spent on development)

Other reasons to terminate: (i.e. without breach of contract)

– market conditions – e.g. glut of similar-type games, bought by another publisher that already has competing games

– if paid prospectively: (e.g. $200000 for design doc, tech. Design, proof of tech later), hard to convince publisher to pay a kill/termination fee

– if paid in arrears (after delivery), developer should expect payment for current & maybe some future milestones to allow continued development while new publisher could be put in place (30-60 days typical)

Cross-collateralization – if you have a contract for a game and a sequel, publisher can cross the royalties from either contract to cover the unrecovered advancements for either. i.e. revenue from one sale can be used to compensate for the other

– developers *don’t* want this, publishers want as much as they can to reduce their risk

Conversions (to new platforms) and sequels

– range from right of first negotiation to absolute right

Time frame

– contract negotiations take a long time (one of the speakers had a negotiation take 17 months during which time the product actually shipped, before negotiations were complete)

– typical is 6 weeks (short) to 3+ months (maybe much longer with larger companies, different countries & contentious negotiations)

Session: Schedules That Mean Something

(also some stuff in proceedings p. 147)

– envelope illustration (participants given an envelope containing a list of 20 numbers to sort – predict how long before doing it, then do it and compare predicted & actual times)

– tendency to optimism – *very* important to overcome this

– you control most of your fate in the *early* stages – after that, there is far less flexibility (though still some)

– e.g. married couple: “I thought you were going to pick up Jimmy”; “But I thought you were going to do it”

– if it can happen to people who’ve known each other for many years and care significantly about the issue/outcome, think about 20 developers on a team

– make things clear and explicit

Had 3 columns, Always (i.e. do ongoing), Before (starting), PANIC (also middle/late, but these are less common vs. PANIC)

Always

– Define risks (check/think about key items every day)

– next steps

– contingency plans

– Know who’s in charge (who approves tasks (often a lead developer), milestones, etc.)

– Write down what you agree on

– Monitor progress constantly (did we really do what we said we would – e.g. check/verify weekly targets)

– Monitor morale constantly (focus on people as people – are they having fun? Except for time-pressured deadlines, they should be)

– Conduct post mortems (won't work unless there's a shared understanding of why – to avoid mistakes in future, not simply to gripe) – include what went well as well as what went badly (& why for each)

– Evaluate subcontractors (ongoing!)

– If it isn't working, admit it – better early than late when it costs more

– Open labs/play sessions/demos (between groups)

– Agree –> early days = late days (e.g. 3 days wasted/delayed early on means 3 days wasted/delayed/late at the end unless something else gives)

Before

– Break into milestones

– explicit parts & exclusions

– Tasks clearly defined

– People (who does what)

– Deadlines (what must be done when)

– Completion definition (how does bob know when task A assigned to him is complete)

– Define dependencies

– Ask the person responsible for a task about what's to be done and required time (but must check the estimates: – optimism, butt-covering, fear/self doubt) –> evaluate and repeat

– Design first (before starting programming) – will change but must be done initially first

– Plan contingency time

 (Middle,late,) PANIC

– Discipline when things freeze (may not be perfect)

– Daily builds (when late) – not *always* possible or useful

– Success bulletins (good always but particularly when late/struggling)

Good diagram for explaining (e.g. to management):

[image: image1.wmf] Spec

 (

size/features)

Budget

 ($$,

free people)

Time

Need to maintain balance (equilateral triangle) for success

If one thing changes, something has to give to balance (make equilateral) again

[image: image2.wmf] Spec

 (

size/features)

Budget

 ($$,

free people)

Time

Session: Founding a Startup: The Ultimate Challenge?

Speaker: Demis Hassabis of Elixer (UK)

Basic Topics:

Why go it alone? (i.e. why do a game via a startup vs. an established developer)

What it takes to get started

Publishing deals

Development process – especially important to do this right for the first game – can make or break the company

Future of startups

Why go it alone?

– creative freedom

– control your own destiny – what you want to aim for

– more recognition

– work in the environment you want

– there's never been a harder/more difficult time…

– …but never a more exciting time

– high risk/high reward, but this (i.e. more money) is a bad reason to do a startup

Note:

– virtually impossible to do a commercial game nowadays with 3 people in a basement (for last 5 years it's become worse & worse)

– tip – be careful doing more than one game at a time – lots of work & many pitfalls (e.g. 2nd game often better and nobody wants to work on first)

– have a clear vision in mind (money, change the industry, just make a living?)

What it takes to get started

– get some credibility

– develop a successful game first (before doing the startup)

– ideas are two a penny (10-20% of value at most)

– ... but make sure you have a good one

– implementation is *everything*

– belief and determination are the key (be persistent and thick-skinned)

– shouldn't ever be in a situation where your thinking or saying to publishers "we're hoping to do... but ..."

Skills needed?

– be honest with yourself

– energy and enthusiasm (basically consumes your life and energy so you'd better have the reserves to make it through the first year or two)

– leadership and vision

– drive and determination (you'll definitely be working all hours for first two years)

– hard work and ability to deal with pressure – massive amounts of hard work, extreme pressure

– identify your weaknesses – get the right people to do the things you can't do well

The pain

– can't avoid this, it'll be a fact of life for the first 2+ years

– the buck stops with you (not your "employer" – you're the one who's responsible for making sure everything gets done in the end)

– kiss goodbye to your social life (2-3 years at least) because you have to do everything initially (can't hire somebody good/trustworthy/dedicated to do *everything* – you're the one with the decision power/control)

– first in, last out (of the office – can't expect others to put in the effort/time if you don't)

– new management techniques (respect for all, not old school "top dog" style)

– coping with multitasking (contiguous time for things that need it - learn to deal with this)

– learning to delegate (hard but necessary)

– getting the best out of people – learn what motivates particular people

Building the core team

– most critical part of startup

– key person is absolutely needed in each core area

– look for talent and dedication

– trustworthiness and loyalty are essential – there will be times when you can be screwed by others – too distracting to succeed

– personalities must fit – a good fit is more important than highest skill ("one bad egg...") [speaker has had to pass on a number of top notch people because they'd probably have caused friction]

– team must share same goals

– reward them generously (including credit) – lack of this is the biggest reason to lose people [at Elixer 20% of royalties go back to the development team]

Funding

– budgets – be prepared to sweat it out with publishers (they'll do all they can to get the best of you)

– seed investment – business angels

– make equity deals (e.g. % of company for lawyers, accountant, etc...)

– take the personal hit (ideally expect to not pay yourself at all for the first year – if you put in your life savings, seeding will be easier to get – more conviction)

– VC funding – often want 50% + equity – you don't want this (20% *maybe* but VCs are *very* controlling)

– debit financing (i.e. bank loan)

– government grant (*much* paperwork, but sometimes possible)

Business plan

– useful exercise (very useful whether you need seeding or not)

– what it should contain:

– plan, financials

– bios and why the people are a good bet (together)

– publishers want to see evidence of fiscal control

– exit routes (IPO? trade sell?) and predicted revenues by then – important to spell all this out for VC so they can plan times and amounts (i.e. when they'll get their money back)

– planning the future – back to mission statement

– coping with expansion

For pitching your idea

– the one line (if you can't explain your game in one line, it's no good)

– keep the summary very short (4-5 slides on what the play is like) or nobody will read the design

– give short bios on key people experience/skills

– tech demo is great but not always feasible

– so is concept artwork

– belief and enthusiasm – can't stress enough, this is what publishers find convincing

Publishing deals

– pitfalls – e.g. they will try to take any/all of your tech. with fine print; also, right of first refusal [on sequels, conversions/ports etc.]

– negotiating tactics – they know you're a startup with little funding and will delay and "yank you around" – e.g. starving you so you have to sign because your seeding is running out); e.g. 2 take an item/clause out of current rev. of contract and put it in again "accidentally" later

– up fronts [not sure what this refers to]

– royalties – make sure you have free access to inspect the publisher's books (to verify royalties)

– recognition – get your logo at least as big and prominent as the publishers; specify size in the contract, even "as big" can be interpreted in many ways

– exploiting your IP

– get a good lawyer!

Alternatives [to getting a publishing deal for project funding?]

– studio model

– self-fund

– code shop – hired work (e.g. port/conversion houses) – often done to build experience and capital

– online business models (e.g. subscription-based)

– community MODs (this is the only way to do "amateur" (i.e. 3 people in a garage) game development) [I think this refers to Wolfenstein/Doom-type community-based games where people actively contribute levels, characters and other modifications and therefore develop the game in part]

Development process

Technology

– licensing vs. developing – good to develop your own technology if possible – builds base for future and having it gives instant credibility

– the dangers

– the costs

– middleware

Game design

– probably best to do a "safe" game that you know you'll be able to do with the people you have – stick to what you know how to do

– doing an ambitious game (this is what Elixer did with "Republic: the Revolution" (game) – tried to really push the developers but within their capabilities – big gamble, potential to end a company)

– what's needed from a design

Future changes

– bigger budgets and bigger development studios (opinion: people are losing out and games are failing [to be profitable] because 2 years is not enough)

– and the little guys? – don't compete – consider niche markets – usually done by someone with experience from a big company going out on their own

– content providers are king

– new distribution channels – online

– developers need to learn new skills – do PR, marketing! (publishers will market the game but *they* want the credit)

– if you have what it takes, you'll never look back

Session: Publishers Speak!

(in proceedings p. 471 – include. quotes from publishers answering various good questions)

Speaker: Dan Lee Rogers

Guest Speaker: Shawn Firminger (Microsoft simulation games group (publisher))

Some upcoming articles in Gamasutra will deal with this type of stuff

Questions Publishers will ask:

– Quantitative

– deal with business

– easy but developers always miss these

– Qualitative

– deal with innovation

GETTING NOTICED

– issue is finding the *right* publisher (not just any publisher)

– the "new business development manager" is key – main person you'll deal with and your advocate (others will all have the option to veto the project)

– show them:

– hot technology
** no room at all for mediocrity

– an experienced team with a proven track record

– an innovative idea

Hasbro – 2500 submissions/year (hard to get to top of stack – must stand out)

EA & Microsoft – much based on recommendations of people in the same company or trusted people in the industry

Your team

– experience is the foundation – first people to find are seasoned game programmers

– established/seasoned *game* programmers are walls and support (all the risk is in the programmers)

– business expertise is the roof

– artists make it all look good

– % royaties are directly related to experience

<aside> The more desperate you seem financially, the less attractive you are – scares away all publishers.

To find right publisher

– do your homework – know:

– top selling products (in the genre)

– how many units sold

– market going up or down?

– does the publisher even do this type of game or might they be considering it

– who owns the popular licenses that you might need/be able to use (e.g. NBA, WWF, …)

– today’s publishers don’t have time to deal with naïve developers – they want to know that you know how to run a profitable business

– present information that stands out

– get referrals – establishes your credibility

– (secret way to contact effectively:) one way to get immediately to the top of (everybody’s) stack, *email* (don't use it until you're *really* – better be good)

Publishers need to see

– working prototype – by far most important part

– design document

– an understanding of the market

"working technology Is almost always required" – Hasbro

"working demo" – EA

"concept that's fully fleshed out. No experience? Must have working prototype" – Microsoft

How much/complete a demo/prototype depends on your experience

[image: image3.wmf]

less

experience

more

experience

more

technology

less

technology

 EMBED Word.Picture.8 [image: image4.wmf]

more

technology

less

technology

genre

racing/sports

family games

real-time

strategy

fighting

 Want to show tool set for design

 Want to show solid demo/

proto

Demo should include

– AVIs – to capture feel (don't abuse to replace technology you should be showing)

– the menu system – to capture vision

– tool set – to show development efficiencies ("I'll save you money with these…")

– physics if physics are important to the genre

– AI if AI is important to the genre

What team experience?

"I hate it when they have a data base programmer, a 3D programmer and no experience" – Hasbro

"key programmers have to have done several successful games on the platform" – EA

No experience in industry?

"show something innovative that makes our risk low – nearly complete and/or totally groundbreaking" – Hasbro

"the less experienced, the more impressive & complete the demo has to be" – EA

"killer technology and a great concept" – MS

Can an agent help? [I think speaker was an agent] Maybe – "publishers seem to treat agents like a flea on a dog – if they like the dog, they'll accept the flea but shampoo when convenient"

– seeing the big picture

– contacting publishers you don't know personally

– negotiating your deal – knowing what the market will bear (sometimes developers leave money on the table because they don’t have the knowledge/skills they need to get the most out of the deal they can)

– keep information [between the publisher and the developer] flowing – no surprises for either

– Hasbro – “if you’re new to the business an agent can make all the difference in the world”

– MS – “not important, we like to work directly with developer (but have used agents in past)”

Good agent

– know interactive entertainment industry intimately (may even be better than a contract lawyer)

– has a great reputation with the *right* people

– compliments your group (skills-wise)

Bad agent:

– super salesman syndrome

– knows less about the business than you

– plays the numbers game (takes on any/many developers knowing that the odds are that at least some small % of them will make a hit and make them money

– interested only in signing a deal as quickly as possible

Summary <getting noticed>

– to get noticed, need very hot technology

– know the market and publisher

– present a well-rounded, solid company

– want to show them the energy and vision of your company

THE DEAL

– publishers interested in funding development (of their own game) – *only*

– publisher needs to know that you’re interested in their project (e.g. if you have multiple games/projects going on simultaneously)

– typically delivered as an advance against royalties – against milestones

<aside> when publishers visit, they look at:

– how many secretaries?

– how many water coolers?

– …

lean, mean impresses/encourages publishers

e.g. one pub. went to visit a dev. and they had fastest machines but were using crates for chairs (pub – good use of $$)

e.g. 2 one pub. went to visit a dev. and 9 people were crammed into a small single room with the artists were using umbrellas to shield their displays from the fluorescent lighting the programmers wanted because they had only a 1-room office

– funding typically advanced against royalties

– tangible milestones

[image: image5.wmf]

royalties

payment

high risk

low risk

You can expect royalties to be about 10% to 20% of *net revenue* (but be very careful about what's deducted in "net", varies from publisher to publisher and they may try to take advantage of you by including things that shouldn’t really be included)

Risk reducers

– your experience

– previous success

– low budget/high potential return

– nearly completed product – primarily for inexperienced (for experienced, get advance $$ earlier, don’t complete project first – this is only needed to convince pub. it’s worth their risk)

– unique and attractive

[image: image6.wmf].

 4-8 weeks

 4-8 weeks

 $$

to you

like idea?

N

Y

internal

approval

N

Y

sign final

contract

N

Y

– courtship phase (getting to know your company, building relationships/contacts (e.g. they say they’ll get back to you, never do, can take a year or two to develop a simple/basic relationship with a publisher – they’ve got a lot of people tugging them all ways and aren’t always that interested in actively pursuing new possibilities that are contacting them unless they’re already convinced it’ll be a good lead)

– easily up to 4+ months (remember – the more impatient and antsy you are, the more you frighten off the publisher)

Who makes decisions (all at publisher, in order of time)

– new business development manager

– development VP

– business unit marketing

– sales – all territories (each also returns an estimate of how many units they think they can sell)

– president

All of these people get to see what you've submitted and comment (and maybe veto) – be sure to protect your IP with an NDA or someone in the chain will use it (might anyway indirectly)

The next deal

(likely if...)

– on-time, on-budget, quality production

– run business with maturity & integrity

– build for the future (first game was only the beginning of your companies overall vision)

set sights high & for long term

Publishers dislike (about developers) when they're

– don't know market or competition

– not original

– complain about other developers & publishers

– want instant results (publishers are notoriously slow about doing things – reality of business, even if they really like your game)

What they like

– energy and passion

– thinking outside the box (also when you’re thinking about how to solve their business problems – e.g. instead of needing 10 CDs in a box for your game, find a way to make it 10 CDs in 10 boxes (via add-on packs))

– building for the future (publishers are interested in a series of applications and/or a franchise)

TYPICAL DEAL: (big generalizations but…) [unfortunately, this was very rushed and not in the proceedings – the audio is on tape and a tape can be ordered for ~$11 if it's not clear enough]
– $1 million advance

– 15% royalty based on net receipts

– publisher to deduct reasonable business expenses (e.g. marketing, bad debt. reserves in case a retailer they work with goes out of business, “return rate is 20%” (really probably too high but for sake of argument…))

– wholesale price = $22.50 (& might 'erode')

– involves a license that requires 5-10% of gross (e.g. a Disney license)

publishers want to get back 3-5 times what they invest in you

What do publishers earn? (look at EA's annual report for much of the overall/average #s – not a specific game)

Advanced royalty 1M

Game gross receipts 4M (177k units at $22.50)

 less cost of goods - 0.44M (442.5k @ $2.50 cost per unit)

 less marketing & sales 240k (6% of gross receipts) (use an est. based on gross receipts

because it’s too hard to determine and verify actual expenses up front)

 less bad debt reserve - 60k (1.5% of gross receipts)

 less other royalty fees - 200k (5-10% of gross receipts)

Net receipts $3 million

What you make:

x15% = $458,625

 less $1 million advance

= -$542k

[i.e. you still have $542k more from their initial funding than the royalties you're entitled to so far – I'm *not* certain, but I'm pretty sure you don't *owe* them this, you just don't get any more until your total royalties exceed the $1M advance]

– royalties can often be negotiated to rise significantly after publisher has made back their advance to you

What the publisher makes:

Net receipts 3.05M

 less balance of your advance $541k

 less real marketing & sales - $360k (600k - 240k = 360k (15%) [sorry, not sure what this refers to – 360k looks to be ~15% of 3.05M - 541k (?)])

 less internal production - 75k

 less quality assurance - 50k

 less administration - 195k (6.4%)

= $1.8M

[typical/sample sales/income for a year's worth of games I think – unfortunately, I the tape stopped right at this point and I also didn’t copy down the numbers quickly enough – basically it was numbers that argued that publishers have many projects, some succeed, some fail and their average profit is reasonable, not excessive]

200k + units

154

100 - 199k units
194

50 - 99k units

337

(missed rest)

How to do homework

- use internet – look up annual reports of publishers you're thinking of dealing with

Session: Penalty methods for collision Resolution

speaker: David Wu of Pseudo Interactive

[unfortunately, this was a really weak and scattered talk – very hard to follow except for bits & pieces]

What methods available?

– apply impulses for collisions and forces for resting contact

– solve using iterative constraints

– don't do it at all

– use "potentials that encourage" appropriate behaviour (penalty methods)

Why penalty methods?

– trivial to implement

– classical analytical methods have many degenerate configuration (in part because rigid bodies are assumed) which require lots of special case code

– penalty methods generally degrade gracefully in awkward situations

– analytic methods tend to have worst case performance that is O(n!), O(n^2) or O(n^3) e.g. many barrels stacked & falling on each other

– penalty methods extend robustly to more complex problems such as deformable representations like FEM & FFD lattice

most games use a time step size of 1/30 or 1/60

implicit Euler q(t1) = q(t0) + [step size] * f(q(t1), t1)

– use a quadratic manifold to approximate equations; will need multiple iterations (e.g. Newton/Raphson Iteration and Linear Conjugate Gradient)

– found Quasi-Newton methods work best

implicit methods pretty much necessary for penalty methods

combining (implicit - e.g. backward Euler) integration & collision resolution is more effective than the more common case of using independent integration & collision resolution

Implicit Eulier is not a joke - can reasonably be used (despite being frowned on by academics)

– first order accuracy isn't *that* bad (as long as it's stable)

– stiff decay is a good thing (when things get really nasty, diminishing high freq. components is a good thing)

– A-stability (asymptotic stability) isn't just an inconsequential feature of obscure integration schemes (i.e. it matters) - lack of this means things can easily explode in strange (but not easily predictable or avoidable) situations

– Explicit integration schemes are not suitable for stiff systems (very high freq elements and very low freq elements in same system)

– no implicit or explicit multi-step methods are A-stable (i.e. multi-step methods are bad for games)

Implementation synopsis

– each contact is classified as either a collision or a resting contact

– if (relative velocity * normal > [magic threshold currently == 2m/s])

then –> collision

else –> resting contact

– two linear potentials are created, one along normal to repel objects, the other tangent to represent friction

– nonlinear force along contact normal is approximated by a piecewise spline

– friction cone is approximated by a piecewise cubic patch (maybe more like oil)

– uses viscous (linear) friction since it can be solved analytically while Coulomb friction cannot in general (this is necessary (or at least very convenient) because of the implicit integration)

[said that the details will be put on PI's web site because he had to skip over 75% of his slides]

Session: Metagames

speaker: Richard Garfield (non-computer) game designer for ??? [same company that makes the Magic card game]

Definition: How a game interfaces outside itself

Good metagame elements can entirely change and enhance a game

Categories:

– things you bring to games

– things you take from games

– things that happen between games

– things that happen during a game other than the game itself

Things you bring to games

– game resources

– strategic preparation

– peripheral game resources

– reputation

[image: image7.wmf]

c

ont

r

o

l

a

moun

t

o

f

i

n

f

lu

e

n

c

e

e

ndu

r

an

ce

fo

r a

 g

a

m

e

o

f

 b

ri

dge

 sho

e

s

f

o

r

te

nni

s

e

ndu

r

an

ce

fo

r a

 b

ri

dge

t

ou

r

n

a

m

e

n

t

 know

le

dge o

f

 pok

er

 opponen

t

s

 b

ri

dge b

i

dd

i

ng sys

te

m

c

a

r

d d

ec

k fo

r M

ag

ic

Things you take from games – makes social rules meaningful; very important for online games

– money

– prizes

– standing in some larger competition (leagues, ladders, ratings, tournaments)

– reputation

– doing well for its own sake (or not doing poorly)

– resources for future games

– access to other games or players

– a story

Things that happen between games

– reputation gathering and circulation

– strategy research

– resource circulation (e.g. trading and buying Magic cards)

– other game preparation such as painting miniatures

Things that happen during a game other than the game itself

– fatigue

– outside game bonds (e.g. husband and wife playing on different teams – offline retribution/reward)

– game mechanics or state affected by world (e.g. stock market game based on real stocks, "killer" assassin game played in real world)

– trash talking

Metagames can be part of design

– the line between metagame and design is sometimes fuzzy (e.g. backgammon doubling cube – game element or metagame element?; cribbage race-board – each hand a game vs. full run of board)

– much metagame is beyond designer control

Session: Data Wizards and Wands

 [article/text in proceedings]

"using tools and tool experts for faster higher quality games development"

– glue between artist and programmer – lets these two focus on their jobs and takes care of in-between conversions etc. to try to get instant turnaround time)

Tools for art

– high-end art tools that artists don't want to bother learning fully (e.g. StudioMax and Maya)

– exporters (plug-ins, custom tools)

– converters (e.g. DeBabelizer)

– viewers (e.g. IS-Viewer)

Tools for data

– spreadsheet (excel – difficulty, size and positions of objects, other parameters for artist to tweak)

– database

– batch files

– others

– INI files

– custom text formats

– custom data managers

Ultra-fast turnaround

– help and tools to *very* quickly visualize changes to artwork (turnaround of seconds or at most a few minutes) – fast turnaround encourages artists to experiment a lot more than if the turnaround to see changes is long

– particularly important on consoles etc. where you really need to see the result of changes on the TV screen

– after (a programmer) changing something (e.g. a parameter in game) for someone (e.g. an artist) 2 or 3 times, it's already too much – push the flexibility out – e.g. read it from an excel file so that the data wrangler file can change/edit it with artist when needed

– the speaker's company uses excel for virtually everything possible – e.g. positions of objects, parameters for animation scripts and effects (e.g. color, brightness, duration, texture filenames, etc.)

– data wizards can stop developers from tweaking endlessly

– excel data ––> conversion tool ––> raw data for game input (e.g. binary struct data read in at runtime)

– conversion tool may be partly generated using struct info in headers to convert excel data to raw data files

– start to come into projects after ~1 month of development, all involved by ~1/10 of the way through total development time

Session: Taking the Risk Out of Starting Your Own Company

speakers: Stacy Hering Astor, Jeffrey Rose (a financial planner and a lawyer)

[Proceedings have all the slides, the points of which directly made up the presentation/talk – only extras noted here]

"plan your work and work your plan"

– sit down and plan well before starting (will evolve)

Developing financial and legal team (the "outside team")

– outside people can help you but *you* have to make the decision – i.e. need someone in the company who'll learn and understand

– don't delay putting together until too late – 2 months in max., earlier is better, esp. for Financial Advisor/planner [big surprise, main speaker was a financial planner]

– Prop. & Casualty Agent e.g. for $200 you can get coverage just in case

– someone slips and falls on your step

– rain damages computers

– etc.

– Financial Advisor/Planner

– they say when to bring in the others and keep you one step ahead

Setting up the business

– The Basics

– company name – important – effectively the first intellectual property of your company; name search and get an IP lawyer right away

– office lease

– one of the biggest initial costs

– get a real-estate broker (they're paid by the landlord) and get a lawyer to look at the lease too (e.g. lease may try to hide required retrofit/upgrade costs like fire alarm systems, building code violations etc.)

– CYA ("cover your ass")

– errors and omissions insurance – very expensive, a luxury for most ($25000-$30000/year) – covers things like law suits due to bugs etc.

Hope for the best, plan for the worst

– the lawyer knows ~35 games in the last year that publishers just backed out of with company debts like rent contracts (for a year+) outstanding

Employment contracts

Protect your assets (get this done up front!)

– "at will" employment – i.e. can leave when you want (law in California but not everywhere – spell it out and what the terms are)

Death/disability/termination of a key person (you never think such things will affect you but it may and often will one way or another)

– buy/sell agreement will address how to handle

– ...

– business valuation formula – review this regularly as company value builds (e.g. when you get a trademark, ...)

Protect your dream: fund the buy/sell agreement – with insurance

– key man insurance

– disability business overhead insurance

– disability buyout insurance

– e.g. $1000/year gets ~$1million

– depends, but usually (initially) you buy out based on what you put in (but often not)

Session: Motion Editing Principles

speaker: Susan Van Baerle

[proceedings don't contain notes or slides – email her for them suev@lambsoft.com these notes are just points of interest I took down]

problems with raw data

– data has gaps, spikes and 360 degree offsets

– some tools automate correction somewhat but not reliably – usually have to do some correction manually which is labour-intensive

– often *don't* interpolate (or at least indicate interpolations) so artist knows what the real data was

effort for mocap vs. keyframing

– motion capture sessions go up to 8 hours in a day (up to 200 motion segments captured with good planning/prep)

– performer typically much quicker in morning/early in day vs. after 8 hours

– leads to motions that are hard to join due to sync/timing

– playing music with a strong beat all day helps keep timing consistent over the whole session

– one animation the speaker has done, a keyframed dance of 2.5 min. duration, took 6 months; similar animation in mocap might be a few weeks

– crossover (mocap quicker than keyframing) is around 15-20 sec. of animation (if keyframe animator can get it done in the time it takes to book and fly someone somewhere it's worth it, otherwise not)

other issues

– much of the error is in turning the raw world space data into hierarchical form

– magnetic systems are probably better for finer movements but are typically limited to a smaller working space

– use common start and end poses

– speaker has looked into creating standardized mocap libraries for a unit standard model so it could be reused easily but no companies were interested

– mocap sessions are part of the fun of a project for those involved in it

– not useful for particular/marquee characters (e.g. Michael Jordan)

– may not have been talking to the right people – money-guys would probably want this

accessibility

– ~10 mocap service bureaus across US

– a few $k per day to rent (plus crew, food for all, transport etc.)

– Viecon system (one of the higher end mocap systems with a big working space) might go for ~$200000

_1015410625.doc

 Spec

 (size/features)

Budget

 ($$, free people)

Time

_1015410707.doc

 less

 experience

 more

 experience

 more

 technology

 less

 technology

_1015410722.doc

 payment

 royalties

 high risk

 low risk

_1015410733.doc
.

like idea?

N

Y

Y

N

internal

approval

Y

N

sign final

contract

 $$ to you

 4-8 weeks

 4-8 weeks

_1015410699.doc

 racing/sports

 family games

 more

 technology

 less

 technology

 genre

 real-time

 strategy

 fighting

 Want to show tool set for design

 Want to show solid demo/proto

_1015410612.doc

 Spec

 (size/features)

Budget

 ($$, free people)

Time

_1015364476.doc

 control

 amount of influence

 endurance for a

 game of bridge

 shoes for tennis

 endurance for a

 bridge tournament

 knowledge of

 poker opponents

 bridge bidding system

 card deck for Magic

