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Figure 1: The input triangle mesh on the left is converted to our polar—annular mesh representation (PAM) (a). It was refitted to the original
model and subdivided (b,c) and then edited on an iPad using our PAM based sculpting tool (d).

Abstract

We introduce the Polar-Annular Mesh representation (PAM). A
PAM is a mesh-skeleton co-representation designed for the mod-
eling of 3D organic, articulated shapes. A PAM represents a man-
ifold mesh as a partition of polar (triangle fans) and annular (rings
of quads) regions. The skeletal topology of a shape is uniquely em-
bedded in the mesh connectivity of a PAM, enabling both surface
and skeletal modeling operations, interchangeably and directly on
the mesh itself. We develop an algorithm to convert arbitrary tri-
angle meshes into PAMs as well as techniques to simplify PAMs
and a method to convert a PAM to a quad-only mesh. We further
present a PAM-based multi-touch sculpting application in order to
demonstrate its utility as a shape representation for the interactive
modeling of organic, articulated figures as well as for editing and
posing of pre-existing models.
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1 Introduction

Free-form digital sculpting is steadily replacing traditional CAD
workflows for the modeling of organic 3D forms. Animated or-
ganic forms adopt anthropomorphic character by articulation and
thus have a dominant skeletal structure. In current practice the
shape and its skeleton are represented independently and geometri-
cally associated by a process called rigging. Early systems based on
a sculpting metaphor recognized the importance of skeletal struc-
tures and proposed character construction using implicit functions
defined around shape skeletons [Bloomenthal and Wyvill 1997].
Despite numerous advantages, a fundamental limitation of implicit
surface models is that the skeleton defines the surface shape and
not vice-versa. This surface is usually tesselated into a mesh that
can be further manipulated. Adding complex shape details to this
mesh will eventually destroy any meaningful connection between
the original skeleton and the final 3D shape. Instead, we propose a
novel surface representation called a Polar-Annular Mesh (PAM),
where the surface structure defines the skeleton. As a result the
mesh can be refined and detailed using popular sculpting techniques
such as found in ZBrush [2010], while preserving skeletal topology.

We are inspired by RigMesh [Borosan et al. 2012], a modeling sys-
tem that notes the importance of co-modeling, where a set of mod-
eling operations are defined that update both a mesh and a shape
skeleton, so they co-exist through the modeling process. We go
further to define a co-representation, where the skeletal structure
is directly embedded in the connectivity of the PAM mesh. The
co-represented skeleton is essential to general shape sculpting: it
provides local skeletal reference frames invaluable for coarse, non-
linear shape deformations and holds semantic part information use-
ful in selecting meaningful regions of deformation influence.

A PAM represents a surface manifold partitioned into topologi-
cally polar (i.e. homeomorphic to a disk) and annular regions.
The choice of surface decomposition into poles and annuli is moti-
vated by our focus on organic shapes with articulated limbs, that
are readily captured by annuli, capped by poles. This observa-
tion is further corroborated by designer surfaced 3D characters that
amply use polar-annular patches (Figure 2). A PAM uniquely en-
codes a skeletal connectivity: every region boundary defines a joint;


http://doi.acm.org/10.1145/2601097.2601226
http://portal.acm.org/ft_gateway.cfm?id=2601226&type=pdf
http://www2.compute.dtu.dk/~janba/pam

Figure 2: Designer surfaced articulated models are often PAMs
(polar regions shown in blue) at left. The illustration shows that the
neck region is an annulus in contrast to a 4-boundary region (not a
PAM). Our PAM conversion (right) is structurally similar.

starting from an arbitrary region boundary, we can enumerate the
skeletal joints by recursively visiting the other region boundaries of
the regions that are incident on the boundary where we start (Fig-
ure 3). The skelatal segments in this construction, may be replaced
by chains of joints to better conform to the geometric shape of the
PAM. In our implementation, an annular region is represented using
connected rings of quads, and a pole by a triangle fan.

The above definition yields a mesh-skeleton co-representation that
is compact and operable at varying resolution, making it potentially
attractive for interactive 3D modeling on mobile platforms with
limited computing power. We demonstrate this potential by ad-
dressing two challenges. First, we propose an algorithm that, with
minimal user effort, can convert arbitrary 3D polygonal meshes into
PAMs with the desired accuracy. This allows PAM based sculpting
systems to manipulate existing 3D data as well as interface with
general 3D mesh modeling software. We also show how our PAMs
may be converted to quad-only meshes by replacing the pole ver-
tices and triangle fans with quads and vertices of lower valence.
Second, we develop a novel PAM based mobile (iPad) sculpting
application that exploits the affordance of multi-touch for skele-
tally informed shape modeling. We show that a variety of opera-
tions, both those that are skeletally-driven like posing or restructur-
ing limbs, and mesh-driven like smoothing or sculpting fine detail,
can be be performed in the same modeling context. We thus val-
idate that PAMs can indeed provide a unified framework for the
interactive modeling of articulated characters.

Contribution and Overview Our core technical contribution is
the Polar-Annular Mesh (PAM) representation. We present a for-
mal definition and analysis of its mathematical properties in Sec-
tion 3 and techniques for converting general triangle meshes to
PAM meshes in Section 4. Section 5 presents auxiliary methods
for PAM manipulation, and our multi-touch modeling application
is presented in Section 6.

2 Related Work

We broadly classify related work into sculpting interfaces, skele-
tally driven modeling, Morse theory, and quad-meshing.

Sculpting interfaces: allow users to create and manipulate 3D
shapes using the metaphor of traditional sculpting [Pixologic 2010].
Such approaches build up shape detail by smoothly adding or re-
moving material [Galyean and Hughes 1991], by cloning existing
3D geometry [Takayama et al. 2011] and even preserving surface
features [Stanculescu et al. 2013]. Such approaches work well with
PAMs (see Section 6) and we are able to adapt the PAM resolution
dynamically to capture arbitrarily fine detail. Commercially, the
implicit surface primitive based AutoDesk 123DCreature provides

Figure 3: Armadillo mesh converted to a PAM (left), its simpli-
fied skeleton extracted for animation (middle) and posed using the
simplified skeleton (right).

a fluid modeling interface similar to our mobile sculpting applica-
tion but cannot sculpt arbitrary detail while preserving a meaningful
skeleton, and does not exploit the affordances of multi-touch [Sun
etal. 2013], specific to articulated shapes. Several sketch and sculpt
interfaces like Teddy [Igarashi et al. 2007] infer transient skeletons
in 2D/3D for shape modeling operations, suggesting the utility of a
persistent mesh-skeleton co-representation.

Skeletally driven modeling: focuses on the creation of articulated
figures where the surface shape is dominantly defined by a skeletal
structure. A large body of work attempts to construct shape as a
combination of a number of skeletal implicit surface primitives, for
example [Bloomenthal and Wyvill 1997; Zanni et al. 2013]. These
approaches are successful at exploring skeletally defined blobby
shapes, and typically hand over a base 3D mesh to mesh sculpt-
ing techniques to add surface detail. PAMs support similar skeletal
operations and mesh sculpting within the same framework. Charac-
ter animation has motivated much research on the related problem
of rigging or skinning, for example [Vaillant et al. 2013], where
a mesh bound to a skeleton deforms to conform to animator con-
trolled skeletal pose. Independent mesh and skeleton inputs can
also be registered together and rigged automatically [Baran and
Popovi¢ 2007]. We are able to pose characters by directly interact-
ing with the skeleton inherent in a PAM and also show how a PAM
skeleton can be simplified to an animator’s skeleton in Section 5.
The presence of an inherent skeleton can provide a user more and
persistent shape control, than curve-based free-form deformations
[Singh and Fiume 1998], fitted 3D primitives [Andrews et al. 2012],
or approaches based on variational shape deformation [Sorkine and
Alexa 2007]. Rigmesh [2012] supports the co-modeling of a gen-
eral 3D mesh and associated skeleton. Such an approach however,
is limited by its vocabulary of modeling operations, that must de-
scribe how to modify both the mesh and skeleton. Cut and join op-
erations in Rigmesh for example, combine meshes with Booleans
and merge skeletons separately. Skeletal approaches to creating
base meshes have also been proposed [Srinivasan et al. 2005; Ji
et al. 2010], where skeletal segments are converted to cylindrical
mesh geometry and stitched across joints. Barentzen et al. [2012]
solve this problem by creating polyhedra for joints of degree greater
than 2, that are refined and connected to cylinders. They turn skele-
tons to base meshes that are co-incidentally polar-annular, but fail to
recognize and develop the possibility that PAMs can form the basis
of a mesh-skeleton co-representation. A recent trend in character
modeling uses part and limb segmentations to construct models by
cut and paste of existing parts [Schmidt and Singh 2010; Chaudhuri
et al. 2013]. These modeling workflows are complementary to our
work, where polar and annular regions created interactively or by
our algorithm, are well aligned with semantic part information. Fi-



nally, other authors have investigated how to use, or simply extract,
the intrinsic structural information of a triangle mesh [Thiery et al.
2013; Isenburg et al. 2001].

Morse theory: is a tool for analyzing the topology of surfaces
through the critical points of a function f defined on the surface
[Milnor 1963]. Given a Morse function, f, the Reeb graph is a
graph where each connected component of each level set of f maps
to a single point on the graph. The connectivity of the graph is in-
herited from the manifold. Thus, bifurcations occur where level sets
change topology. For a survey on Reeb graphs on triangle meshes,
the reader is referred to [Biasotti et al. 2008]. Our triangle mesh to
PAM conversion can be viewed as an embedding of the Reeb graph
connectivity, or to be precise the connectivity of an extended Reeb
graph [2000] in the mesh itself.

Quad-meshing: methods attempt to define the flow-lines of shape
[Bessmeltsev et al. 2012] and are often based on establishing a vec-
tor field guided, periodic parametrization on a triangle mesh. The
quad faces are then formed by tracing isoparameter curves in this
parametrization, sometimes using an interactive workflow [Krish-
namurthy and Levoy 1996; Takayama et al. 2013]. Bommes et
al. [2011] proposed a method which removes helical configura-
tions from quad meshes, thereby improving the global structure.
However, our work best relates to Dong et al. [2005], who estab-
lish a harmonic function on a triangle mesh and independently trace
curves in the gradient and its perpendicular direction. Tracing stops
when the curve density is too high resulting in t-junctions (option-
ally triangulated), and no high-level mesh structure. It is unclear
if and how their algorithm could be adapted to create PAMs. Our
approach grows PAM regions separated by level set curves. While
the algorithm we propose can be used to extract a skeleton or quad-
mesh from a general mesh, our focus is to define both (prior art does
one or the other), as a PAM, within a shape modeling context. For a
recent survey of work on quad meshing, see Bommes et al. [2013].

3 Polar Annular Meshes

Definition 1 (PAM) A polar-annular mesh is a polygonal mesh
that consists exclusively of triangles and/or quadrilaterals such that
(i) each quadrilateral belongs to a single ring of quadrilaterals de-
noted an annular region, (ii) each triangle belongs to a single fan
of triangles denoted a polar region, and (iii) the faces incident on a
vertex form a region homeomorphic to a disc, and vertices may not
be incident on edges (i.e. t-junctions are not allowed).

Figure 4: Left: Three PAMs where rib edges are shown blue and
spine edges are red. Right: This PAM contains a junction where
three branches meet. Note how the rib edges (blue) form a complex
loop at the junction in (d). Contracting the rib edges (almost to the
barycenter), we obtain a shape close to the line skeleton (e).

To facilitate discussion, we need some terminology: A rib edge is
an edge which bounds a polar or an annular region. A spine edge
is an edge in the generator direction of a polar or annular region.
Finally, a pole is the apex of a polar region.

It is easy to demonstrate that PAMs exist. The simplest example
with both an annular and a polar region is a ring of quadrilaterals

capped with triangle fans at either end (Figure 4b). It is also easy
to show that some meshes are ambiguous. For instance, any torus
meshed using quads (Figure 4a) can be construed as a PAM in two
different ways: the rib edges can form the loops corresponding to
the minor radius and the spine edges form the loop corresponding
to the major radius (as shown) or vice versa. An octahedron can
be construed as a PAM in three different ways due to symmetry. In
Figure 4c one case is shown where the poles are the leftmost and
rightmost vertex. However, the poles could also be the top-bottom
or the front-back pair.

A PAM is constructed by gluing regions together. Since t-junctions
are not allowed according to the definition, we need to identify the
rib edges of the regions being stitched. However, branching is pos-
sible as shown in Figure 4d. Observe that a vertex on the boundary
of either a polar region or an annular region is incident on two rib
edges and one spine edge from that same region. Once we stitch
N regions, we identify pairs of rib edges. Thus, the valency of a
non-pole vertex is always 3N — N = 2N. Moreover, the edges
incident on a non-pole are always alternately rib and spine edges.
Only spine edges are incident on a pole. Using these two properties,
we can label all edges using a graph traversal starting from a single
labeled edge. We also observe that since the edge shared by a quad
and a triangle must be a rib, the possibility for ambiguity does not
arise when a PAM contains both polar and annular regions.

We obtain a line skeleton from a PAM by contracting all connected
rib edges to a single point (the barycenter of their vertices). Thus,
a skeletal node is the set of vertices V belonging to a connected
(possibly complex) loop of rib edges. Two skeletal nodes a and b
are connected if there is a spine edge connecting a pair of vertices
ve € Vo and vy, € V. It follows that poles correspond to nodes
where only the pole belongs to the set of vertices associated with
the node. Figure 4e shows a (nearly full) contraction of the PAM in
Figure 4d to its line skeleton.

3.1 Primitive Operations
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Figure 5: Primitive PAM operations: the contraction and splitting
of a region (light blue) (a), the contraction and splitting of a co-
region (light red) (b), PAM features added and removed (c). The
ribs being cut to add a feature in (c) are shown using fat light green
lines. The added faces are also light green.

Refinement and simplification. We can refine a PAM by insert-
ing a vertex on all spine edges belonging to a given region (polar or
annular). If we then connect these vertices by splitting the faces of
the region, we have inserted a new edge loop and thereby created
a new annular region as shown in Figure 5a (middle and bottom).
A region is a contiguous set of faces bounded by rib loops. We



can also select a contiguous set of faces bounded by spine edges.
These face sets do not form regions but end in triangular faces in-
cident on a pole as shown in Figure 5b (middle). We will denote
spine-bounded face sets co-regions. We can split the rib edges and
then the faces of a co-region thereby introducing a new co-region
as shown in Figure 5b (bottom).

These two operations can be inverted by removing the introduced
edge loops (or sequences). In practice, we prefer to perform con-
traction of regions since the averaging introduces smoothing as a
part of simplification. Thus, we remove a region or co-region by
contracting all its spine or rib edges, respectively. See Figure 5a-b
(middle and top). In Section 5, we discuss how both refinement and
simplification can be used in practice.

Adding and removing PAM features. The refinement and sim-
plification operations described above do not change the skeletal
structure. This, however can be done by adding and removing PAM
regions. To do so, we need to cut the PAM in order to open a loop
of rib edges, creating a boundary in the model. This can be done
in two ways: we can create an incision by splitting a sequence of
rib edges as shown in Figure 5c¢ (middle). In the figure, we cut
along two edges, creating a boundary loop consisting of four rib
ribs edges. More generally, cutting along n edges creates a loop of
2n edges. We can add a PAM by identifying the boundary rib edges
with a loop of boundary rib edges from another model that has been
cut open. In the example, we add a PAM feature consisting of an
annular and a polar region, thereby adding a small branch as seen in
Figure 5c (middle and bottom). Of course, we can also cut open an
entire rib loop, dividing the model in two. We would then typically
discard the smaller of the two pieces (often just a single polar re-
gion) and add a new PAM feature to the larger. This is the primitive
operation used e.g. for branch extension (cf. Section 6).

Note that when we open a PAM by creating a boundary loop of
rib edges, it is technically not a PAM before we create a closed
model by adding a new PAM feature. Adding a feature requires
that the number of boundary rib edges in the cut is the same as
the number of boundary rib edges in the part that we attach. Since
cutting along n edges produces a loop of 2n rib edges, we may also
need to refine or coarsen the PAM feature that we attach if it has an
uneven number of edges in the boundary rib loop.

4 Converting Triangle Meshes to PAMs

Itis desirable to be able to convert existing triangle meshes to PAMs
so that they can be used for further modeling. Our approach is based
on the observation that the PAM regions are simply closed loops of
polygons that cover the surface. If we embed a system of non-
intersecting, closed curves in a manifold, this system can be seen
as being dual to the structure of a PAM: each closed curve will, in
the end, be transformed into a polar or an annular region. Given
a function f on a manifold, we can obtain such a system of non-
intersecting closed curves as level set curves of f — assuming that
we choose level set curves that do not contain critical points (where
V f=0). On a triangle mesh, the critical points of a Morse function
occur only at vertices [Banchoff 1970]. Thus, by avoiding vertices,
it is possible to ensure simple curves. Of course, we must also re-
quire that f is designed such that it respects the geometric structure
of the shape: the gradient field should flow along important features
and the level set curves flow around these features.

Overview: Our initial step is to embed a system of level set curves
in the input triangle mesh 7. This step is similar to the algorithm by
Attene et al. [2003] for computing the extended Reeb graph (ERG)
[Biasotti et al. 2000] by slicing the mesh along level sets. Attene

et al. are interested in the type and connectivity of critical points,
which can be found by analysis of the boundary curves of the re-
gion bounded by a number of slices. Our algorithm on the other
hand proceeds by removing the vertices which lie between slices.
We then use a marching front approach to change the valencies of
all vertices to either four (for loops corresponding to annular re-
gions) or three (loops corresponding to polar regions). When all
vertices are valence three or four, we can obtain a PAM simply by
computing the dual mesh. In the following, we describe each step
in detail.

Embedding Level Set Curves. Initially, the user specifies into
how many levels the shape should be divided. For level, ¢, we visit
all edges in 7. An edge is cut by introducing a vertex if a < ¢ < b
where c is the level value and a < b are the values at the end point.
The half open interval ]a, b] ensures that, if a vertex v lies precisely
on the level set, i.e. f[v] = ¢, we only cut edges that connect to
vertices with smaller values of f. Effectively, this is a perturbation
of the value at one end point which ensures that no vertex of 7
lies on the level set curve. Since the critical points, saddle points
and extrema, are at vertices, the LS curve does not contain critical
points and is, therefore, a simple (or Jordan) curve (see Figure 6).

Figure 6: The dark region above is inside the level set curve cor-
responding to value c. The close up illustrates that even when a
vertex has value f[v] = c, the LS curves do not contain it.

Removing old vertices. We remove all vertices that do not lie
on the level set curves. When removing a vertex, we simply merge
all incident faces and triangulate the resulting polygon by greedily
connecting the closest vertices of the polygon which are not con-
nected by an edge and do not lie on the same connected component
of a level set curve. Vertices that lie on different components of the
same LS curve may be connected, however, and these connections
represent saddle regions. Removing vertices from a region bounded
by only one LS curve (i.e. a region containing an extremum) leads
to a situation where we cannot triangulate the resulting polygon,
since all vertices belong to the same LS curve. This polygon is then
left untriangulated.

The next step is to smooth the individual LS curves. This is done
by parametrizing the curves and then smoothing in the parameter
domain to avoid shrinkage. Finally, we optimize the mesh by edge
flipping to minimize the edge length. The result of this step is a
polygonal mesh where all vertices belong to an LS curve and are
evenly distributed along these.

Separating Vertices and Collapsing Edges. In order to arrive
at a mesh which is the dual of a PAM, we now visit all level set
curves starting from the positive and negative valued curves adja-
cent to the O-level curve (a choice that is obviously arbitrary). For
each level set curve, we first separate the vertices. This is done
by creating a duplicate curve directly under the level set curve and
cutting all intersecting edges and connecting the resulting vertices
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Figure 7: Left: visiting the curve at level ¢; (a), we initially sepa-
rate the vertices with more than one edge connecting to c;—1. This
leads to (b) . We collapse all edges on c; that form triangles with
a vertex on c;—1, resulting in (c). Right: a given level set curve
(black) connects to the curves immediately above and below it (in
terms of the level set value). Thus, every vertex on an LS curve has
valence four unless the LS curve encloses an extremum of the func-
tion f since in that case there is no curve above (or below if it is a
minimum) and every vertex has valence three.

(see Figure 7a-b) while removing the old level set curve. We then
collapse all edges which lie on the ¢; level curve and form a trian-
gle with the curve on the ¢;—1 level curve. This produces the result
in Figure 7c. We again improve the distribution of vertices on the
level set curve.

As we expand the front, visited level set curves contain vertices only
of valence four as shown for the cup model in Figure 8b. There are
two exceptions to this statement. When we reach a level set curve
enclosing an extremum, there are no curves inside, so its vertices
only connect to previous LS curves. This requires no special han-
dling. The other exception is when a curve of level ¢; consists of
two connected components. In this case, there may be an edge from
both of the components to a curve of level ¢;—; (and likewise for
—c; and —c;—1). These cases are handled in a post process. We
remove edges from remaining vertices with valence > 4 until they
do have valence four. In some cases, the removed edges connect to
vertices which are thereby reduced to valence three. These vertices
are also removed along with the incident edge that connects to an-
other level set which causes a new valence three vertex. Thus, the
procedure becomes recursive.

Obtaining a Polar Annular Mesh. The described algorithm pro-
duces a mesh where all vertices belong to edge loops. For a single
edge loop, all vertices either have valence four or valence three. In
the latter case, the loop forms a polygon. Both cases are shown
in Figure 7 (right). Taking the dual results in a mesh which con-
sists exclusively of quadrilaterals or triangles and these form either
rings (of quads) or triangle fans. Consequently, we arrive at a mesh
which fulfills the requirements in Definition 1 and is, therefore, a
Polar Annular Mesh. The final result of this conversion process for
a cup model is shown in Figure 8c.

Scalar Field Generation The function f which is used for trian-
gle mesh to PAM conversion could be designed a number of ways.
However, an obvious and effective method is to generate a harmonic
function from user specified vertex constraints. We allow the user
to interactively select a set of vertices and set a scalar boundary
value at each. The program then solves Af = 0, where Af is

Figure 8: Left: The process of triangle mesh to PAM conversion.
The cup is shown with its harmonic function f (a), halfway through
the marching front conversion (b), as a converted model (c), and
finally after optimization (d). Right: A segmented PAM (top) and
a segmented PAM where an additional ring of constraints has been
used to better define the shoulder region (bottom).

the discrete Laplace operator. Like Ni et al. [2004], we use mean
value weights [Floater 2003] and not cotangent weights [Pinkall
and Polthier 1993] since the latter can become negative. The cup in
Figure 8 (left) is created from just two constraints (on the bottom
of the cup inside and out) a positive and a negative constraint. In
general, setting these constraints is simple: they are placed on the
tips of protrusions. For objects without a clear branching structure
such as the human head in Figure 12 it is generally important to
obey symmetry. Constraining all vertices in an edge loop to the
same (non-extremal) value can be used to guide PAM generation
near salient features, e.g. the shoulder of the Armadillo model as
shown in Figure 8 (right) where the mesh has been segmented: the
color of a given face indicates to which skeletal branch it belongs.

5 Auxiliary Methods

Clearly, any practical use of Polar—Annular Meshes for content pro-
duction entails the need for more tools. In the following, we present
the most important.

Refitting smooths the geometry of the PAM in the manifold of the
input triangle mesh 7~ with the dual objective of improving the ver-
tex distribution while refitting the PAM geometry to 7 (as shown
in Figure 9 (top)). We initially project a PAM vertex, v onto 7 by
finding its closest face and the barycentric coordinates of v in this
face. Subsequently, for each PAM vertex, v we create a local uv
map using the geodesic polar coordinates method of [Melvar and
Reimers 2012] and compute the positions of the neighbors of v.
We smooth the position of v in uv coordinates and update its face
id and barycentric coordinates to reflect the new position. When
a sufficient number of smoothing iterations have been performed,
we convert the vertex positions back to 3D. A similar smoothing
operation is also discussed in [Melvaer and Reimers 2012]. The
main difference is that we do not convert vertex positions back into
3D between iterations. This geodesic smoothing is very effective
at redistributing the vertices without introducing shrinkage. In con-
junction with PAM simplification (see the following) it can be used
to optimize PAMs to fit the geometry while achieving the desired
complexity. This procedure was used to create Figure 8d. As an im-
plementation detail, it is worth noting that geodesic smoothing can
cause shrinkage at very high curvature areas since it may simply
pull the vertices away from these regions. To avoid that, we keep
the poles (where high curvature is often concentrated) fixed during
smoothing.



Subdivision. Firstly, iteratively adding rib and spine edges is
clearly possible. This can be used to refine the mesh. However,
polar subdivision and in particular the C2PS scheme introduced by
Myles and Peters [2009] has the nice property that while it works
like Catmull-Clark [Catmull and Clark 1978] for non-polar regions,
it also preserves the pole structure (doubling the valence). Like
Barentzen et al. [2012], we have implemented a simplified scheme
which uses only one ring information and works as an extension to
Jactored Catmull-Clark subdivision [Warren and Schaefer 2004]. It
is important to note that PAMs are closed under subdivision: the
line skeleton of the subdivided PAM is a subdivided version of the
skeleton of the original PAM.

While PAM conversion is obviously lossy, Figure 9 (top) shows
that with the combination of subdivision and refinement of the ini-
tial PAM, we can recapture almost all the details of the original
armadillo model.

Figure 9: Top: From left to right this figure shows the Armadillo
mesh converted to a PAM (57k faces), PAM after one iteration of
subdivision and refitting (227k faces), PAM after two iterations of
subdivision and refitting (908k faces), and (far right) the original
triangle mesh (346k faces). Bottom: The Armadillo as a highly
detailed PAM (left) and after simplification has been performed,
removing 600 strips from the mesh (right).

Simplification. Methods for triangle mesh simplification or quad
mesh simplification do not apply directly to PAMs since a PAM is
a tri-quad mesh with certain constraints. We use a single operation
which preserves the invariants of a PAM and is related to the poly-
chord removal introduced by [Daniels et al. 2008]. In Section 3
we introduced the primitive simplification operations of region con-
traction. Recall that a region is a contiguous set of faces separated
by spine edges and that a co-region is a contiguous set of faces sep-
arated by rib edges. We prioritize region (or co-region) removal by
always picking the region (or co-region) whose longest spine (or
rib) edge is shortest amongst all regions and co-regions. Removing
600 regions and co-regions in this way from the Armadillo model
in Figure 9 (bottom, left), we arrive at the mesh on the right.

Pole Quadrangulation. When exporting the PAM mesh to an-
other application, the high valency poles may be unsuitable for the
downstream application. The procedure for pole removal initially
selects a pair of edges that divide the triangle fan into two clusters
of edges. The dividing pair of edges is not in these clusters which
are shown red in Figure 10a. For each cluster, we introduce a new
vertex on all edges, and connect these new vertices (Figure 10b).
These connecting edges are immediately collapsed producing two

Figure 10: Left: pole removal. The edges are divided into two
clusters (shown red in a) which are connected by edges (red in b)
that are collapsed (see c). A new cluster of two edges is selected
(shown red in c) and the process is repeated. The remaining edge
(green in c) is simply removed. Final result shown in d. Right: the
hand of the Armadillo model. From left to right: a simplified polar
mesh, the mesh after the poles have been quadrangulated, and after
one step of Catmull-Clark subdivision.

pairs of quadrilaterals around the original pole (Figure 10c). From
each cluster, we remove the two outermost edges and repeat the
process until each cluster holds less than two edges. If the count
is zero, we are left with single triangle. If the count is one, we
simply remove the remaining edge, producing a single quad. Both
cases are illustrated in Figure 10c-d. To finally obtain a triangle free
mesh, we perform one step of Catmull-Clark subdivision.

Skeleton Abstraction and Skinning. In our iPad application,
we typically use properties of the skeleton without explicitly ex-
tracting it, such as for branch deformations (see Section 6). How-
ever, for use in third party tools, it is important to be able to extract
a skeleton. Since each rib loop can be contracted to a point on the
skeleton, we can consider each rib loop to be a node (or joint) of our
PAM skeleton S. We manually pick a vertex on the PAM, whose
associated rib loop defines the root joint of the hierarchy. The skele-
tal hierarchy S is then built using a simple breadth first traversal
out from the root rib loop, along adjacent rib loops. Animation
skeletons typically have far fewer joints that the contracted rib loop
skeleton S. We create such an animation skeleton A from S, by
iteratively collapsing some joints to their parent joints. A joint with
one child may be collapsed if the angle between its incident skeletal
edges is straighter than a threshold angle (we use angle > 164°).
While this approach works well in practice, a more global algorithm
could further optimize lengths of joints and the overall curvature of
a simplified chain of joints. For joints with more children, we allow
a fixed number of collapses. The PAM skeleton shares the property
of Reeb graphs that branch points are often on or close to the sur-
face [Gebal et al. 2009]. Removing branch nodes has the benefit of
pulling the branches away from the surface.

The PAM vertices are naturally rigged to the skeleton S by their
associated rib loops. PAM vertices can be rigged to the animation
skeleton A in various ways, the simplest of which is linear blend
skinning, where each mesh vertex is controlled by a weighted com-
bination of skeletal joints. Traditionally, skin weights are based on
the shortest Euclidean distance from a mesh vertex to the skeleton
A. Instead, we compute skin weights for a vertex based on the dis-
tance (along the skeleton S) between its associated rib loop centroid
and the joints of A. This distance is easily found by traversing the
chain of spine edges connecting the vertex to the rib loop associated
with the joint. Our skin weights can optionally be exported along
with the animation skeleton A for use in 3rd party tools. See Fig-
ure 3 (right). The visual difference between Euclidean skin weights
and our weights is minimal, though our weights tend to better pre-
serve rigidity of rib loops that are not orthogonal to A.



Figure 11: Top: The spider, scorpion, robot, and dinosaur were all sculpted from scratch by a 3D artist using our iPad app. The inset black
curves show the skeleton of each model. Bottom: The tools used in creating this dinosaur model are: initial shape creation (a), branch
creation and sculpting (b), branch creation and some sculpting (c,d), sculpting and cloning of branches (e), branch deletion (f), branch
creation (g), branch extension (h), branch deformation (i), and branch cloning (j,k).

6 Multi-touch sculpting using PAMs

We demonstrate the effectiveness of the PAM representation on an
Apple iPad. While a gestural multi-touch interface is well suited to
interactive modeling of articulated shapes, there are presently few
such prototypes on mobile devices, in part due to the computational
complexity of working with a general mesh representation. The
structure of a PAM reduces the memory and computation necessary
for common mesh operations like dynamic refinement, remeshing
and selection, enabling interactivity on small mobile devices.

In implementing the modeling tools provided by the application,
we extensively use the structural and skeletal information in the
PAM representation to select regions (subtrees), interpolate along
the skeleton, and find edge loops where the mesh can be cut, to add
or remove branches. We use the word branch to refer to an entire
subtree, that forms part of the model on one side of a user indicated
point. Our modeling operations are illustrated as snapshots from a
typical modeling session in Figure 11 (bottom) and detailed below.
Below we present timings. These are worst case numbers: timings
have been measured for more geometry than we usually manipu-
late. The model used in all cases is a PAM representation of the
Armadillo model at 37604 vertices.

Navigation: Similar to ILoveSketch [Bae et al. 2008] which uses
mode switching to disambiguate gesture strokes from draw strokes,
we use a two finger tap to switch between navigation and modeling.

In navigation mode, typical 3D navigation gestures are employed.
Navigation runs at 58-60 fps.

Initial shape creation: A two-finger stroke is used for the initial
shape creation. We extract a skeletal curve in the view plane by
averaging and smoothing the two finger strokes. Polar regions are
created at the first and last skeleton point. Annular regions are cre-
ated for all other skeletal points. The diameter is determined by the
distance between the corresponding touch points. 30000 vertices
are created within 1 sec.

Branch creation or extension: A one finger stroke is used to
create a new branch on a PAM. The first touch point is mapped to
the closest projected vertex v (not a pole) of the PAM. The branch
width w is a fraction of the perimeter of the rib loop containing v,
and proportional to the speed of the stroke. We gather rib edges
around v until their total length is approximately w, and cut them
open, creating a boundary loop along the selected rib edges. Next,
the user drawn stroke generates a 3D skeletal curve emanating from
vertex v. Empirically, we found users to consistently imagine this
curve as emanating normal to the surface of the PAM at v, but con-
forming to the stroke as drawn in the view plane soon after. We
capture this by first generating the stroke on the view plane posi-
tioned in 3D at v. The rotation to align the curve tangent at v with
the PAM surface normal at v is then applied with a smooth fall-off
within a fraction (say 1/3) of the arc length of the curve. A po-
lar region is created at the last skeleton point. Annular regions are



created for all other skeleton points with a radius of w/2, to pro-
duce a PAM with a boundary loop containing the same number of
rib edges as the loop previously cut open. Finally the two bound-
ary loops are trivially stitched together. If the first touch point is
mapped to a pole, we extend the corresponding branch. First, the
pole is removed to create a boundary loop. The new branch is then
created and stitched to this boundary loop as previously described.
30000 vertices are created within 2 sec.

Branch deformation: The user performs a long press to place a
pin point. Next, by placing two fingers on the screen, a pivot point
is defined and an Affine transform initiated. The transformation
itself is defined by typical two-finger gestures: a circular twisting
action for rotation around the view vector, spreading or gathering
to scale and a pan gesture to translate. Deformations are performed
at 56-60 fps for 20000 vertices. The rib loops containing the pin
and pivot points, segment the PAM to define deformation extent.
The transformation, as defined above, is applied to the region be-
yond the pivot point. The transformation smoothly falls-off over
rib loops in the transition region between the pivor and pin points.
The region of the PAM on the other side of the pin point is unaf-
fected. In an alternative, simpler workflow, the user sets the pivot
point, and the app automatically infers the placement of the pin
point. Segment computation takes 0.1 sec. for 20000 vertices. We
counter shearing introduced by rotation or translation in the transi-
tion region by rotating rib loops. For each rib loop we first compute
an estimated tangent along its skeletal curve, as the line connecting
the barycenters of its two adjacent rib loops. The rib loop is then
rotated such that its best fitting plane is perpendicular to this skele-
tal tangent. Rib rotation takes 0.01 sec. for 15000 vertices in the
transition area.

Branch cut-copy-and-paste: The user sets a pin point to indi-
cate where to cut the branch. A long swipe across the branch then
deletes it. If the pin point lies at a rib junction, we close the hole
by stitching boundary edges together. Otherwise, a polar region is
used to close the rib loop. A short swipe across a branch cuts it
by deleting a sequence of spine edges along the rib loop containing
the pin point. While in this detached state, the user can rotate the
branch around the vector parallel to the first skeletal segment of the
detached branch, using a rotate gesture. A one finger tap allows the
user to reposition the branch to another place on the model. The
same procedure as for branch creation is used to attach the branch.
A subsequent swipe pastes the branch either at the same place or a
new one (in which case the introduced hole is capped). For 20000
vertices, detaching takes 0.7 sec. and deletion takes 0.6 sec. Repo-
sitioning takes 1.4 sec. for 5000 vertices. Instead of a cut or delete
gesture, an initial three-finger swipe across the branch copies it.
A one-finger tap then creates a clone at the place indicated. The
cloned branch can be rotated in the same way as a detached branch
and pasted using a subsequent three-finger swipe. The latter ges-
tures can be used to multiply clone a copied branch. Copying of
5000 vertices takes 1.4 sec. and cloning them takes 1.2 sec.

Sculpting and Smoothing: If both fingers are inside the model,
two-finger spreading and gathering gestures sculpt the shape, cre-
ating dents or bumps, respectively. If the gesture starts with both
fingers touching background, we smoothly contour the model along
both sides of the ribs. If the gesture starts with one finger touching
model and another touching background, we contour only along
one side. The PAM structure makes it easy to find the rib loops that
are closest to the touch points and affected by the contouring. Con-
touring can be isotropic or anisotropic. A patting gesture is used
for smoothing. 5000 vertices affected by sculpting are determined
within 0.02 sec. Deformations are carried on at 58-60 fps.

7 Implementation and Results

The methods presented in this paper were implemented primarily
in C++ and Obj-C (for UI elements) and based on a half-edge mesh
data structure [Kettner 1998] which is the foundation for our imple-
mentation of the PAM representation on both of the platforms that
we use: i0S 7/iPad and OSX 10.9/Mac. The Mac software was run
on a 2.6GHz Intel Core i7 Retina MacBook Pro 10,1. The iPad ap-
plication was tested on iPads of generation 3, 4, and 5. The fourth
generation iPad was used for sculpting the models shown in this
paper. The fifth generation iPad was used for timings in Section 6.

We tested the performance of the harmonic function generation and
the triangle mesh to PAM conversion. The results are summarized
in Table 1 which also states the model source. Note that this non-
interactive code path is not efficient. Especially the generation of
the harmonic function (with Jacobi iterations) could be much im-
proved. The Man is shown in Figure 1. The original mesh (a) is

Model (source) ‘ tri in slices faces out f PAM

Man (Princeton) 20096 300 31507 8.66 s 1497 s
Armadillo (Stanford) 25944 150 21283 13.7s 13.84 s
Bunny (Stanford) 6966 100 11874 4.23s 2.18s
Children (AIM@Shape) | 20002 150 67443  8.32s 17.22s
Head (authors) 20016 150 37868 717 s 945s

Fighter (Thingiverse) 12490 48 7587 N/A 2.63s

Table 1: This table shows the number of input triangles, level set
slices, output faces (PAM) and the time it takes to create the har-
monic function f and the actual triangle mesh to PAM conversion.

shown after default PAM conversion (b); after simplification (to re-
move 420 regions or co-regions), refitting and subdivision (c); and
after further interactive modeling (d). Other triangle meshes con-
verted to PAMs are shown in Figure 12. The Dancing Children,
Bunny and Armadillo models were converted using a harmonic
function f created from constraints placed at obvious extrema of
the model. The head model was more challenging. Constraints
placed on eyeballs, in nostrils and on the ears produce a desirable
mesh, albeit with a less meaningful skeleton (for example, there is
no bone to control the lower jaw). A coordinate function was used
as f, for the fighter. While the mesh along the fuselage is reason-
able, there are no poles on the wings to capture it skeletally. We
also see a loss of detail near the edges of the wings, where we have
no way to constrain the spine edges to conform precisely to wing
edges (we can manually constrain rib edges, as in Figure 8(right)).

A 3D artist was asked to create a set of models using our applica-
tion. The results are shown in Figure 11 in the order in which the
models were created. The artist spent an hour and a half on the
spider, one hour and 12 minutes on the scorpion, 27 minutes on the
robot and an hour on the dinosaur. We can also use the app to mod-
ify existing 3D models. In Figure 1d the arms of the model were
cloned and the face and body sculpted. In Figure 13, the Armadillo
was posed using the application while the cup and the hand were
created from scratch. Snapshots from a typical modeling session
shown on the dinosaur model in Figure 11 (bottom), highlight the
interoperable nature of articulated shape modeling, where skeletal
branching and posing operations are freely interspersed with sculpt-
ing and smoothing of geometric detail.

8 Discussion

Stripped to its essence, a PAM is a light-weight representation that
enables the direct manipulation of a polygonal mesh representation
while retaining its implicit skeletal structure. This skeletal structure
and its induced shape segmentation is what allows us to pose, ani-



Figure 12: These models are all the results of triangle mesh to PAM conversion. The Dancing Children model and the airplane have not
been processed further. The Stanford Bunny has been refitted and the Armadillo and head model have been simplified and refitted. The inset

black curves show the skeletons of the adjacent models.

LU e

Figure 13: The armadillo was posed using the iPad app. The cup
and the hand were created using the app.

mate, clone, delete, and transform a 3D model without recourse to
dynamic parametrization, segmentation algorithms or background
remeshing. We showcase the expressivity of PAMs using a sim-
ple multi-touch based iPad app for shape modeling, or editing of
existing shapes converted to PAM:s.

Our triangle mesh to PAM conversion process currently requires
users to specify extreme points of the harmonic function, to guide
the conversion. While such input also provides a user with precise
control over the placement of poles, an automatic solution would be
of interest. We considered using the auto diffusion function (ADF)
[Gebal et al. 2009]. Unfortunately, the level sets of the ADF in-
crease in frequency near the poles, and the ADF yields a spurious
pole at its minimum, near the middle of the model. Therefore, we
leave automatic generation of f to future work. Also pertaining to
PAM conversion, the zero level curve (which may consist of several
components) has special significance: this is where the front prop-
agation (which changes all vertices to have valence four or three)
starts off. Thus, the number of vertices on this initial curve deter-
mines the mesh sampling. We could adaptively control the sam-
pling of this curve to avoid loss of detail in the mesh conversion,
but this is not presently implemented. Finally, our front propaga-
tion algorithm is not sensitive to the topology of the input mesh,
and tiny handles which lie entirely between two discretely sampled
level set curves, are not presently handled.

Our iPad application and its tools were mimally designed to illus-
trate the benefits of a persistent mesh-skelton co-representation. We
hope to augment it in the future with tools that exploit skeletal sym-
metry and textured brushes for sculpting detail. In summary, we
argue that a mesh structure with an embedded skeletal segmenta-
tion can positively impact interactive shape modeling. A PAM is
one such mesh-skeleton co-representation with various restrictions,
such as the lack of t-junctions to arrest the global propagation of
mesh detail along spine edges, or the high valence of polar triangle
fans. We hope these limitations will fuel research in PAM general-

izations and other novel mesh-skeleton co-representations.
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