CSC 181F Lecture Notes

These lecture notes are provided for the personal use of
students taking CSC181F in the Fall term 1999/2000 at the
University of Toronto

Copying for purposes other than this use and all forms of
distribution are expressly prohibited.

(©David B. Wortman, 1995, 1996, 1998,1999

(©Hiroshi Hayashi, 1997

Preview

Arithmetic Expressions
Assignment, IValues and rValues
Logical Expressions

Conditional expressions
Operator associativity

Operator precedence

Type conversions

59

Reading Assignment

K.N. King Chapter 4
K.N. King Section 7.4, 75, 7.6
Supplemental Reading

S. McConnell Chapter 8
Chapter 12

58

Arithmetic Operator s

e The arithmetic operators are used to compute the values of integer and real
(float/double) expressions.

e the arithmetic operators in C are

— negation * multiplication
+ addition / division
— subtraction % modulus

e For all operators except %, result is of type double if either or both operands
are of type double; if both operands are of type integer then the result is of
type integer.

The modulus operator only takes integer operands % always returns a
integer result. Division of integers truncates the fractional part.

The modulus operation A % B returns the remainder of A divided by B.
It is always true that 0<=A%B<<B

60

Assignment
IValues and rValues

® Assignment is the act of computing the value of some expression and making

that expression the value of some variable.

e An IValue represents an object stored in the memory of the computer.

Variables are IValues®

e An IValue is used in an assignment to indicate where the value of the

expression is to be stored in memory.

® An rValue is another name for an arbitrary expression.
rValues can be used anywhere that an expression is allowed.

In particular an rValue is required on the right side of an assignment.

@Qther kinds of IValues will be discussed later in the term.

61

Combined Operate and Assign

e For (almost) any binary operators®
IValue binaryOp= rValue
is equivalent to:

IValue = IValue binaryOp rValue

e Examples
X += 1 ; A x =x+1*
y *= X + z Ky =y* (x +2) *
i %=7 o0 =0 %7 ¥

e Good Style: Don't use operate and assign if it makes your program difficult
to understand.

®hinary operators are arithmetic operators that require two (left and right) operands, e,g, +

63

Assignment Operator

IValue =

rValue

e Assignment is an operator in C.

The left operand of this operator must be an Value (usually a variable).

e The right operand of this operator must be an rValue .

The rValue can be any arbitrary expression involving constants, variables, operators

and function calls. The result of the assignment operator is also an rValue .

o Examples:

height
volume

Increment and Decrement Operators ++ and - -

8;
height * length * width;
k = 0; /¥ Equivalent: i
/*** WRONG,IValue
0; /*** WRONG,IValue
62

=(]
can’t
can't

(k

be

=0)) ;

a constant

*

be an expression

e The increment (++) and decrement (- -) operators can be used to efficiently add

or subtract one from a variable

Both of these unary” operators take an [Value as an operand.

They add or subtract one from value of the variable in memory.

The result of the operation is a rValue which can be used like any other rValue .

o If the operator occurs before the Value then the rValue is the value of the variable

after it is incremented or decremented.

If the operator occurs after the IValue then the rValue is the value of the variable

before it is incremented or decremented.

e Example:

k=1
printf("k
printf("k
k =1,
printf("k
printf("k

%d\n",
%d\n",

%d\n",
%d\n",

<A unary operator has one operand.

++Kk);
K);

k=-);

64

\.»
\,»

\.»
*

prints
prints

prints
prints

"k
"k

"k
"k

is
is
is
is

on
on

1"
0"

*
*

*
*

*kk \

*kk
i

Logical Expression in C

e The C language contains a number of operators that work on logical values,

i.e. true and false . Logical values are often called Boolean values.

e The relational operators compare the values of two expressions and produce

a logical value.

e The logical operators can be used to combine logical values to produce a

logic valued result.

e Historically false is represented internally by the value zero and true is
represented by any non-zero value.

e Many programmers use the definitions
#define FALSE (0)
#define TRUE (1)
typedef int Bool ;

65

Logical Operator s

e The logical operators in C are used to combine simple logical values into
more complicated logical values. The logical operators are
&& logical and

Il logical or

! logical not

e The definitions for these operators are

A B A All B | A&&B
false false | true false false
false true true true false
true false | false | true false
true true false | true true

67

Relational Operator s

The relational (comparison) operators in C are

== equal 1= not equal
> greater than >= greater than or equal
< less than <= less than or equal

The operators are typically used as

expression ey relationalOperator expression ight

The relational operators compare the values of m&ﬁaam&&imb and
exTpression ight and produce a logic value describing the result of the comparison.

All scalar types can be compared. Only scalar types can be compared.

WARNING: BE REALLY REALLY CAREFUL
don't confuse assignment (=) with equality compare (==)
K = 3is always true AND CHANGES K

66

Logical Operator s are CONDITIONAL in C

Operator Meaning

A &&B if Ais true then B else false

All B ifAistrue then true else B
Note that the right expression (B) is only evaluated if it is needed.

Many C programs use the conditional nature of the logical operators.
Example: 0 < K &&K < ARRAY SIZE && A[K] ==

WARNING: Be VERY careful to not use the bitwise operators® when you want the
logical operators.

Operator Logical Bitwise

Not ! -

And && &

Or Il _

®To be discussed later, See King Section 20.1

68

Example: Relational and Logical Operator s

Assumethatr = 1,y =4,z = 14.

r<=1&&y== false
r<=1]|| y== true
l@x>1) true
Lx>1 false (!!)
lx<=1| y==3) false

r>=1&&y==3| z<14 false

69

e Use order of operands to guarantee safe evaluation of the right operand.
0 < K &&K < ARRAY SIZE &&A[K] ==

e Use parentheses generously to make logical expressions easy to read.

e Use formatting to make long logical expressions easier to read

(A<3 Il B I Cl= 17)
&& (D I E <= 1375 || F)
&& (X <Y | Z >= 13.8)

e Long logical expressions MAY indicate BAD THINKING make sure each long
expression is really necessary. Sometimes computing the logical inverse of

an expression and using ! is simpler.

71

HOW TO Use Logical Operator s

e Variables (usually char or int) can store logical values for later use.
int xTooLow ;
xTooLow = X < 0.75

e Use &&,|| and! to combine logical results.

— | inverts the logical sense of the expression
— &&produces true if BOTH operands are true

— || produces true if EITHER operand is true

e For efficiency order operands to produce an early result
put term most likely to be false first for &&
put term most likely to be true first for ||

70

e Try to minimize the number of ! operators in a logical expression to make it
easier to understand.
DeMorganLaws ! A|| ! B replace with | (A &&B)

I A&&! B replacewith | (A|| B)
Invert Relations ! (X==Y) replace with X! =Y
I (X<Y) replacewith X>=Y

Cancellation ' 1 X replace with X

72

Conditional Expression

(boolExpn ? exphirye : €TDN faise)

The value of the boolean expression bool Expn selects one of expnspye O

eTPn fqise as the value of the entire construct

Good Style: Always enclose conditional expressions in parentheses for

readability and to avoid operator precedence problems

Examples:
(X>Y?X:Y) Fmax(X,Y)*
(1< N&NSLIMIT?N:1) /* Bounded N */

73

Sizeof Operator

sizeof (object)

® The sizeof operator returns the size in bytes of the object.

e In the most common case object is a type-name , but object can also be a

constant, variable or expression.

e Example:
int | ;
sizeof (int) ;
sizeof (I) ;

sizeof (23) ;
sizeof (| + 32768) ;

75

Comma Operator

€XPressioniefs , €TPTESSIONright

® The comma operator is used to put several expressions in places where

normally only a single expression is allowed.
m&?.mmﬁ.@ﬁF? is evaluated and its value is discarded.

expression,ignt is then evaluated and then becomes the value of the entire
expression (an rValue).

Good Style: Use the comma operator sparingly when you really need a list of

expressions. Do not use it to write hard to understand programs.

74

Operator Precedence

e Operator Precedence determines the order in which operators in an

expression are evaluated. An operator with higher precedence be

evaluated before an operator of lower precedence.

e Examples: * has higher precedence than + so

A*B+C means (A*B)+C andnot A*(B+C)
Arithmetic operators have higher precedence than relational operators so
A+B<C*D means (A+B)<(C*D) andnot A+(B<C)*D

e The precedence rules in C are mostly intuitive and sensible.

Use parentheses when in doubt or to force a particular order of evaluation.

o WARNING: Be careful when mixing operators from different precedence

classes in an expression.

76

Operator Associativity Operator Precedence ¢

Operators Associativity
e Operator Associativity determines the order in which operators of equal on > . left -> right
precedence will be evaluated in an expression. I " 44+ - + - * & (type) sizeof right -> left
* | % left -> right
e left -> right associativity means the operators will be evaluated from left to + - left-> right
right as the occur in the expression so <«< >> left-> right
< <= > >= left -> right

A*B/C means (A*B)/C andnot A*(B/C)
== I= left -> right
A-C+3 means (A-C)+3 andnot A-(C+3) 2 left-> right
i o i - left -> right
e right -> left associativity means the operators will be evaluated from right to | loft > right
left as they occur in the expression, so && left-> right
I1=J=K means | = (J=K) andnot (1=J)=K Il left -> right
?: right -> left
e Use parentheses if the default associativity isn’t what you want. = 4= = *= [= %=&= "= |= <<= >>= right-> left
, left -> right

?See King Appendix B. Some of these operators will be discussed later.

7 78

Type Conversions Reading Assignment

e C does reasonable automatic type conversions

narrower operand -> wider operand K.N. King Chapter 5
when information is not lost

o Examples: K.N. King, Chapter 6
char -> int
short > int or long K.N. King, Section 24.1

float -> double
Supplemental Reading

int -> float or double

e See King Section 7.5 for full details S. McConnell Chapter 14

S. MCConnell Chapter 15

79 80

Control Flow Statements

e Scopes of Declaration

Assert function

Grouping: { and }
e Decision making: if, switc h
e Loop building: while, do, for

e Loop ending: break, contin ue

81

Scopes and Visibility

e The scope visibility rule for a programming language determines what names
(variables, constants, types, etc.) can be legally used at any given point in a
program.

e In order for a name to be used at a given point, it must be visible at that point.

e The normal scope visibility rule for C is that names declared in a scope are
only visible within that scope. They are undefined and unavailable outside

that scope®

e Good Style: Declare variables, constants and types in the smallest scope
(most local) scope that contains all uses of the item.
Good Style: Don't declare items with file scope unless they are used to share
information between different functions.

®This rule can be modified using the extern and static declaration qualifiers that will be discussed

later.

83

Scopes of Declaration

e The term scope refers to a place in a program where variables, constants and
types can be declared. Scopes can nest, i.e. a scope can be contained in a
larger scope.

® Scopes in C include

— Grouping scope - The ‘m and w grouping symbols introduce a new scope where

declarations can be made.

— File scope - Each source file defines a scope. Declarations in a source file but not

in a function are visible to all functions defined in the same file.

— Function scope - The body of a function introduces a new scope. The parameters
of the function are automatically included in this scope.

82

Grouping

declarations

statements

e The { and } introduce a new scope where declarations and statements can
occeur.

e Use { and } to write multiple statements where only one statement is
normally allowed. The grouping behaves like a single statement but it does

not need to be terminated by a semicolon.

e Good Style: always place matching A and w so that structure of the program
is obvious to anyone reading the program.

84

WHERE TO Locate Variables

e In C you can declare a new variable The assert function
— Atthe start of any { } grouping. This includes the bodies of functions and inside #include < assert.h >
loops.

assert(logical-expression) ;

— Ina program file outside of any { } grouping.

Variables declared inside can only be used inside the grouping (and an
ﬁ w y grouping (Y e The logical-expression is evaluated.
contained groupings).

. .) . — ifits value is true the assert function does nothing.
e Variables declared in a program file (global variables) can be used by all

. .) . e . — if its value is false th rt function rogram execution to HALT.
functions declared in the same file. this rule can be modified using the extern S value s faise the assert lunclion causes program execution to

. i . . . An error message is produced describing the location at which the program halted.
and static qualifiers in ways that will be discussed later. geisp 9 prog

e Good Style: Variables should be declared in the smallest grouping that e The assert function is a very efficient and compact way to verify the correct
contains all necessary uses of the variable. operation of a program during execution of the program
Reuse of variables (other than obvious temporary variables) should be Using assert costs almost nothing extra in time or space.
avoided.

e assert IS THE PROGRAMMERS FRIEND.

e Good Style: do not use global variables unless there is no simpler

alternative.
85 86
assert Examples
HOW TO Use assert /* Algorithm won’t converge if R > 1.0 */
e Add calls to the assert function generously in your program assert (R<=1.0);

To check for unlikely error conditions.
/* Read three input values */

To verify that assumptions that you made in the design of your program are correct.
assert (scanf("%f%f%f" , & X, &Y ,&Z)==3)

To check that your program is not being used outside of its design limits.

To catch programming errors near where they occurred.
/* DEBUG - Is memory getting trashed here ??7? */

To verify the integrity of complicated data structures.

assert (0 <=K &&K < ASIZE) ;
— To detect bad input data before it crashes your program.

A[K]=3*K+J;
e Good Style: Each use of assert should be accompanied by a comment

describing the purpose of the assert.
/* The IMPOSSIBLE HAS HAPPENED. Should NEVER reach here. */

® Good Technique: Use a lot of asserts to verify and validate your program. assert (false) ; /* Beam me up Scotty */

87 88

if statement if Statement Examples

if (logical-expression) if (logical-expression) if (= 0)
statementpye | statementirye | printf("THE IMPROBABLEHAPPENED\N");
else .
tat ; if (X<=Y) {
statemen ; .
fatse double T ; /* local temporary variable
T=X; [* Interchange X and Y */
o The () are required around logical-expression. X=Y;
Logical expression is false if its value is ZERO, otherwise it is true Y =X,
The optional else associates with nearest if } else
X -= 10 ;
® WARNING: You must use { and } if more than one statement is required in the true
or false parts.
89 9
Nested if-else statement Nested if example

if (A<B)

if (expressiony) e>n) .
statementy ; | e
else if (expressions) o X =D ;
statements ; else if A Hl B _
else if (expressions) " B v
statements ; ﬁ X A
| . B=B+ 3;
else if (expressiony,) }
tat tn;
statement,, else if (X!= B)
else ;
statement ; | =B
eise
X=A;

91 92

HOW TO Use the if statement

Use if statement for controlling program flow when control flow condition can

be expressed as a simple logical expression.

WARNING: be very careful that logical expressions in if statements are
expressed properly. (e.g don't use < if you mean < =).

Good Technique: Use nested ifs as an alternative to complicated logical

expressions.
Deeply nested ifs are often an indication of bad program design

Good Technique: Be sure that all possible cases are covered in a nested if.

You should be able to explain in English the purpose of a nested if statement.

93

for iteration statement
for (expression;nit ; EXPresSsioNtest ; EXPreSSioNincr)

statement ;

eLPressioning: is pre-loop initialization
erpressionest is the loop termination test

erpressionyer is the per-iteration increment

() required around the three expressions.

Expressions are separated by semicolons.

Examples: for (J=0;J < N;J++) for(J=N;J>=0;J--)

AW]=0; AJ]=0;

95

while and do iteration statements
while (logical-expression) do
statement ; statement ;

while (logical-expression);

e () are required around logical-expression
e Use { and } if more than one statement is required
e Both loops execute as long as logical-expression is true .
Examples: J=0; J=N-1;
while (J < N) do
A[J++]=0; AlJ- -]1=0;
while (J>=0);

94

Definition of for loop

for (expressionnit ; €LPresSSioNiest ; ELPTESSION;per)
statement

is equivalent to:

erpressioninit
while (expressioniest)

{

statement ;

erpressioniner |

}s

96

e Initialize all variables needed in the loop in expressionini:

The , (comma) operator allows expression;,;: to be a list of expressions.

Example:

® exrpressiont.s: should be a single logical expression. The for loop will

continue to iterate as long as this expression has an non-false non-zero value.

e All variables that need to be modified from one iteration of the loop to the next

HOW TO Use the for Loop

sum=0.0,1=0, limit=100

should be included in expressioninc,

The comma operator allows more than one variable to be modified.

Example:

® |teration is the repeated execution of some sequence of statements

— Counted iteration is based on some variable taking on a succession of increasing

l++, J--

, X+=25

97

HOW TO lterate

or decreasing values until some final value is reached.

— Logical iteration is based on the truth of some logical expression

— More general iteration can combine counting and logical expression testing.

e In C the while and do while statements are usually used for logical iteration.
The for statement is usually used for counted iteration and more general

iterations.

e There are many iteration patterns (e.g. counting up, counting down that occur

repeatedly in programs. You should learn a fixed template for each kind of

iteration and always use the template when required.

99

Loop contr ol

break

contin ue

break causes an immediate exit from the nearest enclosing while do or for

loop

contin ue causes an immediate start of the next iteration (if any) of the

nearest enclosing while , do or for loop

Examples:

for (J=0;J < N;J++)
if (A[J] == X)

break ;

for (J=N;J3>=0;J--)
if (A[J]<0.0)
contin ue ;
else

Al]-=05;

Iteration Templates

Counting Up - from M to N by P

=M,
while (1<=N){
statement ;

1+=P;

b

for (I=M;I<=N;I1+=P)

statement ;

Counting Down - fromRto Shy T

=R;

while (1>=8){
statement ;
I-=T;

I

for (I=R;I1>=S;1-=T)

statement ,

Logical Iteration on Expression U

while (U) for(; U;)
statement , statement ;
Test after iteration N w Loop
do for (...) {
statement ;
while (U); if (1U)
break
}
Infinite Loops
while (true) for (; true ;)
statement , statement ;

101

e |f you're in doubt about a loop terminating successfully, build in a loop sanity

test

Paranoid Iteration

#define ITER_LIMIT (1000)

int iterCount ;

iterCount=0;

while (... && iterCount++ < ITER_LIMIT) {

statement ;

I

if (iterCount >= ITER_LIMIT)

103

#define ITER_LIMIT (1000)

int iterCount ;

for (iterCount=0, ...) {

assert (iterCount++ < ITER_LIMIT);

HOW TO lIterate Safely and Sanely

Except for intentionally infinite loops, each execution of a loop should make

some progress toward reaching its limit or termination condition.

WARNING: Beware of off by one errors in iteration termination test,
For example using < instead of <= .

The iteration will be done once too often or not quite enough.

WARNING: be sure that an iteration and the program that follows it does

nothing gracefull y, i.e. is correct even if the loop executes zero times.

It should be possible to describe in a simple sentence what each loop does.
It should be possible to state an invariant condition, a logical expression that

is true for all iterations of the loop.

102

switc h statement
switc h (expression) {
case constExpn : statements

default : statements

Each constExpn is a single constant expression

The case : construct can be repeated as necessary

default identifies the optional default statement

WARNING: case clauses FALL THROUGH from one to the next unless a break
statement is used to exit the switc h statement.

Good Style: the last line in every case alternative should always be one of:
break ;
/* FALL THROUGH TO NEXT CASE */
return ;

104

switc h statement example

switch (i +j -7) {
case 3: k =1;
break ;
case 4:
case 7.
case 11:
k =9 ;
return
case 12: k *= 6 ;
/* FALL THROUGHIO NEXT CASE */
case 19: k++ ;
break ;
default: k =0 ;
break ;

105

Reading Assignment

K.N. King,

Chapter 8

107

HOW TO Use the switc h statement

Use switch statement when you need a multi-way decision and the decision

can be made on the value of some expression.
Good Style: switch is often better than deeply nested ifs

A complicated controlling expression in a switch statement is often an

indication of bad program design

WARNING: be sure all cases are properly covered in a switc h statement and

that the default does the correct thing for all default cases.

Good Technigue: Use a default case that crashes to catch logic errors, e.g.
default : printf ("Case statement logic error\n ”);

assert (false) ;

106

Arrays

type-name identifier [size];

An array is a data structure containing a number of data values, all of which have the

same type®.
type-name is the type of the elements in the array.

size is the number of elements in the array

size can be any positive integer constant expression

WARNING: Valid array subscripts run from Oto (size-1)
identifier [size]is NOT an element of the array.

A particular element in an array can be accessed by specifying a subscript:

identifier [expression]

@Each value stored in the array is called an element of the array

108

e An array subscript may be any integer expression e In C the name of an array is equivalent to the address of the first element in

A[J +10*N] the array.
A[J++]
e Later we'll see how to allocate storage for arrays dynamically (i.e. during
o WARNING: C does NOT check subscript bounds

int A[10], J;

for (J=1;J3<=10; J++) ® The sizeof operator can be used to determine the number of elements in the
AJ]=0, /* ERROR A[10] does not exist !! */ array

sizeof (A) / sizeof (A[0]);

program execution).

e An array can be initialized in the def

int A[4] = { 45, 2, 800, 81 }; e Note special case of size determined by initialization list.

int B[10] = ,ﬂ 1,2,3 T /* the remaining elements are given the value 0 */
intC[10]= { 0 }; ® Subscripts with other ranges (e.g. —128 .. 128) must be mapped into 0 ..
intD[]={6,0,1,7,3}; /*the size may be omitted if an initializer is present */ size - 1 by adding or subtracting a constant from all subscripts.
109 110
Array Declaration Examples Array Storage Layout

int A[100] , B[200];

char message[128 +11];
int A[10] ;

#define B_SIZE (200) _ A[0] _ A[1] _ A[2] _ A[3] _ A[4] _ A[5] _ A[6] _ A[7] _ A[8] _ A[9] _

int bufferl[B_SIZE] , buffer2[B_.SIZE];
float B[100] ;

/* Use this array with subscripts -128 .. +127 */ sro] | 8ial | erz1 | ers1 [sia1 | sis1 | mie1 | 8171 [eel | e | o L.
/* Example: S[| + SBIAS] with -128 <=1 < 127 */
#define SBIAS (128) w BI50] T BIS5] T
#define S_SIZE (256)
I [[om [o]

long int S[S_SIZE],

111 112

Array Examples

#define SIZE (100) HOW TO Parameteriz e Arrays

double X[SIZE], Y[SIZE], maxY ; e Defining arrays using typedef and #define makes it much easier to modify

/* Initialize X and Y /* and maintain a program.

for (K=0; K < SIZE; K++) A e For each array
X[K]=0.0;

— Define a named constant for the size of the array using #define
Y[K]=K+1.0;

— Define a named type for the array element using typedef .

}

. . — Define a named type for the array.
/* Normalize Y into X */

for (maxY =Y[0], K=1; K < SIZE ; K++) o All declarations related to the array (including temporary variables) should

if (Y[K]> maxY) use the named types defined above.
maxY = Y[K]; e All use of the array, especially loops should use the named constant defined

for (K=0; K < SIZE ; K++) above to determine the size of the array.

X[K]1=Y[K] / maxyY,

113 114
Parameteriz ed Array Example Multidimensional Arrays
#define ASIZE (175) type-name identifier [size_1][size 2]...[size.n];

typedef float AElement ;
typedef AElement [ASIZE] AType ;

e C stores arrays in row-major order, i.e., row O first, then row 1, and so forth.
Alype X, Y, Z; Example: int a[2](3];

AElement tempSum ; /* temp variable used with array */

4000 Aoy A2 |aoiiolatoiy 4ol Aol i a2 |
A1[0]| A1 d1[2

X[ASIZE-1]=-1.0; /*Markend of array */

e An multidimensional array can also be initialized in the definition
Example: int M[2]3] = {{1, 0,0}, {0,1,0}};
Good Style: Always use ,ﬂ and w to completely specify multidimensional array

/* Form sum of two arrays */
for (J=0; J <ASIZE; J++) {
tempSum =X[J]+Y[J]; initialization.

Z[J]=tempSum ; o WARNING: You must use separate [and] for each subscript.
w, M[J,K]isnot thesameasM[J][K]

115 116

Multidimensional Array Example

#define ARRAY_SIZE 200

int J,K;
doub le Al ARRAY_SIZE][ARRAY_SIZE],sum=0.0;

/* Assume A is given a value here */

* sum the elements of the array A */
for (J = 0; J < ARRAY SIZE ; J++)
for (K = 0; K < ARRAY _SIZE ; K++)
sum+=A[J][K];

117

® const objects behave exactly like variables except that they can’'t be assigned

to.

e Use #define to create compile time constants and const to create run-time

tables of constants.

® The most common uses of const are
- creating table of constants

- indicating that function arguments should not be modified.

119

Const Qualifier

e const is used to declare objects that resemble variables but are “read-only”

e A program can access the value of a const object, but can’'t change
Example:
const int n=100;
const int days_per-month[] =
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

e const is a form of documentation. It says the programmer doesn't intend to
change the object.

e The compiler can check that the program doesn'’t attempt to change the value
of a const object.

118

Table Lookup

e Table Lookup is a powerful technique for writing compact, efficient, correct
programs.

e In general, a table of constant information is used to implement a mapping
function between some argument and a fixed corresponding value, i.e.
table[argument] = value

The mapping function might be one-to-one or many-to-one.
o Examples of table lookup usage include

— Character classification.
— Data format conversion.

Unit conversion.

— Data packing and unpacking.

e Think of table lookup as an alternative to writing a complicated set of if or
switc h statements.

120

HOW TO Use Table Lookup

Describe the mapping function as a set of ar gument, value pairs.

If the table is to be stored in an array (we’ll see other alternatives later), the
argument should be an integer value in the range 0 .. M AX TABLE .
Otherwise all subscripts must be biased by a constant.

Declare an array of some type compatible with possible values to hold the
table.

Usually the table array is initialized at the point where it is declared, but it
could be initialized by the program.

121

Example Initializ e Character Classification Table

[* Character Classes */
typedef enum ,ﬂ illegal, whitespace, newline, letter, digit, special w CharClasses ;
CharClasses classify[256] ;
unsigned char ch, chl]
/* Initialize classify table at run time */
for (ch=0;ch < 256 ; ch++)
classify[ch] =illegal ;
classify[' '] = whitespace ,
classify['\ t'] = whitespace ;
classify["\ n’] = newline ;
for (ch="a",chl="A"; ch <='z"; ch++, chl++)
classify[ch] = classify[chl] = letter ;
for (ch="0";ch<='9"; ch++)
classify[ch] = digit ;
classify['+’] = special ;
ven /* more special characters here */

classify[

] = special ;

123

Table Lookup Example

/* Arabic to Roman Numeral Conversion */
const char * unitsDigits[10] =
,ﬁ B e | R | R VA VA Vi R VI | R VI || i D w ;
const char * tensDigits[10] =
,ﬁ X, XX, KXY, XL, L, TLXY, PLXX, TLXXX, TXCT w ;
const char * hundredsDigits[10] =
ﬁ ™ "C", "CC", "CCccC", "CD", "D", "DC", "DCC", "DCCC”, "CM" w ;
int number ;
assert (0 <= number &&number < 1000) ;
printf ("%d as a Roman numeral is 9%s%s%s\ n”, number,
hundredsDigits[number / 100],
tensDigits[(number/10) % 1017,
unitsDigits[number % 1017) ;

122

Reading Assignment

K.N. King Chapter 9, 10, 15

K.N. King Sections 18.2

124

Functions

Functions are a mechanism that allows a large program to be subdivided into

smaller and more manageable pieces.
Functions can be developed and tested separately.
A function abstracts code that is used many places in the program

It is easier to debug and maintain one copy of code in a function than to debug
and maintain many copies of the same code spread throughout the program

The parameters of a function are the link between the function and each

place that the function is used.

125

Functions — Declaration and Definition

e A function header specifies

— The name of the function.
— The type of value returned by the function.

— The type and name of the parameters that the function accepts.

e A function can be specified in a program in two ways.

— A function declaration is a function header followed by a semicolon.
A function declaration is also called a function prototype

— A function definition is a function header followed by the body of the function
enclosed in { and }

e The function declaration provides all the information that is required to use the

function.

e Good Style: Every function should be declared or defined before it is used.

127

How to Design Functions

o |dentify computation of an expression that occurs at several places in the
program
Identify a group of statements that occur at several places in the program or

represent a sub*part of the solution

e |dentify the input values that are required to compute the expression
Identify the variables that a modified by the group of statements

® Good Design - small number of parameters

® Examples
math functions: sin, cos, sqrt, atan, log
vector functions: inner product, vector sum

string functions: change case, remove blanks

126

e |f a declaration is given for a function, the declaration must be consistent with

the definition of the function.

e Good Technique: Always provide a function prototype at the start of a file for
any functions that must be used before they are defined so that the compiler
has complete information about the function at the point where it is used.

o WARNING: If you fail to provide a function declaration before a function is
used, the compiler will guess default types for the value returned by the
function and the types of functions parameters.

If the compiler’s guess is wrong, you have an ERROR in your program.

e Header files are used in C to provide function prototypes and related
declarations for functions that are defined and compiled separately.

Header files are traditionally named file-name.h

128

Function Declaration ¢

type-name functionName (parameters) ;

e functionName is the name of the function.
type-name is the type of value returned by the function. Use void to indicate
that a function returns no value.

e The parameters are optional, but the left and right parentheses are required.
Good Style: use an explicit void to indicate a function takes no parameters.

e This declaration is a promise that somewhere else there will be a consistent
definition for the function.
Examples: float random (void) ;
int maxmum(int X, int Y)
doub le innerProduct(doub le A[], doub le B[], int size) ;

void printTable(float table[], shor t tableSize) ;

@Function declarations are sometimes called function prototypes
129

Function Parameters

e The parameters of a function are a comma-separated list of declarations of
the form type-name identifer
Example: int K, double X, short A[]

e The function parameter declaration specifies

— The order in which the function expects to receive its parameters
— The type of value associated with each parameter.

— The name that will be used to refer to the parameter in the body of the function

131

Function Definition
type-name functionName (parameters)
{
declarations

statements

o A function definition has the same form as a function declaration except that the body
of code that implements the function is supplied.

e Variables, types and constants declared within a function are local to the function®

o The variables local to a function are created at the instant a function is called, exist
until the function returns, at which point they are destroyed.

@ Except for constants declared using #define

130

Function Call & Function Arguments

e A function is called by writing the name of the function followed by a list of
arguments enclosed in parentheses. If the function has no parameters, you
must use an empty set of parentheses () .

WARNING: F is not the same as F(), F does not call the function.

e The order in which the arguments are written is used to match the arguments
to the parameters of the function.

e Each argument must be of a type that is compatible with the type of the
corresponding function parameter .

o WARNING: Many C compilers do very little checking for correct parameter
passing when a function is called. gcc is better than most
Be very careful about
— The type of each argument.
— The order of arguments
— That exactly the right number of arguments has been supplied

132

Arguments are Passed By Value

e In C, the parameters of a function behave like variables that are local to the
function.

o When the function is called, space is allocated for the parameters of the
function. Each argument is evaluated and the value of the argument is

assigned to the local parameter variable.

e Changes (i.e. assignments) to the parameter variable do not affect the

corresponding argument, even if it is a variable.

e The const qualifier can be used to indicate that the function is not intended to
change the value of the parameter variable.

e Later we'll see other forms of parameter passing.

133

Array Arguments to Functions

o A special mechanism in C makes it easy to pass arrays as arguments to functions

e An array parameter is declared like an array, except that the size of the array can be
omitted.
Example: int A[], int B[100] , doub le xCoords[]

e The function can’t determine the size of an array argument® so the size of the array

must be passed as an additional argument to the function.

e Even is the size of an array parameter is specified, C allows a compatible array of any
size to be passed as the corresponding argument.

o The argument corresponding to an array parameter is the name of an array without

any subscripts

o |f the parameter is a multidimensional array, the size in the first dimension may be
omitted, but all the size in all other dimensions must be specified.

®sizeof won't give the right answer in this case

135

Parameter and Argument Example

int K=3,J=17;
float Y=3.1,Z=123.45;
void testFunc(int I, float X) {

1=17;

| X

testFunc(7,14.5); 7 14.5
testFunc(K,Y +2); 3 126.55
testFunc(J - K, Y*Y); 14 9.61

134

Array Argument Example

doub le xArray[100017 ;
int xCount ;
/* Counting the number of negative values in an array */
int count_negatives(const double A[], const int aSize) A

int count=0,J;

for (J=0; J < aSize; J++)

if (A[J]<0.0)
count++ ;
return count ;

}

xCount = count_negatives(xArray, 1000) ;

136

Function example

int power(int x, int n);

{
int i =2, j =10, k
k = power(i, j)
}
int power(int Xx, int n)
{
int result =
while (n-- > 0)
result = result * x;
return result;
}

137

More on Scopes in C

e The unit of compilation in C is a single source file

e The body of each function introduces a distinct Local scope.
A local block scope is corresponds to the text enclosed in { and }

Items declared in a local scope or a local block scope are only visible in that scope.

e Each source file introduces a file scope containing all the types, data and functions
declared in that source file. Items declared in a source file outside of a function are

visible to all functions declared in the file.

e The extern declaration prefix can be used to share declarations across source files.
The static declaration prefix can be used to limit the scope of a globally declared item
to the source file in which it occurs

e Good Style: Use extern only when there is no other alternative for sharing variables
between files.
WARNING: Variables shared between files can lead to bad program structure and are
a major cause of errors.

139

return statement

return expression

e The return statement is used to return a value from a function

e expression is the value returned by the function.
The expression is optional, if it is omitted the function returns GARBAGE
If a function returns by running off the end of the function body it returns
GARBAGE

e The type of the expression should be compatible with the return type
declared for the function.

WARNING: Many C compilers do not verify this compatability.

e Using an expression statement, the value returned by a function can be

discarded.

e Good Style: declare a function as returning void if it is not intended to return

a useful value
138

Q
£
©
>
L
Q
o
(@) e
3 - -~ -
. G
L T W Az) T
g 4 § x x Ex N s v
= U > - - 1] = 1l
v c
N2 o X o £ = ~ X o X
m o o o
£ S — S ~ S —~
140

extern & static
extern declaration

static declaration

The extern prefix on a declaration declares that the declared items exist in some other
file that is a part of the program
Normal usage: declare something in one source file and use extern in all other files

that need to access it

The static prefix on a declaration makes the declaration invisible outside of the file in
which it is declared. This can be used to hide declarations including function
declarations.

The static prefix also causes data items to have a lifetime that is the same as the
main program. Variables in a function declared with the static prefix retain their values
between calls of the function.

141

Structuring C programs -.h and .C

A small C program is contained in a single source file.

Larger C programs are contained in several source files.

Technique: each logically separate part of the program should be represented
as two distinct source files:

fileName.h should define the interface to the part.

fileName.c should contain the implementation of the part

Typically the .h file contains only declarations of data items and functions
that are needed to use the part.

Typically the .C file contains private data declarations and the definitions of
the functions declared in the .h file

To use the part, only the .h file is required.

The .C file can be separately compiled.

143

Scope example

— a] - X ()]
* — .- — e —
Q g 5 o g =
3 o € S s o ©
L = S 2 2
@ £ o T g g . £
ic g 5 g2 = ' i)
% 8 <] 13
x &
x o O S -~)
piy
S
S
>
— =
*x o
Q -
N o
ks . S ..
© (] N c n
iT g - g]
(i e
= = x . = .
x (8] £ (] . [S) .

142

Preview: #include
#include < systemFileName>

#include "localFileName”

e The #include directive causes the named file to be automatically included in

the source program at the point of the directive.

e The first form is used to include files from the system libraries.
The second form is used to include files from the users directory.
localFileName can include directory path specifications.
WARNING: directory path specifications are not portable.

e Examples:

#include <stdio.h>
#include "mylnterface.h"
#include "C:\nolone\else\can\find\t his\ file.

144

_J:

Useful system library include files

assert.h
stdio.h
ctype.h
string.h
math.h
stdlib.h
stdarg.h
setjmp.h
signal.h
time.h
limits.h

float.h

Diagnostic functions

All input and output functions
Character classification functions

All string processing functions
Mathematical functions, sin, sqrt, etc.
Utility functions, conversion, storage allocation
Variable argument list functions
Non-local jumps

Signals

Date and time functions
Implementation defined limits

Implementation defined floating point

Include using #include <fileName.h>

145

Program Structure Example

—
—
. . z
- S - N4 €
B 38 = — - Z
Q Ead) - .. £ [
p g
8 g - E - £ = g E
© = o n T - <
2 = N s 5 : Q
T o 5 = 8 © = =
c Qe 5]
£ c g8 £ o b
* * S » £ © > ~ ’
=
8
- S .-
= [a = n
o 8 — =]]
] c = 1<) <
S S £ > 3}
L
o c c c c
@ s £ = =
T g O 9] 9]
g 8 2 1]
x X X 4 . 3
£ T o) .)

146

