CSC 181F Lecture Notes

These lecture notes are provided for the personal use of
students taking CSC181F in the Fall term 1999/2000 at the
University of Toronto

Copying for purposes other than this use and all forms of
distribution are expressly prohibited.

(©David B. Wortman, 1995, 1996, 1998,1999

(©Hiroshi Hayashi, 1997

C++ Classes

® A class specification has two parts:

— A class declaration, which describes the data component, in terms of data

member s , and the public interface, in terms of member functions

— The class method definitions, which describe how certain class member

functions are implemented

e The principle is to separate the details of the implementation from the design
of the interface.

e The implementation of the data representation or the member functions can

be changed without changing the interface.

411

C++ Classes
® The class in C++ is essentially the module®.

e The primary reason for classes is to provide encapsulation and information

hiding so that large programs can be built from small separable pieces.

® In C++ classes are composed using a mechanism called inheritance which
allows a hierarchy of classes that provide similar services.

e C++ distinguishes between the declaration of a class and an instance of the
class which is often called a class object

“Recall Slides 278-289

410

C++ Classes Declaration
class className {
public :
/I visible to all clients
priv ate :

/I visible only to member functions

+s

Public part is the interface the class provides to all clients.
Private part is visible only to functions declared in this class.

The declarations in a class can include data items, i.e. variables and constants,
function declarations (prototypes) and complete function definitions®.

A class containing only data items behaves like a struct or union.

Data members normally go into the private section.

Member functions can be defined in or outside of the class declaration that they
belong to. Member functions defined inside class declaration will be inline function
regardless of whether the keyword inline is used.

“Recall the distinction between function declaration and function definition
412

Class Data and Class Objects

e Aclass declaration creates a template for defining class objects. The
declaration may include data and member functions that operate on the data.

Think of a class declaration as an extended typedef

e The name of the class is used to declare class objects which are variables of
the class type®.

® A class containing only data declarations behaves like a struct or union
In C++, struct and union delcarations behave almost exactly like class

declarations.

e Each class object gets its own copy of the data declared in the class.
Think of a class object as a struct variable.
Exception: there is only once instance of class data members declared with

the static attribute. This instance is shared by all objects of the class.

“For space efficiency reasons there is usually only one copy of the member functions for the class.

413

Scope Resolution Operator
=X External scope

CL:M Class scope

e The first form is used to refer to a global variable X when this variable would
ordinarily be inaccessible because of a name conflict with a variable having
local or class scope.

float X; /I global x
void f(int N') {

float X ; /l'local x
X=15; /I refers to local (f’s) X
iX=25; /I refers to global X

}

® The second form is used to refer to member M in class CL.

415

C++ Classes Declaration Example

class Stack {

public :
void init(); I/ Initialize the stack
void push(int item); /I Push an item on the stack
int pop() ; /I Pop an item from the stack
priv ate :
int count; /I Number of items in the stack
int data[STACK_SIZE] ; /I The items themselves

+

Note that a member declaration cannot contain an initializer.

int count=0; /I *** Error ***

414

Implementing Class Member Functions

e When defining a member function outside the class declaration, use the scope
operator (::) to identify the class to which the function belongs.

We can use the same name for a member function for a different class.

e Class member functions can access the private components of the class
A class method can use another class method in the same class without using

the scope resolution operator.

Example:
void Stack::push(int item) void Pile::push(int item) ,m
{ pilePtr = new pileNode ;
data[count] = item ; assert (pilePtr) ;
++count ; pilePtr- > value = item ;
} pilePtr- > next = pileTop ;
pileTop = pilePtr ;
}

416

const Member Functions Using a Class

e A programmer can declare a constant instance of a class. For example: Can create a class object by declaring a class variable or by using new to allocate
const Stack conStack ; an object of a class type.
e Since the programmer manipulates data in the class by calling member Example:
functions, the compiler needs help to guarantee the constantness of the Stack s1; /I define a stack object
class is preserved. Stack * sp ; /I pointer to a stack object
o A member function can be declared to not chang e the internal data of a sl.init() ; /I invoke s1’s init method
class by putting the keyword const between the functions argument list and sl.push(7); Jl insert 7
the function body. It is an error to invoke a non-constant member function of a .
y sl.push(12); I/l insert 12
constant class.
cout << s1.pop() ; /I remove and print 12
® Example:)
P cout << sl.data[0] ; /I *** Error: data private ***
int Stack::size() const ; /I Declaration
sp = new Stack[20] ; /I array of stacks
int Stack::size() const { return count; } // Definition P [20] y
417 418
C++ friends C++ friend declarations
e Strict information hiding provided by priv ate may be too strong in some cases. class Grantee AH

. .) friend class friendClass ;
e C++ provides a controlled way to grant access to private data to functions that

are not member functions of the class. friend type friendFunct(..);

friend type friendClass::friendFunct(..);
e The mechanism is the friend declaration. A friend can be a specific function v

from another class or an entire class.

e Good Style: putthe friend declarations at head of class declaration.) . o . .
The first form grants friend priviledges to the entire class friendClass

® A class must explicitly grant access to each friend.
The second and third forms grant friend priviledges to the function fFunct
friend declarations must be used in some cases which will be described later.

Good Style: Use friend access only when absolutel y necessar y.

419 420

Friends Example

class F {
priv ate :

int adm ;
public :

int f(void) ;

class C {
priv ate :

int cdm ;

friend class F; /I class F a friend
public :

int m(void) ; /I class method

friend int t(void) ; /I friend

friend int F::f(void) ; /I method friend

h

421

Class Constructor s Example

class Stack {

public :
Stack() ; Il stack constructor
void push(int item) ; /I Push an item on the stack
int pop() ; /I Pop an item from the stack
priv ate :
int count ; /I Number of items in the stack

int data[STACK_SIZE] ;

}s

/I constructor definition
Stack::Stack()

{

count=0;

/I The items themselves

423

Class Constructor s

e Class constructors are special method functions for constructing new objects

and assigning values to their data members.

e The compiler ensures that the constructor is invoked whenever an object is
created. A constructor’'s name is the class’s name.
A constructor has no declared type. A class constructor may be overloaded to

deal with different initialization conditions.

® The prototype for the constructor goes in the public section of the class
declaration.

If the constructor takes no arguments, it is called the default constructor

e Once you define a constructor, a program must use it when creating an object.
If you fail to define any constructors, the compiler provides a default

constructor, one does nothing.

Stack() { }

422

More Class Constructor s Examples

class Color {

priv ate :
float red ;
float green;
float blue ;

public :
Color() { red = green = blue =0.0; } Il inline
Color(floatr, float g, floatb) ;

Color::Color(floatr, float g, float b) /I constructor with initial values

{

red=r; green=g, blue=b;

Colorc1 ; /I Color::Color() constructor used
Color *c2 = new Color , /I Color::Color() constructor used
Color ¢3(1.0,0.5,0.0) ; /I Color::Color(float r, float g, float b) constructor used

424

Constructor/Destructor Example

Class Destructor)
class myString {

e A destructor is automatically called whenever an object is destroyed, e.g., by priv ate :
going out scope or by using the delete operator. int len ; I length
char *s /I string
e A destructor’s job is to free any storage that a constructor dynamically public :
allocates before the allocated storage becomes garbage. J/ two constructors
myString(int size = 255) /I String S1

e A destructor's name is the class name preceded by a tilde (~).
A destructor can have no return value and have no declared type. {len =size ; s = new char [size+1] } ;

myString(char * si) /I String S2 = "initialValue” ;
A destructor can have no arguments.
{ assert(si);

Example: len = strlen(si) ;
Stack::"Stack(void) { s =new char [len+1] ;
if (count!=0) strnepy(s,si,len+1) ;
cerr << "Warning: Destroying a nonempty stack” << endl ; I
} “mystring() { if (s) delete []s } ; /I Destructor
I
425 426
HOW TO Construct and Destruct Other C++ Operator s
® Use the constructor to initialize (if necessary) the internal data belonging to a e Value construction operator: type (expression)
class object. an alternative to the cast operator.

e Overload the constructor to make sure you have dealt with all circumstances e Pointers to class members must reference a specific class object. There are

in which a class object gets created. two special operators for doing this.

— classObject . * memberPtrVar

e Use the destructor to
Dereferences memberPtrVar contained in classObject.

— Verify that the object has class object has been used properly. e.g. a Stack being
— classObjectPtr - > * memberPtrVar

deleted is empty.
Dereferences classObjectPtr to access some class object,

— Clean up (deallocate) any data that was dynamically allocated for the class object then dereferences memberPirVar in that class object.

using new or malloc. This is your tool for dealing with memory leaks.

— Put any global data structures used by the class object into a correct state. for

example, close files.

427 428

C++ this pointer s

className * this ;

e For each class declaration, a pointer to the class named this is automatically declared.

e The this pointer behaves like a pointer to a struct where the struct contains the local

data for the class object.

e The this pointer is automatically set every time a member function in the class is
called.

o The member functions can use the this pointer to access the local data of the class

object that caused their invocation.

429

C++ Operator Overloading

type-name operator opSymbol(parameters)

e type-name is the type of value returned by the operator.

(May need to be a reference in some cases.)
e opSymbol is the operator being overloaded. e.g. +,*,= etc.

e The function like parameters are the operands of the operator.

Multiple overloads can be made for the same operator.

e For binary operators the C++ compiler uses the left operand of an operator to

select among possibilities for an overloaded operator.

431

C++ this Pointer Example

class Stock {
priv ate :
doub le total_val ;

public :

const Stock & topval(const Stock & s) const ;

}

const Stock & Stock::topval(const Stock & s) const

{

if ('s.total_val > total_val)

return s,
else
return *this ; /I reference to self
Stock s1, s2 ; I two class objects
Stock top = s1.topval(s2) ; // top = max(sl,s2)

430

e There are two ways to define overloaded (binary) operators

e The overloaded operator is defined as the member function of some class.

— The operator will be invoked when it appear with a left operand that is an object of

the class.
— The this pointer will refer to the left operand.
A parameter of the right type will be required for the right operand.
e The overloaded operator is defined as a nonmember function

— The standard rules for resolving references to overloaded functions will be used to

determine when the operator function is invoked.
— The function will require two parameters for the left and right operands.

— You must use this form if the left operand cannot be an object of the class. e.g.
overloading the << operator.

Examples: int myString::operator < (const myString & sRight) const ;

int operator <= (.const mySTring & sLeft, const myString & sRight) const ;

432

Operator Overloading Restrictions

The overloaded operator must have at least one operand that is a user-defined
type.

You cannot use an operator in a manner that violates the syntax and semantic
rules for the original operator.

Cannot change the precedence of the operator.

Cannot change the arity (unary or binary) of the operator .

Cannot create new operators.

You cannot overload the following operators:
sizeof the sizeof operator membership operator
x pointer-to-member operator scope resolution operator

?: conditional operator

433

Friends and Operator Overloading

e A friend function is a nonmember function that is allowed access to an
object’s private section.
Good Style: declare the function in the class declaration using keyword

friend . Don'’t use the keyword in the function definition.

A friend function has to access an object explicitly by an argument.
Use friend function for overloading an operator that takes two different types

of operands or where the left operand is not of the class type.

friend Pair operator * (double N, const Pair &A) ; /I declaration
Pair operator * (double N, const Pair &A) ﬁ /I definition
return A*N;

}

PairQ=2.0*V; /I now supported

435

c
) ie)
g B=4
[=% =
=
e)
S - 8 S -
[}
a g 2 h g
S 3 o
%)
o % 5 o -
c S 8 .. @ .
= ° c S
3 A :
8 = 5 —~ o 9]
= S .. O zZ \) Q
5 T 2 = ° Zz e
g - Sz Qo = >
= [0} k= -
3 2 o 2 y: I
Kol]
o g 5 k=) = c
5 2 © - . — =
..nlm T * > W
o . - % = s a -
T [s} o Py
2 > sss B gxyLE 2
O x S5 8 s =STXTEE v
T o s 3 2 § o =zzg? >
+ = @ =3 b = 2
N A L2290 £ an o 9 m . I
o 83 .2§ 838 £ 3%z 8 % > o
m S 3 S aaa = 5 =2 =0 @ = =
2 2 H] T T
S 5 2 -~ = ~ o o
434

Friendl y Operator Overloading Example

e To overload the << operator to display an object of class Class_Name, use a friend
function with a definition:

ostream & operator<< (ostream & os, const Class_Name & obj)

{

os<< ..,

return os ;

e cout is the ostream object and the prototype of << operator is defined as

ostream & operator<< (typename) ;

Example:
ostream & operator<< (ostream & os, const Pair & V)
0s << "(x,y) = (", KK VX << 7 " << VY <<
return os ,
Pair V(4.0 , 5.0) ;
cout <<V, Il (x,y) = (4.0, 5.0)
436

/I *** Error, not supported ***

Q=20*V;

Type Conversions: Convert Constructor s
® A one-parameter constructor is called a convert constructor

e |f the parameter is of type T, the convert constructor for class C converts type
T to type C.
That is, converting the argument to the internal representation in terms of the

data members of the class C.
e In the following situations, convert constructors are used to convert T type to
C type.
— When a C object is initialized to a T type value.
— When a type T value is assigned to a C object.

— When a type T value is passed to a function expecting a C object

argument.

— When a function that’s declared to return a C object tries to returna T

value.

437

Type Conversions: Conversion Functions

operator type-name () ;

e Conversion function are used to convert a class object to some other type, i.e

type-name .

e Conversion function is a class member function, it has no declared return type
and no arguments.

e The conversion function is automatically invoked when you assign a class

object to a variable of that type or use the type cast operator to that type.

439

Convert Constructor s Example

s
o
8 ©
o E
© _
= =1
< 2
-~ s D -
.- < N E
o = ~
1 £ 8 X
S < S °
=3 2 > Q
£ £ k= i
s s e 8
o a 2 O
I = = =)
£ = £
£ o 3
.- x
1S —~ . ©
N S o) o T o
n £ £ S 8 ¢ o
5 S s S8345u s e
3 - £ g P R n_w = g
[< = £ Z o & Al £ B
~ -— = - 5 E = O . IS £ o -
9 o =1 o = 3 5 3 2 =3 £ <
KS) X X .. © = 1 2 © E o £ =]
O - 8 0B 4 £ O 5 € £ 2 & s o
o 2 0o = o © £ 3 < [} 2 <
m 5 00O .M £ 3 E & = -~ s 3
- > = = =
c o =% ~ O - ~ < O
438
Conversion Function Example
Clock::operator int() const
if (ampm ==1)
return (thour +12)* 100 + min ;
else
return hour * 100 + min ;
Clock ¢ = 2249 ; /I convert int to Clock using convert constructor
int timel =c; /I convert Clock to int using conversion function

int time2 =int (c);

440

c=2330;

Copy Constructor s
Class_name(const Class_name &) ;

e The copy constructor is invoked whenever a new object is created and initialized to an
existing object of the same kind.
The copy constructor is also used whenever a program generates copies of an object,

e.g., when function passes an object by value or when it returns an object.

e If you don't define a copy constructor, the compiler provides a default copy constructor
which performs a member-by-member copy of the nonstatic members®

e Good Technique: If a class contains a static data member whose value changes
when new objects are created, you should provide an explicit copy constructor.

e Good Technique: If a class contains members that are pointers initialized by new ,
then you should define a copy constructor that copies the pointed-to data instead of

copying the pointers themselves.

“The static data members of a class are shared among all objects of the class.

441

Overloading the Assignment Operator

e The assignment operator (=) is used when one object is assigned to another
existing object.

e [f you don't define an assignment operator, the compiler provides one which

performs a member-by-member copy of the nonstatic members.

® Good Technique: You should define an overloaded assignment operator if

the class data contains pointers or other data that requires special handling.

e |f an overloaded assignment operator is defined,

It should check for self-assignment, i.e. X =X |

It should free memory formerly pointed to by the member pointers

— It should copy the data, not just the address of the data

It should return a reference to the invoking object

443

Copy Constructor s Example

3
&
j=2}
£
)
>
s .
I =
o +
3 8 = = -
- .- = 5 k=3 " =
g 3 .8 £ £ &
7] =) s 2 Q = o
> £ L =z Z 2 2] ot
2 G 5 2 x by E T o
[=) e LTI = =) 2 B °
£ E $ & = £ e
& j= - 1%} 172} & [=
> >
= ~ = -~
G v
.- g -
- 2 b =
2 = - ° -
5 7] % B +
5 s £ s §
3 3 9 = = n
5 =T
- £ .. .z E £ 2B L%
> o o~ Z © . c e} c © -
£ 5 B 2 35 = = = 2 =z 5 £
=3 c c = £ M s = o B
Q = 35 . L 8 g = TS 7§ 8
5 29 22 3 8B LC % £ c ! o E
w 2 5 = F 2 ® 6 £ ® = S B B e
17— > 2]
& 5 ‘£ >
o o a ~ =2
442
Assignment Operator Example
MyString & MyString::operator =(const MyString &S)
if (this==&S) I object assigned to itself
return * this ;
delete []str; /I free old string
len=S.len; /I copy string data
str=new char [len+17];
strepy(str, S);
return * this ; /I return reference to invoking object

444

More on Constructor s

e Object initialization with new
Class_name *ptr = new Class_name(val) ;
invokes the
Class_name(Type);
constructor, where Type is the type of val.
Class_name *ptr = new Class_name ;

invokes the default constructor.

o |[nitializer lists
— Class data members can be initialized with constructors.

— Initialization takes place when the object is created.
Class_name::Class_name(...) :memberl(..), member2(..), ...

{
}

— Must use this form to initialize a nonstatic const data member.

Must use this form to initialize a reference data member.

445

Looking Under the Hood

e To help you understand how C++ classes actually work, Slides 448 through
452 describe how the C++ compiler implements various C++ constructs in

terms of C code.
e The left column shows the C++ program as you would write it.

e The right column shows the declarations and statements that the C++

compiler generates internally to implement the C++ constructs.

e |dentifiers that start with # are internal names that are created by the

compiler.

® This example doesn’t necessarily correspond to any actual implementation of

C++.

447

Overloading Memory Management Operator s

void * operator new (size_t size) ;

void operator delete (void * objectPtr) ;

e Both forms can be either a member function or a toplevel operator function.

e The overloaded new operators must return a void *.

The first paramter in the overloaded new operator must be of type Si ze_t .

The value of this parameter is the size in bytes of the object created.

e The overloaded delete or delete [] operator must reuturn a void .

The first parameter in the overloaded delete must be of type void *.

The pointer objectPtr must point to the storage to be freed.

446

C++ Program

Implementation

class mystr {
public :
friend ostream & ostream::operator
<< (ostream & os , const myStr &S) ;
myStr(int size = 255) ;
myStr(char *Sl) |
int length() ;

myStr operator + (const myStr & SR) ;
priv ate :

int len ;

char * str

448

typedef #myStrData * #myStrPtr |

friend ostream & ostream::operator

<< (ostream & os , const myStr &S) ;
myStr(#myStrPtr this , int size = 255) ;
myStr(#myStrPtr this , char * SI) ;
int length(#myStrPtr this) ;
myStr operator + (#myStrPtr this ,

const myStr &SR)) ;

struct #myStrData

int len ;

char * str

b

C++ Program

Implementation

myStr S1 ;

myStr S2 = "Hello World” ;

myStr S3(128) ;

myStr S4[100] ;

myStr * S5 = new myStr

delete S5,

C++ Program

449

#myStrData S1 ,

myStr(&S1);

#myStrData S2 ;

myStr(& S2 , "Hello World) ;

#myStrData S3 ;

myStr(& S3, 128);

#myStrData S4[100]

for (int #1=0] #l < 100 ; #l++)
myStr(& S4[#1]) ;

#myStrData * S5 |

S5 = new #myStrData ;

myStr(S5) ;

"myStr(S5)

delete S5,

Implementation

C++ Program

Implementation

myStr myStr::operator + (const myStr & SR) {

assert (str &S.str) ;

int outLeng = strlen(str) + strlen(SR.str) + 1 |

myStr Sout(outLeng) ;

strepy(Sout.str, str)
strcat(Sout.str , SR.str) ;

return Sout

}

451

myStr myStr::operator + (#myStrPtr this ,
const myStr & SR) {
assert (this- > str & S.str) ;
int outLeng =
strlen(this- > str) + strlen(SR.str) + 1 ;
#myStrData Sout ;
myStr(& Sout , outLeng) ;
strepy(Sout.str, this- > str) ;
strcat(Sout.str , SR.str) ;

return Sout ,

}

int myStr::length() {

return len ;

myStr(char * SI') {
assert (Sl),
len = strlen(Sl) ;
str=new char [len+1];
assert (str),

strnepy(str, Sl , len+1) ;

C++ Program

int myStr::length(#myStrPtr this v,ﬂ

return this- > len,

myStr(#myStrPtr this , char * SI') {
assert (Sl),
this- > len = strlen(Sl) ;
this- > str = new char [this- >len+1];
assert (this- > str) ;

strncpy(this- > str, Sl , this- > len+1) ;

450

Implementation

myStr S6 = "Hello " ;

myStr S7 = "World” ;

myStr S8 ;

S8=S56+S7;

int K = S8.length() ;

#myStrData S6 ,

myStr(& S6 , "Hello) ;
#myStrData S7 ;

myStr(& S7 , "World”) ;
#myStrData S8 ,

myStr(& S8) ;

S8 = myStri+ (&S6,&S7) ;
int K = myStr::length(& S8) ;

452

Templates in C++
® Templates are an effort-saving mechanism in C++

e Templates allow you to write an function once and apply it to many different
types of data.

e Function Templates allow you to parameterize the definition of a function with

one or more type parameters.

e Class Templates allow you to parameterize class (module) definitions with
type and value parameters.

e Function templates make generating multiple function definitions simpler and

more reliable.

453

Function Template Example

template < class Type >
void swap(Type &A , Type &B) {

Type temp =A; /I Swap any A and B
A=B,;
B=temp;
}
intJ,K;
double X, Y;
swap(J,K); /I swaps integers
swap(X,Y); /I swap doubles

455

Function Templates
template < typeList >

function definition

template and the angle brackets are required.
typeList is a comma-separated list of items of the form

class identifier

The identifiers may be used in the function definition any place that a
type-name could be used.

They must be used in the functionparameter list.

When the function is called the compiler uses the type of the arguments to the

call to instantiate an instance of the function with an appropriate body.
The first use of each type argument in a call determines the type used in the

call.
454
Class Templates

template < templateParameters >

class {

The class template construct defines a generic class with substitutable type

and constant expression parameters

The templateParameters is a list of items:
class typeName identifier

type-name identifier

The class parameter defines a type parameter that can be substituted in the
body of the class anywhere that a type is required.

The second form of parameter defines an expression parameter that can be
substituted in the class anywhere that an expression of type type-name is
required.

456

Class Template Example

457

-~

\n

1

X

[}

IS

8

0

2

Q
A 5 A
) !)
N [0) N
) N Py 0w o
= 7 - - X
= R S £ 3
-] 2 - 7 L 0
- £ 8 g =2 . L

n > T —
B a - - % @ %\/
- > -~ T 2> > N 5 @
o L £ 358 <) © N
V ¥ {OW/V_mm T o v @
e 8 EZS8es 58 e
= v 28288 .-.82_ 3Y
S 2= 60O Sk EE T E S 3§
£ = 3 z E 8
L2 5 a S ~ 2 &

}

EmptyStack ,

top =

{

o
=)
£
[}
o E
L2 o
c o
=S
85
S x
M|
—~ = 2
- c &
S -~ x 0
2 S =
= -~ g =
T P
[=S— 2]
s oL L.
AR AR NS
NG E NS »
2eaclgadA
s S g 9 9 un 9
AT T g Al
F o g F IS -
N 2 N o
o N T oo g 5 o
O v L9 o0 £ S5
8 - 8 N = =S
C<mcsm..m\lv
.5 3
VigV BEE
= L
L o L ¥ V VvV
8 0 < O
2 52 8 EF
£ 2 £ 0 3 8
e > 8+ a0

Class Hierarchy Example

Container

Linear Container

/N

Array Linked List

459

<

Non-linear Container

Hash Table

Inheritance

Inheritance is the mechanism that is used to build a hierarchy of classes to perform

useful work. Inheritance is different from use of a class to make objects.

The class hierarchy is usually tree-like. At the root of the tree is the base class that

defines the most general and least specific version of an interface.

Sub-classes inherit an interface from a base-class. Inheritance means that the

sub-class supports all of the data and function members provided by the base class.

The sub-class may modify the inherited base-class interface in several ways
— Add new member functions.
— Add new data members.

— Redefine member functions.

Usually sub-classess (derived class) of the base class specialize the operations to

implement a more specific instance of the base class

458

Member Accessibility
Each member of a class is either priv ate , public , protected .

protected member can be accessed only by methods within its class and
within the derived class.

All data members and methods of the base class, except for constructors, the

destructor, and the overloaded assignment operator are included in the

derived class.

If a derived class adds a member with the same name as a member in the
base class, the local member hides the inherited member.

In general, inheritance can never increase the visibility of a member.

460

class B{ //base class

%

class D : access-specifier B { /I derived class

Inheritance

}

access-specifier is one of public , protected , or priv ate

public in B protected inB private in B

public public in D protected inD private in D
protected | protected inD protected inD private in B

priv ate priv ate in D priv ate in D priv ate in B

461

Constructor Under Inheritance

e Base class constructor handles for the “from the base class” part of the object and
derived class constructor handles for the “added by the derived class” part of the

object.

e Derived class constructor may invoke a base class constructor (if exists) explicitly.

e Let B be a base class and D be the derived class from B. When a D object is created
one of the followings will occur.

— If D has constructors but B has no constructors, then the appropriate D constructor

will be used.

— If D has no constructors but B has constructor, then B must have a default

constructor, which will be used.

— If D has constructors and B has a default constructor, then B’s default constructor

will be used unless the D constructor explicitly invokes some other B constructor.

— If D and B have constructors but B has no default constructor, then each D

constructor has to invoke a B constructor explicitly.

463

Inheritance Example

class B {
public :
int x;
protected
inty;
priv ate :
int z;

+

class D : private B {
public :
int z; /l hides B::z
int w;

+

462

Constructor Under Inheritance: Example

const int MaxLen = 100;
class B{ // base class
protected :
char *name;
int maxlen;
public :
B() ,ﬁ /I B’s default constructor
maxlen = MaxLen;

name = new char[maxlen J;

b
class D : public B { /I derived class
public :
Il invoke B’s default constructor
D(char *n) : B() { strcpy(name, n); }
b

D foo("foo”);

464

Polymorphism and Virtual Methods

Polymorphism refers to the run-time binding of a pointer to a method.
C++ supports polymorphism through vir tual methods and pointers.

A pointer to base class can point to a base class or to any derived class
object without explicit casting.
A pointer to a derived class object cannot point to a base class without explicit

casting.

For virtual methods with the same name, the system determines at run-time
which of the methods to invoke.
For non-virtual functions with the same name, the system determines at

compiler-time which of the functions to invoke.

virtual methods are declared with the keyword vir tual .
If a derived class redefines a vir tual method, the redefined method must

have exactly the same prototype as the base class method.

465

Abstract Class and Pure Virtual Functions
Abstract class is a base class which is required to have a derived class.
Abstract class is not allowed to have objects that belong to it.

Abstract class is specified by declaring a pure virtual function in the class’s

declaration.

class AC { /I abstract class

public :
virtual void f(int) = 0; /I pure virtual function

|5

e The purpose of declaring a pure virtual function is to have derived classes

inherit a function interface only.

467

Virtual Methods Example

class B {

public :
virtual void g(); /I virtual method
int h();

h

class D : public B {
void g(); // virtual method
int h();

h

main() {
Dd;
B *ptr = &d;
ptr- >h(); /I B::h invoked
ptr- >g(); /I D::g invoked

466

Multiple Inheritance
e |n multiple inheritance, a derived class has multiple base classes.

e Derived class typically represents a combination of its base classes.
class iostream: public istream, public ostream ,ﬂ

o Name conflicts are resolved using scope resolution operator.

e Derived class inherits multiple times from the same indirect base class. This
problem can be avoided by using vir tual base class.

468

Virtual Base Class Example

class A{ //base class

protected :

%

class B: public virtual A {

%

class C: public virtual A {

class D: public B, public C ,ﬁ / \

b

¥

int x;

AN

469

Destructor s Under Inheritance Example

class B {
public :

/I base class

B() { cout << "B's constructor\ n”; }
"B() { cout << "B’s destructor\ n”; }

s

class D : public B { /I derived class

public :

D() : B() { cout << "D’s constructor\ n”; }
"D() { cout << "D's destructor\ n”; }

I
main() {
Dd;

/I Printed output
/I B's constructor
/I D’s constructor
/I D’s destructor

/I B’s destructor

471

C

Destructor s Under Inheritance

e Derived class destructor is first exected and then the base class destructor is
exected.

e Destructor must be virtual function whenver the following two conditions are

met.

— Program dynamically allocates a class object, e.g.,
B *p = new D;
— Constructor for the base and the derived class dynamically allocate
separate storage.

470

C++ Exception Handling

® The exception handling mechanism in C++ provides a cleaner way to deal with error
and exceptional conditions that arise during normal processing.

e Use exception mechanism only for true exceptions not for general processing.

e General mechanism:
— User defined exception classes
— throw statement to signal exception

— try and catc h to handle exceptions
e Exceptions can be defined as class objects.

e This is all relatively new to C++ and not widely implemented.

472

C++ throw Statement C++ try Statement

throw expression ; try A

Exception Handling Example

statements

throw statement stops sequential execution and starts search for exception catch (..) A . w,
handler. .

The type of the expression is used to determine the handler that is invoked.)) .
try statement associates a collection of catchers with a block of statements.

The val f the expression i rameter to the handler that i
e value of the expression is passed as a parameter to the handler that is There may be multiple catchers, distinguished by their parameter lists.

invoked.
473 474
Namespaces
o Namespace is used to distinguish among identical global names, e.g., two libraries may
contain identical global names.
e To use namespace to resolve name conflicts, put global declarations in namespaces
))
g namespace libl {
.- Vv .
~ - v void clr_screen();
o [<
8 (9] v
- % N
" £ . o
& A - = 2 w
4] © > 2 o lib.
g ~ B £ — 3 $.. namespace lib2 {
= & = = = = 2V gy void clr_screen();
f Z g8 ~38 Z zz 22
o . £ 5 9B 5 = s 2 5 3
5 2 3 28239 5 75, TOE
- £-.-~E £ £ - 38z < £ 8 V'S x VvV D
o.- E o= 5 yv35, 2 s Efveg v E }
£ n — 2 D Q2 ° Il © ~ Q S = & £ £ £
§: tE% s gsgilE =z $ 8% &=
28..329 > & Tl E T el 8 o Namespace members can be referred to using scope resolution operator,
S 5o 6 535 £ = 0 = = £ ~38 ~ 8 -~ .) }
8 2 -8 T I'ibl::clr_screen() orusing-declaration:
Ko} > S
] o ~ =~ ~ 5> - ~
using libl::clr_screen; /I put lib1's clr_screen() into local namespace
using libl; /I make all the names in lib1 available

475 476

