CSC 181F Lecture Notes

These lecture notes are provided for the personal use of
students taking CSC181F in the Fall term 1999/2000 at the
University of Toronto

Copying for purposes other than this use and all forms of
distribution are expressly prohibited.

(©David B. Wortman, 1995, 1996, 1998,1999

(©Hiroshi Hayashi, 1997

References for C++

Bjarne Stroustrup
The C++ Programming Language (3rd ed.)
Addison-Wesley, 1997

S.B. Lippman
C++ Primer (3nd ed)
Addison-Wesley, 1997

Scott Meyers
Effective C++ (2nd ed.)
Addison-Wesley, 1998

Richard Johnsonbaugh and Martin Kalin
Object-Oriented Programming in C++
Prentice Hall, 1995

400

Reading Assignment

K. N. King Chapter 19
D.B. Wortman Slides 278
Suppl ement ary Readi ng

S. McConnel | Chapter 6

399

C++ — Overview

e Classes
information hiding
guaranteed initialization and finalization
dynamic typing
user controlled memory management
overloaded operators

e Other advantages
better type checking
better exception handling
overloaded function names
class templates
default function arguments

references as well as pointers

401

289

Miscellaneous Minor Extensions in C++

e Comments: beginning with // and end at the first new-line character.

/I This is a comment.
/I So is this.

e Simpler type casting: type-name (identifier)

final = float (your_mark)* 1.4 + 2.0;

® Tags are automatically type names.

struct Complex { double re, im };

is equivalent to

typedef struct { double re, im } Complex;

e Variable definitions may occur at the point at which they are first used.
for (intJ=0;J<N;

JH+) ...

402

Function Parameters & Inline Functions

e Functions with no argument in a function prototype are interpreted as

specifying no parameters:

int F(); is equivalent to int F(void) ;

e Inline functions: inline is a request that a function be expanded “inline”.

— Place the keyword inline before the function definition

Place the function definition above all the functions that call it

inline float cube(float s) { return s*s*s}

Z =cube(X);
Y =cube(Z+5.0);

FZ=X*X*X
[*Y = (Z+5.0)%(Z+5.0)%(Z+5.0) ; */

404

Reference Type

References provides an alternative name (an alias) for storage
Example: int X ;
int &refX =X
You must initialize a reference variable when you declare it.

Compiler will automatically compute addresses as required.

Parameters may be passed by reference (passing an address)

Example: void swap(int &A , int &B)

swap(J, K);
This allows you to alter a data object in the calling function
Compiler automatically generates the reference at the point of call.

No more forgotten &s.

Functions may return a reference
struct NODE & makeNode(int value) ;
WARNING: Don't return a reference to a variable local to the function.

403

Default Function Arguments

Default values may be supplied for function arguments in the prototype for a

function.

If arguments are missing in the invocation of the function, the default values are

used.

Example:
void F(int val , float S=12.6,char T= \'n', char * msg = "Error”) ;
f(14, 48.3,'\ t,”0OK");
f(14,48.3,\ t);
f(14, 48.3);
f(14);

The defaults must be added from right to left.
A parameter without defaults cannot occur after a parameter with defaults.

The arguments are assigned to the corresponding parameters from left to right;

you cannot skip over arguments.

405

Function Overloading

o C++ permits identically named functions within the same scope if they can be
distinguished by number and type of parameters (signature).
void print (int i){ printf("%d\ n”,i); }
void print (char *s){ printf("%s\ n", s);}

e Compiler considers a reference to a type and the type itself to be the same.
Compiler discriminates between const and non-const variables.

Parameter Signature is used to resolve overloading, not the function return
type.

e C++ operators can be overloaded except for
(scope resolution) . (member selection)

* (member selection through pointer)

e Use function overloading when functions perform basically the same task but
with different forms of data.

406

Preview of C++ Input and Output

e Input and Output in C++ are provided by standard I/O libraries.
i oSt ream h defines the most widely used C++ I/O library.

e Predefined objects, Ci n (standard input), cout (standard output), and
cerr (standard error) are available.

e Input (extraction) is performed by the extraction operator (>>).

Output (insertion) is performed by the insertion operator (<<).

408

C++ Operator s: new and delete

new operator allocates storage dynamically
int *int_ptrl = new int
new returns the null pointer if no storage is available.

new operator can allocate an arbitrary number of contiguous cells dynamically
int *int_ptr2 = new int [50];
If successful, the first cell’s address is stored in int_ptr2.

delete and delete [] free storage allocated by new .
delete int_ptrl;
delete []int_ptr2;

WARNING: The operators new , delete , and delete [] should be used

together and not intermixed with C storage management function.

407

C++ Input and Output Example

#include < iostream.h>

main()
int vall, val2 ;
cout << "Please enter two integers: " << endl
cin >>vall >>val2 ;

cout << "The sum of " << vall << " and " << val2
<< "js"<<vall +val2 << endl ;

}

Note that cout << end| writes newline and flushes output stream.

409

