CSC 181F Lecture Notes

These lecture notes are provided for the personal use of
students taking CSC181F in the Fall term 1999/2000 at the
University of Toronto

Copying for purposes other than this use and all forms of
distribution are expressly prohibited.

(©David B. Wortman, 1995, 1996, 1998,1999

(©Hiroshi Hayashi, 1997

C Preprocessor
® Processes program text before compiler

e Implements
Source Include mechanism
Conditional compilation
Macro Definition and Use

353

Reading Assignment

K.N. King Chapter 14

Section 26.1

352

Sour ce inclusion
e Used to decompose large programs into manageable pieces

e Most common usage is:
foo.h - interface file
foo.c - implementation
f00.0 - compiled implementation

e Interface file contains:
function headers
shared definitions
structs, constants,types, macros

Avoid shared variables

e Programs that use foo include f00.h to get interface
and get linked with f00.0 to get the implementation

354

Example Interface File

/* File house.h - Interface to house.c */

/* Hide real representation inside house.c */

#define HOUSE_HEIGHT 2.0
#define HOUSE_WIDTH 3.0
#define ATTIC_HEIGHT 0.7

extern
extern
extern
extern
extern
extern

extern

void
void
void
void
void
void
void

DrawHouse(doub le x , doub le y) ;

DrawOutline(doub le x , doub le y) ;

DrawWindows(doub le x , double y) ;

DrawDoor(doub le x , double y) ;

DrawBox(doub le x , doub le y , doub le width , doub le height) ;
DrawTriangle(doub le x , doub le y , doub le base , doub le height) ;
DrawCenteredCircle(double x , double y , doubler) ;

355

Macros

® A macro is a piece of text that is used repeatedly in a program.

e Use macros for:

® Macros affect the sour ce program text just before the program is compiled.

defining literal constants

defining short pieces of ugly code

hiding details from the user

357

#include
#include "fileName”
#include < systemFile >

fileName is the name of the file to include.
Compiler searches through a standard list of directories looking for it.

Usually start with current directory.

The second form specifies a system interface file.

The compilers search starts in the directory /usr/include

Good Technique: Use only the first form of include. The compiler will still find

system files, but you can customize include files if you have to.

356

Macro Definition

#define macroName text

macroName is the name of the macro
Good Technique: use UPPERCASE NAMES for macros to make them stand
out a program that uses them

The text (if any) on the same line following the macro name becomes the
definition of the macro.

Use the backslash character (\) at the end of a line to extend long

definitions.

Examples:
#define A_SIZE (15)
#define PROMPT ("Hi:")

358

Simple Macro Examples Macro Parameter s

#define BUFSIZE (1024) ® Macros can be defined with simple text parameters that are substituted as
#define NULL ((void *)0) directed in the body of the macro

e Parameters are identifiers listed in parentheses after the macro name
#define TRUE (1)

#define FALSE (0) e Use this form for declarations or code fragments with substitutable parts

® Parameter substitution is text substitution
#define TWO_PI (2*3.14159)

#define RESET {i=j=k=0; }
#define POLYX (X * (x * (3.14 * X + 2.78) + 1.35) - 2.16)

#define CLEARA { int i; for (i=0;i<N;)\
Ali++1=0; }

359 360

Examples Macro with Parameter s

#define macroName(macroParmList) text Macro Use

e For macros without parameters, just write name of macro in program, C

preprocessor substitutes macro body for name
macroParmlList is a list of identifiers separated by commas
® For macros with parameters, follow macro name with list of macro parameters

Examples: enclosed in parentheses. The text of each parameter is substituted into the
#define SCALE(x) ((x)*10) macro body
#define MIN(XY) ((X) < () ?X):())
o Examples:

#define POLY(x) ((x)*((X)*(3.14*(x)+2.78)+1.35)-2.16)
#define FILLARRAY(arr,val,n) \

{linti; for (=0;i< (n);) arfi++]=val; } char buflf BUFSIZE];

int allDone = FALSE

Examples of use: float circumference = TWO_PI *r;
j=SCALE(i+1); i=MAX(1,i);
if (MIN(i, j)==0)... SWAP(AK] , Alk+1]);
y = POLY(y+7.0) ; STOPHERE ;

FILLARRAY(myData , 100, 3.14);

361 362

HOW TO Use Macros

e Use macros for program parameterization and as an abstraction tool.
Don't use it to make programs unreadab le or obscure .

Make body of macro a complete expression or statement

e Macros with expression parameters should be designed to work with any

valid expression passed as an argument.

e Good Technigue: Wrap parameter names in parentheses to avoid

unexpected expansions and to force error message for invalid parameters

e Good Technique: Macros that look like statements should behave like
statements. Wrap body in { and }. Do not put ; atend.

e The truely paranoid will use each macro parameter exactly once.

363

Conditional Compilation
e Used to selectively include or exclude parts of a program

e Used for:
Optional code (e.g. debugging)
Machine customization
Operating system customization

e Select based on:
defined and undefined macro names
compiler flags -Dname , -Dname=value , -Uname

compile time expressions, can use most C operators

e Conditionals may be nested

365

More Macro Examples

#define DATARRAY (name,size) float name([size]
#define MAX(a,b) (@ > ({)? @) : (b))
#define SWAP(x,y) {intt=(x);x=(y);y=t}
#define CRASH_AND_BURN(why) \
{ fprintf(stderr, “Bailing out of program due to error %s\ n”, why); \
abort(); \
}
#define MALLOC(size, type , pointer) \
{ void * mTemp ; \
mTemp = malloc((size)) ; \
assert (mTemp) ; \
pointer = (type) mTemp ; \

}

Note use of () around expressions and ,_ﬁ w around statements.

mTemp is used in MALLOC to achieve the one-touch property.

364

Preprocessor Constant Expressions

e The conditional expression that the preprocessor can evaluate are made up of
— Integer constants defined using #define .
— Integer constants defined using the compiler option -Dname=constant

— use of the defined(identifier) function which has the value one if the identifier has
been defined in the preprocessor at that point.

— Almost all C arithmetic and logical operators. Logical expressions can be used to
define complicated conditions.

— Symbols predefined by the compiler, e.g. __i486 __ , _GNUC.
Generally these symbols identify the hardware, the compiler and the operating
system.

Use the command gcc -dM -E to see your definitions.

366

#if head
#if constant-expression
#ifdef identifier
#ifndef identifier

The three forms of if head listed above are used at the start of a preprocessor

conditional statement.

the first form is true if the constant (i.e. compile time) expression evaluates to
non-zero.

This expression can include use of the defined (identifier) predicate

Second form is true if identifier has been defined using #define or by the

compiler -D option.

Third form is true if identifier has not been defined using #define or it has

been undefined using the compiler -U option.

367

#if examples

#if X ==
int data3[1001] ;
#else
int data2[50], datal[200] ;
#endif
#ifdef DEBUG
fprintf(stderr, "Made it as far as Checkpoint Charlie\ n”);
#endif
#ifndef ONCE
#define ONCE

#endif

#if defined(UNIX) || defined(__unix_.)
#include < stdio.h>

#elif defined(VMS)
#include < VMSstdio.h>

#else
#include "D:/SYS/INCLUDE/STDIO.H"

#endif
369

Preprocessor Conditional Statement
if-head
text
#elif constant-expression
text
#else
text
#endif

text is any program text. It may be arbitrarily long. It may contain nested

conditionals.
If if-head evaluates to true, text is included in the program

The elif part may be repeated as many times as required. The else part is
optional. If it appears, then the text following the #else is included in the

program if none of the preceding if or elifs have evaluated to true.

368

HOW TO USE #if et.al.
KISS

Use conditional compilation sparingly to customize your program for different

environments.
Use indentation and paragraphing to indicate matching #if , #else and #endif .
Complicated #if structures are a symptom of bad program design.

As with any use of conditionals, make sure all cases are covered and each

logical expression does what you expect.

KISS

370

Functions with a Variable Number of Arguments

e There is a mechanism in C that allows you to write your own functions that
take a variable number of arguments like printf and scanf.

e The include file stdarg.h defines three macros
void va_start(va_listap , parmN) ;
type-name va_arg(va_list ap, type-name) ;
void va_end(va.listap) ;
that can be used to access variable length argument lists in a safe and

portable way.

e A function that takes a variable number of arguments must have at least one
named argument. An ellipsis (. . . v is used to tell the compiler that the
function takes an arbitrary number of arguments. Example

int doList(int first,...);

371

Which Machine for You?

Problem Machine Machine
Size A B
10 3.0 microseconds 200 milliseconds
100 3.0 milliseconds 2.0 seconds
1,000 3.0 seconds 20 seconds
10,000 49 minutes 3.2 minutes
100,000 35 days 32 minutes
1,000,000 95 years 5.4 hours

Come to Lecture and Find Out

373

HOW TO Use Variable Length Argument Lists

e Declare a variable of type va _list to hold an index into the variable

length argument list while it is being processed. Example
va _list ap ;

e The variable argument list comes after the last named parameter. Call

va _start toinitialize the argument pointer ap to the first variable argument
va _start(ap, first)

e The function va _arg is used to fetch a varialble argument and advance to

the next argument in the list.
argval = va_arg(ap , type-name) ;

where type-name is the type of the variable (argVal) being assigned to.

e Call the function va _end to clean up after argument processing.

vaend(ap) ;

® You can cycle through the argument list more than once by calling

va _start to reinitialize the argument pointer. You can use more than one

argment pointer on the same list.
372

Evaluating Program Performance “
How Fast Does it Run?

e Cost of executing a program can be measured in terms of the amount of time

and space the program uses.

e Often there is a tradeoff between space and time

e [t is very useful to be able to estimate the time and/or space used by a

program in terms of the size of the input it must process

@ Adapted from: F. Fich & D. Horton, CSC148F Lecture Notes, 1993

374

Measuring Time Running Time Functions

Run program on various inputs and measure how long it takes Approximate Value of T(n) for n =
Usually unsatisfactory, can depend on things external to the program like T(m) 10 100 1000 10,000 100,000
other users on the computer loge(n) 3 6 9 13 16
. :) logZ(n) 9 36 81 169 256
Alternative, count number of (certain) operations the program performs
Vn 3 10 31 100 316
Examples: assignment, arithmetic, comparisons, array access, pointer n 10 100 1000 10,000 100,000
access, branching " 5
nloge(n) 30 600 9000 13-10 16-10
We want to characterize the running time of a program as a function of the n2 100 10,000 106 108 1010
size of its input. n? 1000 106 10° 102 1015
on 1024 HOuo HOwoo HOu,ooo HOuowooo

Growth Rate of various functions

375 376
Big O Notation O Alg ebra
f(n) and g(n) be functions defined on the non-negative integers such that if f(n) is O (g(n)) and g(n) is O (h(n))
f(n) >= 0 and g(n) >= 0 for all n f(n) is O (h(n))

A function f(n) is order g(n) if there exists positive constants c and B such that

f(n) <= ¢ - g(n) for all n >= B if .\.HADV is O A.Q_. (n)) and .\.MAJV is O AQMQ._VV

Ji(n) + fa(n)is O (g1(n) + g2(n))
Written as "f(n) is O(g(n))"

Constant factors and lower order terms are ignored if f1(n)is O (g1(n)) and f2(n) is O (g2(n))
J1() - fa(n)is O (g1(n) - g2(n))

Examples:

2 f 2
Gt *arm+o s O(n) f(n) + g(n) is O (max(f(n), g(n)))
asn® + nloge(n) is o(n?)

377 378

Analyzing Running Time

e Code without loops or procedure calls takes O (1) time

e [f the body of a for loop is executed O (f(n)) times and each iteration takes O

(g(n)) time, then the entire loop takes
O (1+f(n) - g(n))time

e if the true and false parts of an if statement take O (f(n)) and O (g(n)) time
respectively then the if statement takes
O (max(f(n),g(n))) time

379

Tables and Searching
e Table - a collection of key, object pairs
e Keys must uniquely identify objects

e Typical operations on tables:
insert- 10 %
delete - 5 %
search - 85 %

e Implement table as an array of structures or as a dynamically allocated list

structure

381

Examples
for (sum=0,1=0;1<N/2;I++) O(n)
for (J=0;J3<1; J++) Oo(n)

sum+=1; o)

for (sum=0,1=0;1<=N/2;I++) O(n)

for (J=0;J <N*N; J++) om?)
sum+=1; o(1)
if (1<=10) o(l)
smallData=1; o(l)
else

for (J=0;J<N;J++) O(n)
data[J]1=J; o)

380

Linear Table Management

e Implement Table as array and pointer
Store elements in insertion order

Linear search for key value

e Performance

Operation Method Time
insert at end 1
delete remove & compress N

lookup linear search N

382

105

23

181

17

42

27

256

13

Sorted Table Management

Hash Table Management“

e Implement Table as array and pointer e Implement Table as array and pointer
Store elements sorted in order by key Store elements indexed by hash(key)
Binary search? for key value 1 Use hash(key) and chaining for search
13
e Performance 7 e Performance
23 Operation Method Time
Operation Method Time e insert by hashing 1 normally !
.) [13]
insert in order N +logs(N) 105 N worst case)
181
delete remove & compress N + loga (V) = delete by delinking 1 normally — [2s]
lookup binary search loga(N) N worst case 105
181
o (See Slides 193 & 194) lookup hash & chain 1+ N/tableSize [
N worst case [2]
“Hash Tables will be discussed in detail in CSC190S and CSC191S.
383 384
Hash Functions Hash Function Example
® Maps table key into table index. ® For words use:
Usually a many-to-one mapping First letter
First letter + length
e Should be easy to compute 9
First letter & last letter
e Should spread keys as uniformly as possible across all table entries
e Combine letters using arithmetic or bit operations
e Not worth huge effort to improve hash function Reduce modulo table size
e Perfect hash functions are possible in restricted cases o Example:
® Good Technigue: Compute some function of the key and use the modulus Word first first+length first+last first” last
operator (%) to reduce the value of the function to the range
TAHIR 84 89 166 6
0.. TABLE_SIZE - 1
TERSIGNI 84 92 157 29
VANDERBY 86 94 175 15

385

VARODAYAN 86 95 164 24

386

Hash Function Example

Suppose we were to store employee records, where each employee has a number 7.

Given a table of size 13, use the the following function (hash function) to store the records:

n

88
75
64
28
41
38
62

3
49
93
54

h(n) = (2n — 5)%13.

h(n
(n) 0
2 Ny
2 N -
6 3
12 4
12 5
] 6« 64~ 38]
ﬂ _
2 8|
1 9
2 10
12 G
12| *—
12 -
387
Sets in C

A set is a collection of arbitrary elements
Primary issue is set membership

Set operations include union (U), intersection (M), subset relation (C),
membership relation (¢), member creation

Sets can be represented in C in a number of ways depending on:

— type and homogeneity of elements

— bounded or unbounded size

— relative frequency of operations

389

Data Structures in C
® Sets

® Sparse Arrays

Data structures is one of the major topics in CSC190S and CSC191S.
The following slides are a small preview.

388

Word Sets in C

o Small sets with an integer base type can be represented in C using the 32

bits in an integer to indicate the presence or absence of a particular element

e Use C bit operations on integers (&, | , etc.) to implement set operations

e For a set with members in the range low .. high

If low is non-zero, subtract it from all elements so all sets are represented
internally as
set of 0 .. high - low

o Number the bits in an integer from 0 (rightmost) to 31 (leftmost). Associate

each bit with a particular element of the set.

e This representation of Sets is used in many implementations of Turing and

Pascal.

390

Word Set Operations ¢ Larger Word Sets

Jm v 0 e For a set with elements low .. high

,H all w, OXEEEFEEEF where high - low is greater than 32, use an array of integers for the set
typedef unsigned Set[(high-low+31) >> 5] ;

{A} (1<< (A-low))

AcB (A <low)|| (A> high)? FALSE: e Use division and modulus to select word in array and bit within word

For an arbitrary element A
(1<< (A-low))& B) . .
array index is (A -low)>>5

BUC (B| ©) (usually faster than (A - low) /32)
BnNnCcC (B &C) word index is (A - low) & Ox1F

B cCc(C (B] C)==C)&&(B& C)!=C) (faster than (A - low) % 32)

B CC (B|] cy==~c) e Use macros to parameterize access

B / C (B e) #define getElement(SetVar, Elem)\

(SetVar[((Elem)-Setlow)>> 5] & (1<< (((Elem)-SetLow)&0x1F)))
®For a set of low .. high elements

391 392

Sets of Arbitrar y Elements

e To build sets of arbitrary (non-integer) elements (e.g. reals, Things) you need Set Operations on Arbitrar y Sets

to actually store elements in the set. e Assume a set of Things

o |f membership/non-membership is the dominant operation, could use a hash e Assume an ordering relation on Things

table to represent a set. Could also use a hash table to store Things))

- - . e Store sets as ordered lists of Things
efficiently and store hash table indices in the sets.

e Operations:

{A} Add A to list in order

e |f maximum size of set is known, could represent them as arrays of Things

e |f maximum size of set is not known, represent sets as linked list of elements.

AeB Search list B for A
e For a Thing to be an element of a set we need only a few operations on BuUC merge lists B and C
Things :

deleting one of each duplicate

The ability to copy Things from one place to another

. o B NC mergelistsBand C
— The ability to store Things in data structures

i .) o) keeping only one of h li
An equality relation (e.g. ==) that will determine if two Things are the same eeping only one of each duplicate

Possibly an ordering relation (e.g. <= on Things B cC Use A BncC v == B

393 394

Sparse Arrays

® An array is sparse if more than 99% of it's elements have the values zero

® Sparse arrays arise naturally in the solution of many numerical problems in
science and engineering.
® Sparse arrays are also often very large (e.g. 10,000 X 10,000) so storing
them in a space efficient fashion is an important issue.
e Operations on sparse arrays include access to individual elements and
standard matrix operations such as matrix multiplication
® Most numerical algorithms that work on matrices can be adapted to work on
sparse arrays
395
Sparse Array - Single Link
typedef struct elem *
colPtr ;
struct elem {
3 200 4716
int colNo ; 7 | 7 T
O 0.12345 6.78901
colPtr nextCol ; ﬂ
doub le Val al 7 ey A ss21
w ; ﬂl 9.45678 1.98765
typedef struct rows * 400 1023 4716 9962
.]]] e
rowPtr ; ﬂlx 2.34567 3.141592 2.78127
struct rows
A“H 1500 {\ 6421
int rowNo ; -
ﬂl 1.000002
colPtr column ; Y o o
rowPtr nextRow Zig e 7
/ 4.9825 1.3738

s

typedef rowPtr Sparse ;

397

Storage for Sparse Arrays

® A hash table (hash on row/column index) could be used, but an unstructured

hash table isn’t convenient for operations like matrix multiplication. Most

practical schemes are equivalent to some form of structured hash table

e Most representation schemes use some form of single or double indexing.

Sparse array is stored in some form of linked list data structure

e Array elements are typically self identifying, i.e. the row and column index are

stored with the element

e Two illustrative techniques: single and double indexing are described in the

following slides. Linked lists are used for both row and columns, but a vector

of pointers could be used if the size of the sparse array isn't too large

e Single link is similar to a hash table on the row index

Double link is similar to overlaid row and column hash tables

396

Sparse Array - Double Link

typedef struct elem * elPtr ;
struct elem {
int colNo , rowNo ;
elPtr nextCol , nextRow ;
doub le Val
+s
typedef struct index * indPtr ;
struct index {
int rowcolNo ;
elPtr rowcol ;
indPtr nextindex
b
struct Sparse {
indPtr rows ;
indPtr cols ;

s

M‘l 75 Kg

9782

w\ 3

75

/

21

9782

21 3.141592 21
— 2391

7

2.78283

1.72394

400 \ 400
1 75

/
5.04783

7345
qﬁm\f|\ 2391

7

3.59271

398

e

400

9782

7

3.96270

/

