CSC 181F Lecture Notes

These lecture notes are provided for the personal use of
students taking CSC181F in the Fall term 1999/2000 at the
University of Toronto

Copying for purposes other than this use and all forms of
distribution are expressly prohibited.

(©David B. Wortman, 1995, 1996, 1998,1999

(©Hiroshi Hayashi, 1997

Modules

An impor tant mechanism for packaging related declarations (constants,
types and variables) and functions

Modules are the way to build large software systems

Modules can be used as plug-replaceable atomic units in larger software

systems.

C was designed before modules were recognized as a valuable programming
tool. The class construct in C++ adds modules to C.

Learning to build large software systems using modules
(or classes in C++) is an impor tant programming skill

279

Reading Assignment

K. N. King
Suppl enment ary readi ng

S. McConnel |

Abstract Data Types

278

Sections 19.1

Chapt er

6

19.2, 19.3

e One good way of thinking about modules is that they provide abstract data

types

® A module provides:

- a way of defining an abstract type

- a set of operations on that type

including creation, manipulation, destruction.

e Examples:
- Complex Numbers
- Set
- Stack

280

Information Hiding and Encapsulation

e One really impor tant aspect of modules is information hiding. A module

hides (encapsulates) data that is declared inside the module from the rest of

the program

o A module allows access to this hidden data via its exported functions which

are the modules interface to the rest of the program

e Outside of a module, the rest of the program does not know the actual

representation of the data items declared in the module (e.g., array, structure,
union, list, tree etc.)

e Hiding the representation of the data gives the author of the module the

freedom to change the internal workings of the module with an absolute
guarantee that other parts of the program can’t detect the changes (as long

as the module’s interface doesn’t change

Simulating Modules in C

e C does not provide any construct for modules, i.e. a mechanism to achieve
information hiding. By careful design and programmer discipline most of the
desirable attributes of modules can be simulated in C by following the rules
listed below

— Alwaysusea. h fileanda. C file to represent the module

— The . h should define the complete interface to the module
and nothing else. The . C file should contain the implementation of the module.

— Allitems inthe . h file should have the extern attribute

— Always #include the . h fileinthe . C file to force the complier to check the . C
for consistency with the . h file.

— Data and functions that are logically private (internal only) to the module should be
declared with the static attribute.

— In the interface file, declare types that you want to remain hidden as type void or
void * . The real internal representation of these types is only used in the . C file

that implements the interface.

281 282
HOW TO Handle Module Data Module Example — Comple x
e Assuming a module implements some abstract data type. /* File complex.h */

.)) o /* Interface to Complex Module */
e A single instance module has one instance of the data declared inside the P

module. The functions exported from this module all manipulate this one data

def void * C lex ;
structure. typedef voi omplex ;

: extern doub le compRe(const Complex C) ;
Example: module that provides a table or database. PRe(P)

extern doub le complm(const Complex C) ;
e A multiple instance module exports a type that allows users of the module to

create as many instances as they want of the abstract data type. The users extern Complex compAdd(const Complex C1 , const Complex C2) ;
instances of the abstract data type are passed to the functions exported by extern Complex compSub(const Complex C1 , const Complex C2) ;
the module. Examples: Set, Complex. extern Complex compMul(const Complex C1, const Complex C2) ;
e With good information hiding a client of a multiple instance module can create extern Complex compDiv(const Complex C1, const Complex C2) ;

variables of the abstract data type but cannot examine or use the internal
represention of the data. extern Complex compCreate(doub le real , doub le imag) ;

extern void compPrint(const Complex C) ;

283 284

Module Example —

1* File complex.c */
/* Complex Module implementation*/
#include "complex.h”
static struct no_jv_mxd\umﬁ
double real ;
double imag ;
I

typedef struct complexType * realComplex ;

doub le compRe(const Complex C)

{
}

return ((realComplex) C)- > real ,

doub le compim(const Complex C) {...}

Complex compAdd(const Complex C1 , const Complex C2)

{

realComplex C = (realComplex) malloc(sizeof(struct complexType)) ,

assert(C = NULL) ;

C- > real = ((realComplex) C1)- > real + ((realComplex) C2)- > real ,
C- > imag = ((realComplex) C1)- > imag + ((realComplex) C2)- > imag ,

return (Complex) C ;

285

Module Example
Stack of integ ers

I* File stack.h */

/* Interface to Stack Module */

typedef void * Stack ;
typedef int StackElem

extern void push(Stack S , StackElem v) ,

extern void pop(Stack S) ;

extern int iSEmpty(Stack S);

extern StackElem top(Stack S);

extern Stack create() ;

287

Comple x

Module Example — Stack

e Stack is a linear list that can be accessed at just one of its ends

— Consider a stack of plates:
You add a plate on top of the stack

You remove a plate from on top of the stack
® LIFO (Last In First Out)

® Operations on Stack
— create(S): to bring existence an empty stack S
— push(S, R): to add the object R to the top of the stack S
— pop(S): to remove the object at the top of stack S

— top(S, T): to assign to T the value of the object at the top of stack S without
removing the object from the stack

— empty(S): to ascetain if the stack S is empty or not

286

Example — Using the Stack Module

#i ncl ude "stack. h"

St ack stackl, stack?2;
St ackEl em t enp;

/* File stack.c */
/* Stack Module implementation */

#include "stack.h”
stackl = create();

/* Read integers frominput and stack them */
while (scanf("%", & enp) != ECF)
push(stackl, tenp);

static struct mﬁoxd\umﬁ
int sPtr ;
StackElem sData[100] ,
I
typedef stackType * realStack , stack2 = create();
static stackCheck(realStack R) { +. } ; /* Print input in reverse order,
while (!isEnpty(stackl)) {
tenp = top(stackl);
pop(stackl);
printf("%\n",
push(stack2,

copy to stack2 */

void push(Stack S , StackElemv) { .. } ;
void pop(Stack S) { .. };

int isEmpty(StackS) { .. } ;

StackElem top(Stack S) { +. }

Stack create() { «« }

tenp);
tenp);

288

Stack of integ ers
Alternative Implementation

I* File stack.h */ /* File stack.c */

/* Interface to Stack Module */ /* Stack Module implementation */
#include "stack.h”

typedef void * Stack ; static struct stackType {
typedef int StackElem , StackElem data ;

struct stackType * next ,
extern void push(Stack S , StackElem v) ; 1,

extern void pop(Stack S) ; typedef stackType * realStack ;

static stackCheck(realStack R) { +. } ;
extern int iSEmpty(Stack S); void push(Stack S , StackElem v) { ..

void pop(StackS) { .. } ;

extern StackElem top(Stack S);
int isEmpty(Stack S) { +. };
StackElem top(Stack S) { +. }
Stack create() { «« }

extern Stack create() ,

289

Strings
char identifier [size] ;

char * identifier ;

e Strings are ultimately arrays of characters
All good strings are null terminated by a character containing the value zero. (\ 0)
All string processing depends on this property

o The programmer must allocate enough space for each string variable including
space for terminating null. Compiler allocates space for string literals.
A string literal is a pointer to the first character of the string.

Most string processing is done using pointers to characters

e String literals enclosed in doub le quotes (")
"This is a sanple string."
Character s enclosed in single quotes (')
'a’ A "\ 012

291

Reading Assignment

K. N. King

K. N. King

Suppl ement ary readi ng

Har bi son & Steel e

Chapter 13

Sections 23.4, 23.5

290

String Declaration Examples

char ch;

char A ="'A;

char ca[10];

char date[10] = {" O, 'c
char oct[10] = "Cctober"

1

/* single character */

/* initialized single char */

/* 10-character array */

t, "o, ‘b, e, r’

Chapter 12, 13, 14

N0}

/* the remaining elenments are given the value '\0" */

char * sp ;

/* pointer to string */

const char *cmsg = "Put Your Message Here" ;
/* pointer to string constant */

char msg[] = "Contact Wortman Advertising for Rates";
/* initialized char array */

292

HOW TO Use null Terminated Strings

e All string processing in C assumes that strings are properly null terminated.

CHAOS will ensue if this convention is ever violated.

e The null termination is the only way in C to find the end of a string.

® The compiler automatically adds a terminating null to all string constants. e.g.

Internally "ABC” is "ABC\ 0"

e All library string functions assume arguments their arguments are null
terminated and produce a null terminated result.
WARNING: make sure all arguments you pass to builtin string functions are
properly null terminated
#define NULLCHAR ((char) 0)
char bigString[10001 ;
bigString[0] = NULLCHAR ;

293

Operations on Strings

Length - Get current length of string.

e Copy - Assign a new value to a string variable.

Append - Add information to the end of a string.
e Substring - Select a sequence of characters from a larger string.

e Concatenate - Add one string to the end of another.

Character Search - Search through a string looking for a given character.

String Search - Search through a string looking for some other string.

295

o WARNING: Losing the null termination on the end of a string will cause your
program to CRASH.

o WARNING: all storage for strings MUST include space for the null

termination character.

® Any processing of strings as array of characters MUST reusult in a properly
null terminated string
/* Insurance Trick */
bigString[999] = NULLCHAR ;

® Strings look like this:

char example[11] ="TEST CASE"
[rle[s[r] [clals[elw]]
o 1 2 3 a 5 6 7 8 o 10

294

String builtin functions
#include < string. h>

strcpy strncpy copy string

strcat strncat concatenate string
stremp strncmp ~ compare strings
strlen length of string
strchr search for character
strstr search for substring
memmove safe string copy

Use string builtin functions where ver possib le

There are many more string functions see King Appendix D or Harbison & Steele
for a complete list.

296

String Length Function
size_t strlen (const char *S) ;

® size_tis an unsigned integer type defined in stddef.h.

e strlen returns the number of characters in S up to, but not including, the first

null character.

o WARNING: strlen is a SLOW function in C. It must search the string S to the
terminating null character to determine its length

Example:
int len;
char str[100];
len = strlen("abc”); /*len is now 3 */
len = strlen(™); /*len is now 0 */
len = sizeof(str); /* len is now 100 */

297

e Good Technique: If there is any doubt about whether strlen (src) could be

greater than sizeof(dest) use strncpy instead of strcpy.

o WARNING: strcpy and strncpy are NOT guaranteed to work correctly if src

and dest overlap in memory. Use memmove instead.

o NOTE the assignment operator cannot be used to copy strings. You must use
strcpy or strncpy.
char *S1,*S2;

char S3[50] ;

S1 ="Test String” ; /* Pointer Assignment */

S2=S3; /* S2 now points at S3 */

S3="BAD EVIL"; /* ERROR S3 is an array pointer constant */

strepy(S3 , "MUCH BETTER”) ;

299

String Copying Function
char * strcpy(char * dest, const char * src) ;

char * strncp y(char * dest , const char * src, sizetN);

® strcpy copies the string src into the string dest.
if strlen(src) >= sizeof(dest) an ERROR occur s and some random
piece of memory gets trashed.

® strncp y copies exactly N characters to dest.
— If strlen(src) is less than N dest is filled out with null characters.

— If strlen(src) is greater than N, only N characters are copied to dest and dest is
NOT null terminated.

— dest is null terminated if and only if strlen(src) < N

298

Memory Copy Functions
void * memmo ve(void * dest, const void * src , size_tlen) ;

void * memcp y(void * dest, const void * src, size_tlen);

o memmo ve Copies len characters from src to dest.

memmove will work correctly even if src and dest overlap in memory.

memcp y copies len characters from src to dest.
memcpy is not guaranteed to work correctly if src and dest overlap in memory but it is
generally faster than memmove.

WARNING: Use of memcpy is dangerous, use memmove instead.

WARNING: an ERROR will occur and memory WILL get trashed if dest is not large
enough to hold the result.

300

String Concatenation Function
char * strcat(char * dest, const char *src) ;

char * strncat (char * dest, const char * src, size tN) ;

strcat appends the contents of the string src to the end of the string dest.

strncat copies up to N characters from src to the end of dest.

If strlen(src) = N then N + 1 characters will be written to dest.

WARNING: an ERROR will occur and memory will get trashed if dest is not large
enough to hold the result of the concatenation.

sizeof (dest) > strlen(dest) + strlen(src) + 1

301

String Comparison Function
int strcmp (const char *sl1, const char *s2) ;

int strncmp (const char *sl, const char *s2 , size tN);

e strcmp compares the strings s1 and s2, returns 0 if they are equal, negative number if

sl is less than s2, and positive number if s1 is greater than s2.

strcmp compares strings using lexicographic ordering depending on the character

encoding scheme.

Comparison proceeds from the 1st character to the last until a character mismatch
occurs or the end of a string is encountered.

If a mismatch is found, result is determined by character comparison using the order of
characters.

If no mismatch is found then

— if the string values are of the same length, they are equal

— if the string values are not of the same length, the longer string value is greater

303

String Concatenation Examples

char str1[10], str2[10] ;

strcpy(strl, "abc") ;
strcat(strl, "DEF") ;
/* strl now contains "abcDEF" */

strcpy(strl, "abc") ;
strcpy(str2, "DEF") ;
strcat(strl, str2 + 1) ;

[* strl now contains "abcEF" */

302

String Comparison Examples (ASCII)

stremp("a","A") >0
strcnp("ABC',"DEFG') < O
strcmp("DEF", "ABC') > 0
strcnp("aaaa", "aaaA") > 0
strcnp("0","a") <O

strcnmp(" CsC180F", "CsC181F") < 0O
stremp(" WKYZ", "WKZZ") < O
stremp("pqrst”,"pgrs") > 0

strenmp("j kl mop", "j kl mop") 0

Note that strings cannot be compared directl y using relational operator s
such as "abc” > "abcd”.

Recall that string literal is a pointer to the first character of the string.

304

Character Search Function
char * strchr(const char *S,int C);

char * strrchr (const char *S ,int C);

e strchr searches the string S for first occurrence of the character C.

e If Cisfound in S, a pointer to this first occurrence is returned, otherwise a NULL

pointer is returned.

e strrchr performs the same comparison except that it returns a pointer to the last
occurrence of C in S.

e The null terminating character is considered to be a part of the string, so
T =strchr(S , NULLCHAR) ;
returns a pointer to the end of S

305

Reading and Writing Strings

e Writing strings: printf writes the characters in a string one by one until it
encounters a null character
charstr[120] = "Are we having fun yet?" ;
printf ("Val ue of str: 9%\n", str) ;

e Reading strings: scanf skips white space and then read characters and
stores them until it encounters a white space. scanf adds null character at the
end of the string

scanf ("9%8", str) ;

o WARNING: the character array given as an argument to scanf MUST be
large enough to hold any possible input value. Otherwise you have an error in

your program

307

Substring Search Function
char * strstr(const char * src, const char * sub) ;

e Reading fu

e strstr searches the string src for first occurrence of the string sub.

e [f sub is found in src, a pointer to this first occurrence is returned, otherwise a NULL

pointer is returned.

306

ine: gets does not skip white space. gets reads until it finds a
new line character, discards it, and add the null character at the end.
gets (str) ;

o WARNING: the character array given as an argument to gets MUST be large

enough to hold any possible input value. Otherwise you have an error in your

program and some evil person can trash your program

e Good Technique: If you can't always guarantee valid input, at least detect

when your program has been hosed.
#define BUFFER_SIZE 256
char buffer] BUFFER_SIZE + 1] ;
gets (buffer) ;
assert (strlen(buffer) <= BUFFER_SIZE) ;

308

String Processing Templates
HOW TO Process Strings Efficientl y

Try to process strings wholesale rather than retail char *S,*T:
e Try to avoid slow operations like strlen . /* Assume s initialized */
Try to minimize the number of times strings get copied or concatenated. for (T=S;*T;T++) ,ﬁ for (T=S+strlen(S)-1; T>=S; T- - Xm
Use pointers to access strings efficiently. I* process * T */ I* process * T */
Avoid special cases, try to find general algorithms. w ; w, :
T=S; T=S,
/* Exmaple of Gross Inefficiency */
char S[256] , T[256] ; while (*T){ do {
int J; [* process S */ * process S */
* A i lue h * . .
* Assume S given a value here */ /* increment T */ /* increment T */
/*copy Sto T*
for (J=0; J<=strlen(S); J++) b while (*T);
T[JI1=S[J];
309 310
Example - remove leading blanks Example - remove trailing blanks
char *S ,*T; char *S,*T;
/* Assume S initialized here */ [* Assume S initialized here */
/* using while loop */ /* Using while loop */
while (*S&& *S=="") T=S+strlen(S)-1;
strepy(s, s+1) /* Shift over one blank */ while (T>S&& *T=="")
/* Grossly INEFFICIENT */ T- -

*T+1) = NULLCHAR ;

[* using for loop */

for (T=S; *T&& T==""; T++) /* Using for loop */
; /* Find 1st non blank */ for (T=S+strlen(S)-1; T>S&&*T=="";T--)
strepy(S, T); [* Shift over all blanks */) Find last non blank */

*T+1) = NULLCHAR ;

311 312

Example - remove all blanks Pattern Match & Substitution
General Case

In string S, search for first occurrence of pattern P.

If P is found, replace it with string R.

char*S ,*T; Cases Action Example
char * Send ; PnotinS Do nothing SSSSSSSS
[* Assume S initialized here */ strlen(R) < strlen(P) Shift end of S left so R just fits SSRRRS
Send = strchr(S, NULLCHAR) strlen(R) = strlen(P) Exact replace of P with R SSRRRSSS
WHILE(T = strehr(S,” *)){ strlen(R) > strlen(P) Shift end of S right to make room for R SSRRRRRSSS
memmove(T, T+1,Send-T); P is empty string Add R at start of S RRRSSSSSSSS
Send- - | R is empty string Delete P from S SSSSS
} S is empty string Do nothing SSSSSSSS
313 314
Pattern Match & Substitution Pattern Match & Substitution
General Case - CSC180F Solution General Case - CSC181F Solution
void replace(char *S , const char * P, const char *R vﬁ void replace(char * S, const char *P , const char *R) *

/* Replace P in S with R */ .
char * Pstart ;
char *T, *out ;

for (T=S T < 'S +strlen(S) - strlen(P) ; T++) int Sleng, Pleng, Rleng ;

if (! strnemp(T, P, strlen(P)) { /* Found P in S starting at T */ if ((Pstart = strstr(S, P)) != NULL) ,ﬂ
out = (char *) malloc(strlen(S) - strlen(P) + strlen(R) +1) ; m_mzo - m:_m:A mv .

assert (out)
Pleng = strlen(P) ;

* out = NULLCHAR , /* build output */
strncat(out, S, T-S) ; Rleng = strlen(R) ;
streat(out, R) memmove(Pstart + Rleng , Pstart + Pleng , Sleng - ((Pstart- S) + Pleng) + 1) ;

strcat(out, T + strlen(P)) ; strncpy(Pstart, R, Rleng) ;
strepy(S, out)
free(out) ,

return ; w

315 316

Reading Assignment

K. N. King Chapter 3, 22

K. N. King Sections 13.7

317

Example of Argument Processing

main(int argc , char argv[]) {
/* Argument Processing */

for (argc--, argv++, argc > 0; argc--, argv++) {
/* process options marked with - */
if (**argv =="-") { /* A flag argument */

/* Process all flags in this arg, e.g. -AbDf
while (*++(*argv)) {
switch (**argv) {
case 'X': /* process one flag */
br eak;
defaul t:
fprintf(stderr, "Unknown flag: '%’;
exit(1l);

}

el se /* Process everyting else */
process(*argv);

319

/* Do sonething to argunment *

*/

, *rargv);

-~

Main Program Revisited

void main(int argc , char * argv[])

e argc is the number of command line arguments that have been passed to the

main program

® argv is a pointer to an array of strings which are the arguments to the

program
— argv[0] is the name that was used to invoke the program.
— argv[1] to argv[argc] are the arguments that were passed to the program.

— argv[argc + 1] is always NULL

myMain fee fie foo fum

age [4] .,
agv [] — fie

318

HOW TO Access Environment Information
#include < stdlib.h >
char * getenv (const char * name) ;

In the Unix Shell you can set environment variables that can be used to
communicate information to programs. Execute the Unix command
printenv

to see what your current environment variables are.

The getenv function can be used by a program to retrieve the current value of
environment variables from Unix.

The argument name is the name of an an environment variable, getenv
returns a pointer to a string containing the value courrent assigned to name
and NULL if name is not defined.

Example: Define TMPDIR=/bigSpace/tmp in environment.

320

Input and OQutput in C e The three standard streams are automatically ready to use when a program
#include < stdio.h > starts execution.

e A stream is any source of input or any destination for output. e By convention, standard error is used for printing error messages. These

. . . . messages can be redirected to a destination that is different than standard
e Afile pointer (of type FILE *) is the standard way to refer to streams in C

output.
programs.
e st di 0. h defines three standard streams
File Pointer ~ Stream Default Meaning
stdin Standard Input Keyboard input
st dout Standard Output ~ Terminal Screen
stderr Standard Error Terminal Screen
The command that invokes a program may redirect the meaning of the standard
streams to be a file, a device or another program.
e Programs are usually written to work on the standard streams. If a program
needs more sources or destinations it can create them as it's executing.
321 322
Text and Binary Files Character Input (Text Files)
e st di 0. h supports two kinds of files. int fgetc(FILE * stream) Read one character from stream
e Text Files generally contain characters and are usually easily readable or int getc(FILE * stream) Inline version of fgetc
printable. Text files are viewed as a sequence of lines where lines are int getchar(void) getc(stdin)
separated by the NEWLINE character (\n). char *fgets(char * S, int N, FILE *stream) Reads at most N - 1 characters into array S
. ! St line. Sii Il terminated
e Binary files contain raw data in the encoded in the internal representation OPS on newline. Is null terminate
used by the hardware char * gets(char *S) Read next input line into S
.) Like fgets('S, INFINITY , stdin)
e Binary files can be used to store arrays, structures and other more
int ungetc(int C, FILE * stream) Push character ¢ back onto stream

complicated data structures.

. Character input functions return EOF on end of file or error.
e Generally binary input and output is much more efficient than text input and)
WARNING: getc, fgetc and getchar return int not char .

output since no conversion to/from the binary internal representation is String input functions return NULL on end of file or error.

required. WARNING: gets is inherently unsafe and should be avoided.

ungetc can be used to return one character to the stream.

323 324

Character Input Examples

int ch;
FILE * fp;

,.a.gm_m ((ch = getc(fp)) !'= EOF) {

fgets(str, sizeof(str), fp); /* reads a line fromfp */
fgets(str, sizeof(str), stdin);

/* read a line fromstandard input */
#i ncl ude <ctype. h>

,.\?_m (isdigit(ch = getc(fp))) {

}

ungetc(ch, fp); /* puts back last value of ch */

325

Character Output (Text Files)

int fputc(int C , FILE * stream) writes character C on stream
int putc(int C, FILE STAR stream) inline version of fputc
int putchar(int C) putc(C , stdout)

int fputs(const char * S, FILE * stream) writes string S on stream

int puts(const char * S) fputs(S, stdout)

Output functions return EOF on error.
Examples:

FILE * fp ;

putchar(ch) ; /* wites ch to stdout */
putc(ch, fp) ; /* wites ch to fp */

puts("Hello world!") ; /* wites to stdout */
fputs("Hello world!"™ , fp) ; /* wites to fp */

327

HOW TO Handle Errors and End of File

e Every call on an input function must check for possib le end of file or

error.

o WARNING: The value of EOF returned by fgetc, getc and getchar is NOT a
valid char value.
Always read characters into an int variable, check for EOF and then assign

the input to a char variable.

e The function
int feof(FILE * stream)
returns true if an end of file has been detected while reading stream. Note
that this function does not return true until an attempt has been made to read
past the end of file.

326

Formatted Output

e A format string is used to specify the exact layout of each line of printed
output.

e The format string may contain text which is output literally

e The format string contains format control characters which cause data values

to be printed.

e Embed ASCII control characters (e.g. \ N (newline) ,\ t (tab) and \ f

(pagefeed)) in format string for line and page control

o WARNING: Be Careful to exactly match format string with argument list.
Mismatc hes cause crashes.

e Sink for output can be standard stream, file or string

328

printf function

printf(const char * format, expressionList)

expressionList is a list of expressions separated by commas
format is a string that specifies formating for printed output

Expressions in the expression list are matched in order with format control

characters in format

WARNING: most versions of C do NOT check that you've got this right. Be

especially careful about char vs. string and different sizes of integers and

reals.
329
Output Format Contr ol Character s
c single character p void *, pointer
S string f real, normal notation
d integer, signed decimal e real, scientific notation
i integer, signed decimal E real, scientific notation
u integer, unsigned decimal g real, shorter of e, f, notation
o integer, unsigned octal G real, shorter of E, f, notation
X integer, unsigned hexadecimal
X integer, unsigned hexadecimal

331

Format Control Character s
%C
%- C
%widthC
%.precC

Cis any format control character

A preceding - sign causes the field to be left justified

width and prec are integer constants. width specifies the printed width of the field in
characters. prec specifies number of digits after decimal point for floating point

numbers

width or precision can be * which causes value to be taken from next argument

330

Examples of formatted output

printf("CSC181F Assignment %\ n", aNunb);

sprintf(buffer, "(%%%)",
|l eft _op, operator, right_op);

fprintf(nyFile, "%d % %\n",
count, name, result);

printf("Pointer value is % (%)\n", p, p) ;
printf("%*f", 4, x);

printf("%=*f", WDTH, Xx);
printf("9.4f", 12, x);

332

fprintf & sprintf
fprintf(FILE * stream,const char * format, expressionList)

sprintf(char * S,const char * format, expressionList)

format and expressionList same as printf.
fprintf writes output to the designated file
sprintf writes output to the designated string

WARNING: Be Careful to always give a file as first argument to fprintf
and a string as first argument to sprintf .
Make sure that string for sprintf is large enough to hold any possib le

result including a trailing null character .

333

File Open

FILE * fopen(const char * filename, const char * mode) ;

Opens named file and returns stream pointer or NULL if open fails.

Files must be opened before they are used for reading or writing.

Modes include:

r” open for reading

w” create text file for writing, discard previous contents
"a’ open for append or create

r+” open for update (read & write)

"w+" create text file for update

open or create for append & update

WARNING: Always check that fopen has returned a non-NULL pointer.

335

HOW TO Use Files in C

In a C program, a file is a handle that is used to access some external source

or destination for data.

The FILE * data type is a pointer to a control block that specifies the type of a
stream, how to access the stream and the current location in the stream for

input or output.

The system establishes default streams for stdin, stdout and stderr. These

can be overridden via redirection at the Unix command level.

The fopen function is used to set up an association between an external file

and a stream in the program.

The fclose function is used to terminate the association set up by fopen.

334

File Close

int fclose(FILE * stream)

Flush any unwritten data to output stream
Discard any unread input in input stream
Deallocates buffer, closes stream.

File should not be used after it is closed.

Returns zero if successful; otherwise returns EOF

336

scanf - formatted input

e User supplies format string, as in printf.
Format string specifies order and format of input items.

e User provides addresses of variables in which to store input items.

e scanf attempts to read from its input source and match the input stream
against the format string. Successful matches cause values to be assigned to

the variables.

e scanf returns number of variables assigned to, which may be less than the

number of items requested.

337

scanf format string

® One more consecutive white-space in a scanf format string match zero or

more white-space in the input stream.
e Ordinary characters are expected to match the characters in the input stream

e Conversion items beginning with % cause data values to be read and
assigned to the next unassigned variable.
An assignment suppression character * after the % causes a data item to be
read by suppresses assignment to the variable. Use this to skip over

unwanted input.

e scanf automatically skips over white-space (blank, tab, newline, carriage

return, etc.) in its input

339

scanf function

int scanf(char * format, varAddressList)

format is a format string specifying the expected input format

varAddressList is a list of addresses of variables.
Use either pointers to allocated memory or & variable to generate the address

of local variables.
Always check number of assignments done by scanf

Always provide a variable ADDRESS for each data item in the format list

338

scanf conversion character s

Char Type Variable

d decimal integer int *

i integer (any) int *

o] octal integer int *

u unsigned integer unsigned *
X hex integer int *

c character (no ws skip) char *

s string char *

e float float *

f float float *

g float float *

340

Conversion Modifier s

e Puthinfrontofd, i, 0, U toindicate corresponding address is short *
e Putl infrontofd, i, O, U toindicate corresponding address is
long *

e Putl infrontofe, f, @ toindicate that corresponding address is
double *

e %can be followed by an integer constant width specifiers that controls the
number of input characters read. e.g %4.S to read 1 character at a time

341

fscanf and sscanf
int fscanf(FILE * stream, char * format , varAddressList)

int sscanf(char * source, char * format, varAddressList)

fscanf like scanf except input comes from designated file

sscanf like scanf except input comes from character string

Example:
fscanf(inFile , "%s” , str); /* read string from file */
sscanf(str , "%d%d” , &i, &j); /* extract two int from str */

343

scanf examples
int i, j ;
long k ;
double X ;
char ch, str[100];
i nt nScanned ;

nScanned = scanf("%%" , &i , & |);
nScanned = scanf("% is %" , str , & ch);
nScanned = scanf ("% d%" , & i);

nScanned scanf ("% e%d", & X, &k);

342

HOW TO Use sscanf and ssprintf

® sprintf can be used in a program to build up compilcated character strings.
— More efficient than using several strcpy/strcat operations.
— Provides access to all of the builtin conversion routines from internal
represeantation to characters.
e scanf can be used in a program to scan strings and extract information.
— Provides access to the internal conversion routines.
— Can read input with fgets and then try alternative analysis with different scanf calls.
Allows you to validate input without crashing the program.
o WARNING: make sure string argument to sprintf is long enough to hold any

possible output.

344

Bloc k Input and Output

size_t fread(void * ptr, size_t size , size_t nmemb , FILE * stream)

size_t fwrite(const void * ptr , size_t size , size_t nmemb , FILE * stream)

fread reads an array from a stream to memory (ptr) in a single operation
fwrite copies an array from memory (ptr) to a stream in a single operation
ptr is the address of the data to transfer

size is the size of each element of an array in bytes

nmemb is the number of array elements to write/read

return value of fread is the number of elements read

return value of fwrite is the number of elements written

Good Technique: check return value against nmemb

345

o WARNING: reading and writing any data structure containing pointers

(including char *) will NOT produce a correct result.

e Example Test case
Write 100,000 random double numbers to a file.
fwrite was about 150 times faster then fprintf.
Read 100,000 random double numbers from a file.
fread was about 40 times faster than fscanf.
Binary file was 800,000 bytes, text file was 1,300,000 bytes.

347

HOW TO Use fread & fwrite

e Use fread and fwrite to move blocks of binary information between memory

and disk files.

e fread and fwrite are much more efficient than fprintf and fscanf for moving

large amounts of data to/from disk.

e The function setvbuf can be used to disable buffering when reading and

writing binary information. This may improve speed.

® You can set size to total number of bytes to transfer and nmemb to one. This
may be faster.

346

Example of Binary Input/Output

struct dStruct {
doubl e xCoord, yCoord, zCoord ;
long redCol or, greenCol or, blueColor ;
P
struct dStruct datal 10000] ;
FILE * dataFile ;

assert((dataFile = fopen("nyFile", "wW')));

fwite(& data[0] , sizeof(struct dStruct) ,
10000 , dataFile);

fclose(dataFile);

assert((dataFile = fopen("nyFile", "r")

fread(& data] 0] , sizeof(struct dStruct

1, dataFile);

))
) * 10000 |,

fclose(dataFile);

348

18€

‘S|rejap 0} 9]981S % UOSIqIeH 99S

Jngaes

Buniayng ajly [0UOD

ajydun

awreu anbiun yum ajij Aresjodwa) ayeald

awreual

3|l sweual

oWl

3|l paweu a19|ap

usniy

sJayng 3y ndino ysnjy

uadoauy

sJayuiod reussul Bumasal ‘ajiy usadoai

suonelado 3714 JBYI0

6ve

0se

= o —
g 3G s J @ o
8 o @ Q@ o g =
w v v n3 X 3
g mmmMmMmmz=z S o =
2 o m M mMm m .2 s
o x X X X 8 o o >
EA0 I3 o3 2
T =20 g 8 I.C{.’I o % @ =3 5 o
® m 4 o = >
5 - 492 =23 2 7 €
@ o £ L Loy @ 5 D =
S P S o0 o & 23 = © @
2. 3358 g @ g A =
S o < 3 = S = =
=1 g 9 2 o T o m
> M s 2 = 2 3 3 =
o = o = 5 = —- = 28 m m
5~ ® 80 g8 = *
> Qg 2 3 9 3 a2 o
a & 3 5] e 3 s o @ @
(%] = S =] — L o @
L - @ Q 3 = 3 3 X
3 = 5 ® z
® B = c Ro
= 2 [= —
o o %) «Q @
@ =z o =
g 5 =
= 3 @®
ol -
> —
2 2
= o
@ =,
kel Q
=X >
5 =
=
@
7]
o
o
=
[0}
[0}
=
Example - reverse file in place
long forward, back ;
FILE * revFile ;
/* assume file contains struct Data */
int DataSize = sizeof(struct Data);
struct Data forwardBuff, backwardBuff);
assert((revFile = fopen("someFile", "rb+")));

forward = 0 ;
/* Find start of last structure in file */
fseek(revFile , DataSize , SEEK END);"*
back = ftell(revFile);
while(forward < back) {
fseek(revFile , forward , SEEK_SET);
fread(& forwardBuff , DataSize , 1, revFile);
fseek(revFile, back, SEEK SET);
fread(& backwardBuff, DataSize, 1, revFile);
fseek(revFile, back, SEEK SET);
fwite(& forwardBuff, DataSize, 1, revFile);
fseek(revFile, forward , SEEK SET);
fwite(& backwardBuff, DataSize, 1, revFile);
forward += Dat aSi ze ;
back -= DataSi ze ;

