CSC 181F Lecture Notes

These lecture notes are provided for the personal use of
students taking CSC181F in the Fall term 1999/2000 at the
University of Toronto

Copying for purposes other than this use and all forms of
distribution are expressly prohibited.

(©David B. Wortman, 1995, 1996, 1998,1999

(©Hiroshi Hayashi, 1997

Dynamic Storage Allocation

Dynamic storage allocation is a mechanism that allows the programmer to
create new storage for data during the execution of a program

Dynamic storage allocation is used to build complicated data structures like
lists, trees, and graphs whose size and shape is determined during program

execution

Think of using dynamic storage allocation for problems where you have to
deal with arbitrarily large amounts of data or where the structure of the data

isn’'t known before program execution

Use of dynamic storage allocation is an impor tant programming
technique because it frees the programmer from the restrictions

imposed by staticall y sized data structures.

229

Reading Assignment

K. N. King Sections 17.1, 17.3, 17.4

228

Dynamic Storage Allocation

Storage can be allocated for any type of data (i.e any type-name).
Pointers are used to access dynamically allocated storage.

Storage must be allocated and deallocated under programmer control
Items in storage can be linked together with pointers in arbitrary ways

Items are accessed using pointers, any item not pointed to by some pointer is
permanently inaccessible

230

Storage Allocation Functions
#include < stdlib.h >
void *malloc(size_t size)
void *calloc(size_t nobj, size_t size)
void *realloc(void * p, size_t size)

e malloc allocates size bytes of storage and returns a pointer to the storage.
calloc allocates storage for an array of nobj elements where each element
requires size bytes of storage

e realloc changes (smaller or larger) the size of the block of storage pointed to
by p to be size bytes. Returns a pointer to the new storage. Copies old block

of storage to new block of storage up to min(oldSize, newSize)

e Since malloc et.al. return a value of type void * you should use a type cast to

convert the type of the pointer returned to what you need.

231

Deallocating Storage

void free(void * p)

free releases the storage block pointed to by p.
That storage must have been allocated using malloc, calloc or realloc or
CHAOS will ensue.

Dangling pointers are pointers that point to storage elements that have
already been freed

It is alogic error in your program if you try to use a dangling pointer

233

e malloc doesn't initialize memory but calloc does initializes the memory by

setting all bits to 0.

e When it is not possible to locate a block of memory large enough, the storage
allocation functions return NULL.
WARNING: Always check if the return value is NULL.
p = (char *) malloc(n+1);
if (p ==NULL) ...

o WARNING: Be sure that a pointer passed to realloc came from previous call

of malloc, calloc, or realloc

o WARN realloc may move the data being reallocated to a different part of
memory. This will invalidate all existing pointers to that data. The ONLY

pointer you can trust is the one returned by malloc.

232

HOW TO Use Storage Allocation

e Always use sizeof to calculate the amount of storage regested from the
storage allocation functions.

e Never pass any pointer to free that wasn't obtained directly from one of the

storage allocation functions. CHAOS will ensue if you get this wrong.

e Safe Storage Allocation
#define MALLOC(size, type , pointer) \
{ void * mTemp ; \
mTemp = malloc((size)) ; \
assert (mTemp != NULL) ; \
pointer = (type) mTemp ; \

234

Storage Allocation Examples

int *A;
int nWords =100 ;

A = (int *) malloc(nWords * sizeof (int));

typedef struct {
int X,Y;
} Point ;
typedef struct Point * PointPtr ;
#define PointArraySize (360)
PointPtr P ;
P = (PointPtr) calloc(PointArraySize , sizeof (Point)) ;
P[100]- > X =10

P[100]- > Y =20 ;

235

Dangling Pointer s

e A dangling pointer is a pointer that points at some block of storage that has
been freed.
Itis an ERROR to use a dangling pointer since it points to GARBAGE. The
following property should hold for correct programs.

At every point where a pointer variable is dereferenced, the pointer

variable can not be a dangling pointer.

If you cannot make an informal argument that this property holds at every
pointer dereference than you have an ERROR in your program.

237

NULL Pointer Dereferencing

e |tis an ERROR to apply the pointer dereferencing operator (*) to any pointer
that has the value NULL.

The following property should hold for correct programs.

At every point where a pointer variable is dereferenced, the pointer

variable does not have the value NULL

If you cannot make an informal argument that this property holds at every

pointer dereference than you have an ERROR in your program.

o WARNING: The NULL pointer is lurking everywhere waiting to cause

your program to crash

236

Dangling Pointer Example

typedef struct {
float X ;
} bigStruct ;
typedef struct bigStruct * bigPtr ;
bigPtr P, Q ;

P = (bigPtr) malloc(sizeof (bigStruct)) ;

free(P);

/* Q is a dangling pointer */

Q->X=257; /* ERROR */
238

Memory Leaks

e A program has a memory leak if it allocates storage that is never freed.

o Memory leaks are not an issue for short lived programs (e.g. programming

assignments) that do something and then stop. the operating system cleans

up memory when a program ceases execution.

Memory leaks are an issue for long running programs like operating systems,
web browsers, word processors, and X window systems because the leaks
cause the program to grow slowly over time until it becomes to large to

continue running.

IF you are writing a long lived program you should take care to avoid memory

leaks. This is hard, it takes a lot of really careful memory management.

239

Types of Lists

Singly linked lists A sequence of nodes linked by a single pointer.
—

Data Data Data Data Data

E — = Z

Singly linked list with header A singly linked list that is accessed via a header

block that contains pointers to the first and last node in the list.

Data \\\ Data \\‘ Data \\i Data Data
—] = —] —] z

Doubly linked list A sequence of nodes where each node contains a pointer to

the next node in the list and a pointer to the previous node in the list
E—

Data Data Data Data

]]] 7
7 — — —

241

List Data Structures

Data Data Data Data Data

A list is a sequence of nodes that are chained together using pointers.
By convention the pointer value NULL is used to mark the end of a list.
Lists allow you to deal with arbitrary amounts of data

List processing algorithms are designed to processes lists from beginning to end.

Random access to items in a list requires searching which can be very inefficient.
Recursive functions are often the best way to design list processing algorithms.

List items are called nodes, cells, or elements. The explicit data that specifies “next”
are called pointers or links.

A Pointer variable which contains a pointer value to the first node on a list is called
header

240

Singly Linked List Declarations

/* singly linked lists */
typedef struct listNode * ListPtr ;
struct listNode {
/* Declare Data Here */
int value ; [* list of integers */
listPtr next ; /* link to next node */
s
typedef struct listNode LISTNODE ;

#define LISTNODESIZE (sizeof(LISTNODE))

242

HOW TO Think About Lists Operations on Lists

Lists are inherently a linear data structure. e Append - Add a new node to the end of a list.
For singly linked lists, the only access to the list is via a pointer to the head of e Delete - Remove a node from the list.
the list.
e Trace - Chain through the nodes in a list, performing some processing on
Algorithms that process lists must be designed to work through the nodes in a each node.
list in order.

e Search - Chain through a list looking for a node that contains a particular

List processing algorithms must be designed to handle the empty list value.

correctly.
e Concatenate - Append one list to the end of another list.
Absolutely arbitrary data items can be stored in lists,

e.g. structures, arrays, lists, trees ... Data can be ordered or unordered.

Lists allow you to write programs that can deal with arbitrarily large amounts

of data (limited only be the size of memory).

243 244
NULL & Dangling Pointer s Recursion and List Processing
WARNING: BEWARE of NULL pointer s, they are lurking EVERYWHERE Recursion is often a very good way to design and express algorithms that process
trying to cause bugs in your programs lists.
Basis: The empty list

It is alogic error in your program if you try to use a pointer with the
value NULL to access data (NULL list pointer)

You should be able to establish the following condition:
At every place where a pointer is dereferenced Decomposition: Process node pointed at by list pointer
(e.g. constructs of the form * pointerVariable and pointerVar - >) Process rest of list recursively.
the pointerV ar can NOT have the value NULL

Composition Combine result for node pointed at
Dangling pointers are pointers that point to storage elements that have

with result for rest of |
already been freed

It is alogic error in your program if you try to use a dangling pointer to

access data.

245 246

Generic Recursive List Processing Model

type-name Func (ListPtr inputList) Generic Interative List Processing Model

if (inputList == NULL) A e Use a temporary pointer variable to point to the node being processed in the

/* Return value for NULL list */

list.

return ... e Initialize this pointer to point at the first node in the list.

}

clse A e Stop processing when the temporary pointer has the value NULL.

ListPtr restResult ; Conveniently NULL == false .

% i H 1 *
I Process node pointed to by inputList */ e Use the next link in each node to advance the temporary pointer from one

node to the next.
/* Recursively process the rest of the list */

restResult = Func(inputList- > next) ; - Dat Dat Dat Dat Dat

ata ata ata ata ata
[* Combine result for this node and restResult */ - = — = —
return ...

247 248
Creating Lists
Examples - Iterative List Processing i .
® Lists are created one node at a time.
ListPr P, Q; — Use malloc to allocate storage for the node.

% i i *
[* Assume P points at a list */ — Use the size of the list node as the argument to malloc.

/* Process list pointed at by P */

Good Style: Always check that malloc returned a non-NULL pointer.

Q=P; for (Q=P; Q; Q=Q->next){ — Add the node to the list at an apropriate place.

WHILE(Q) ,ﬁ e Good Technique: If there are any pointers in a node that are not given a
/* process node pointed */ /* process node pointed at */ value immediately after allocation initialize those pointers to NULL. This
[*atby Q*/ I* by Q here */ action turns uninitialized pointer dereference errors into NULL pointer

/* advance to next node */ dereference errors which are more likely to be detected.

Q=Q->next, w Example: ListPtr P ;
w P = (ListPtr) malloc(LISTNODESIZE) ,
assert (P);
P- > value = /* some value */)

P- > next = NULL ,
249 250

List Processing Examples

ListPtrP, Q;

int listSum ;

/* ASSUME P is set to point at list here */

/* Compute sum of nodes in list */

for (listSum=0,Q=P; Q; Q=Q->next)

listSum + = Q- > value ;

[* traverse and print list */
Q=P;
while (Q){
printf("%d\ n”, Q- > value) ;
Q=Q- > next,;

Example - Input to a List

/* read data and add to */
[* list in order */
ListPtr P = NULL, Q = NULL ,
while (! feof(stdin)) {
if (Q == NuLL) {

[* first node in list */

Q = (ListPtr)malloc(LISTNODESIZE) ;

assert (Q),
P=Q;
}else {

Q- > next = (ListPtr)malloc(LISTNODESIZE) ,

Q=Q->next,
assert (Q),
}

Q- >next=NULL ,

scanf ("%d", Q- > value) ,

I* read data and add to */
/* listin REVERSE order */
ListPtr P = NULL, Q = NULL ,
while (! feof(stdin)) {
Q = (ListPtr)malloc(LISTNODESIZE) |
assert (Q)
Q->next=P,
scanf ("%d", Q- > value) ,

P=Q,

List Processing Examples
/* Destroy entire list */ '
ListPtr Q; .
while (P){]
Q =P->next, 2]
free(P); |
P=Q;
} [3]
/* Reverse Order of Nodes in List */ L]
ListPtr Q = NULL, R ;
while (P){ “
R =P->next,
P->next=Q; 5 |
Q=P; L]
P=R;

252

Example - Append to Integer List

/* Add value K to end of list P */
ListPtr P, Q, R ;
I* Assume P gets value here */
R = (ListPtr) malloc(LISTNODESIZE),
assert(R),
R- >value =K ;
R- > next = NULL ,
if (P == NULL)
P =R /*Listwas empty */
else { /*find end of list */
Q=P;
while (Q- > next != NULL)

Q=Q- > next; }

Q->next=R;

254

ListPtr Append(ListPtr P, int K) {
if (P==NuLL){

ListPtr Q ,

Q = (ListPtr) malloc(LISTNODESIZE) ,
assert(Q),

Q->value =K,

Q- > next=NULL ,

return Q,

}else {

P- > next = Append(P- > next, K)

return P,

Example - Copy a List

I* Set Q to copy of list P */
ListPtr P, Q, R = NULL ,
I* Assume P gets value here */
while (P !=NULL) {
if (R==NULL) {
/* First Node */
R = (ListPtr) malloc(LISTNODESIZE),
assert(R) ,
Q=R;
}else {
R- > next = (ListPtr) malloc(LISTNODESIZE) ;
R =R- > next,
assert(R) ,
}
*R=*P ; /* Copy node */
R- > next = NULL ;

P =P->next,

255

/* Return Copy of List P */
ListPtr Copy(ListPtr P) {

if (P ==NULL)
return NULL
else {
ListPtr Q ;

Q = (ListPtr) malloc(LISTSIZE),
assert(Q) ,

*Q:=*P I* copy node */
Q- > next = Copy(P- > next) ,

return Q

Iterative Ordered List Insert

void insert(ListPtr * P, int VV){

/* NOTE P is LISTNODE * * *
/* insert node for V in ordered list P */
assert (P),

ListPtr Q=*P |

ListPtr newPtr = (ListPtr) malloc(sizeof(LISTNODE)) ,

assert (newPtr) ;
newPtr - > value =V ;

if (Q== NULL|| Q->value > V){
I* empty list or insert at head */

*P = newPtr ;
newPtr - > next=Q ;
Yelse {
ListPtr nextPtr = Q - > next ,
while (TRUE){
assert(Q) ;

Insert in List

Cases:

Empty list

Insert at head

Insert in Middle

Insert at end

256

INSPECT for non-NULL Pointer Property

void insert(ListPtr * P, int V){

/* NOTE P is LISTNODE * * */
/* insert node for V in ordered list P */
assert (P) ;

ListPtr Q=*P ;

ListPtr newPtr = (ListPtr) malloc(sizeof(LISTNODE)) ;

assert (newPtr) ;
newPtr - > value =V ;
if (Q== NULL|| Q->value > V){
I* empty list or insert at head */
* P = newPtr
newPtr - > next=Q ;
Jelse {
ListPtr nextPtr = Q - > next ,
while (TRUE){
assert(Q != NuLL) ;

if (nextPtr == NULL | | nextPtr - > value >V){
/* insert at middle or end */
Q - > next = newPtr ,
newPtr - > next = nextPtr ,
break
I
Q = nextPtr ,
nextPtr = Q - > next ,

257

if (nextPtr == NULL | | nextPtr - > value >V){
/* insert at middle or end */
Q - > next = newPtr
newPtr - > next = nextPtr ,
break ,
I
Q = nextPtr ,
nextPtr = Q - > next ,

258

Recursive Ordered List Insert

void insert(ListPtr * P, int V){

/* NOTE P is LISTNODE * * ¥/

assert (P),

[* insert node for V in ordered list P */

if (*P==NULL|| (*P)->value > V){
ListPtrQ=*P ;
* P = (ListPtr) malloc(LISTNODESIZE) ;
assert (*P);
(* P)- >value=V;
(*P)->next=Q,

}else {

insert(& P- > next, V) ;

259

Technique - Dummy List Head

e In processing a list, the first node in the list often needs to be treated
differently since it is pointed to by a pointer that is not in a list node Algorithms
for processing lists can often be simplified by adding a dummy node at the
start of the list. This eliminates the need to treat the first list node as a special

case.

e Before Processing:
Create dummy list node
Set next link in dummy node to point at list

e After processing:
Restore original list pointer from dummy node next link
This is necessary for situations where the head of the list is changed

....... ="

dummy 26

Example - Apply

Apply a function F to every node in a list.

Return list containing result.

ListPtr apply(ListPtr P, int F (int val)){

if (P == NULL)
return NULL ;
else {
ListPtr newNode ;
newNode = (ListPtr) malloc(LISTNODESIZE) ;
assert (newNode) ;
newNode- > value = (* F)(P- > value) ;
newNode- > next = apply(P- > next, F);

return newNode ;

260

Example - Input using Dummy List Head

ListPtrP, Q;
LISTNODE dummy ;
/* Set up dummy list head */
Q=&dummy ;
while (! feof(stdin)) {
Q- > next = (ListPtr)malloc(LISTNODESIZE) ,
Q=0Q->next;
assert (Q = NULL);
scanf ("%d", Q- > value) ,
}
/* Finish off List */
Q- > next = NULL ;

P = dummy. next

262

Technique - Trailing Pointer s

e For many list processing algorithms, it is convenient to keep pointers to the list
node being processed and the immediately preceding node in the list. The

pointer to the preceding node is called a trailing pointer.

e Dummy list heads are the recommended technique for setting up trailing
pointers

T
===

Singly Linked Lists with Header Bloc ks

e A singly linked list that is accessed via a header block that contains pointers
to the first and last node in the list.

Data \\\ Data \\‘ Data \\i Data Data
— 1 pd

e Typical header block declaration
struct headerBlock {
ListPtr head ;
ListPtr tail ;
b

typedef struct headerBlock * headerPtr ;

e This added data structure makes access to the end of a list very efficient. The
header block must be updated whenever the first or last node in the list

is changed.

265

Iterative Ordered List Insert - Trailing Pointer

void insert(ListPtr P , int V') {
/* insert node for V in ordered list P */
ListPtr trailP, currentP, newPtr .

newPtr = (ListPtr) malloc(LISTNODESIZE) ; I* Create new node for V */

assert (newPtr) ;
newPtr - > value =V
/* Setup dummy head and trailing pointer */
dummyHead. next="P ;
trailP = & dummyHead ,
currentP = trailP - > next ,
while (true) A /* Loop to do insertion */
if (currentP == NULL | | currentP - > value > V) {
I* Insert here */
trailP- > next = newPtr ;
newPtr- > next = currentP ;
break ;
}
trailP = currentP ; /* Advance down list */
currentP = trailP - > next ,

}

P = dummyHead. next ;

264

Append to Integer List with Header Bloc k

/* Add value K to end of list P */

ListPtr P, Q, R ;

struct headerBlock HDR ;

/* Assume P gets value here */

/* Assume HDR points at P */

R = (ListPtr) malloc(LISTNODESIZE),
assert(R),

R- >value =K,

R- > next = NULL ,

if (HDR. head == NULL) /* list was empty */

HDR. head = HDR. tail=R ,
else {

HDR. tail - > next=R ;

HDR. tail =R ;

266

Doubly Linked Lists

e Forward and backward pointers allow two way traversal
e Often useful if many insert, deletes or appends.

e Typical declaration:
struct dNode {
int value ;
struct dNode *forward, *back ;

}s

typedef struct dNode * dPtr ;

e Technigue: Use doubly linked lists when list must be traversed in both
directions or when the end of the list must be quickly located.

Don't use a doubly linked list when a singly linked list will do

267

HOW TO Choose List Data Structures

e KISS

® For many cases a singly linked list is the best choice.
Unless you know that lists will get long, searching a singly linked list from the
head to find a node is a GOOD option compared to other alternatives.

e For cases where there will be a lot of appending to the end of a list, a singly

linked list with a header block is a good solution.

e Use doubly linked lists only if you had an unavoidable need to traverse the list

in both directions.

e Most programmers use a list structure that is too complicated. Use the

simplest list structure that will do the job.

e KISS

269

Example - Create Double List

/* Create example list */

dPrP,Q;

int J;

Q=NULL;

for (J=1;J<=5;j++){ —
P = (dPtr) malloc(sizeof(struct dNode)) ;

N

\

1N

\

assert (P);

P->value=1J;
if (Q)

Q- > forward =P ;
P->back=Q;
Q=P;

1w

\

&

}

p-¢forward = NULL ;

I

|
\

268

Trees and Graphs

e Atreeis a collection of nodes that are linked to a common root node. A graph
is a collection of nodes that are linked together is some arbitrary way.

e Trees and graphs are used to represent data that has some structure that

must be preserved during processing.

® The most common tree is the binary tree which has (at most) two branches
from each node. N-ary trees are possible.

e Recursive functions or procedures are usually the best way to process trees

and graphs.

270

Trees using Pointer s

enum treeNodeType { branch , leaf } ;
struct treeNode {
enum treeNodeType nodeKind ;
int value ;
struct treeNode *left, *right ;
+
typedef struct treeNode * Tree ;
const Tree stump = NULL ;

Tree maple, elm ;

271

Example - Tree Copy

Tree TreeCopy (Tree treePtr) ‘H

if (treePtr == stump)
return stump ;

else {
Tree twig ;
twig = (Tree) malloc(sizeof(struct treeNode)) ;
assert(twig) ;
twig- > value = treePtr- > value ; /* copy node values */
twig- > left = TreeCopy(treePtr- > left) ;
twig- > right = TreeCopy(treePtr- > right) ;

return twig ;

273

Example - Generic Tree Traversal

void trace (Tree treep) ,m

if (treep ==stump)

return ;
if (treep - > nodeKind [branch]

== |

_mm&v ﬁ branch

process leaf here */
}else {

process branches */ [branch | [branch]

—
trace(treep - > left) ; [3]
[7] -

trace(treep - > right) ; s

t .

272

Expression Trees

® Binary trees are an extremely convenient way to represent expressions in a
program. The nodes in the tree represent operators and operands in the

expression.

e Using trees makes it easy to describe the precedence of operators in the
expression. Getting operator precedence right is esssential for any algorithm

that processes expressions.

® Most expression algorithms are easy to design and implement if they work on

expression trees as the primary data structure.

274

Example - Expression Tree Traversal
Example - Expression Tree Data Structure

void trace (Tree treePtr) ‘m ;\
. if (treePtr == stum [+]
e Randomly choosen example of an expression tree data structure i ump) L 1]
return ;
else []
typedef enum ,ﬂ constant, variable, plus, minus, multiply, divide, power v ‘H 7 111
/* Preorder: process node here */ 7]
treeNodeType ; (T T]
% .
typedef struct treeNode * treePtr ; trace(treePtr- > left) —
typedef struct treeNode { o 61
treeNodeType nodeType ; I* type of this node */ /* Inorder: process node here */ [28 |
unsigned constValue ; /* value for constants */ I<M:I <w:
char * varName ; /* Name of variable */ trace(treePtr- > right) —var)
treePtr leftOp ; /* left operand for operator */ [X |
treePtr rightOp ; /* right operand for operator */ /* Postorder: process node here */ Preorder: +*-A X 23/M 181
: }
} treeNode ;) Inorder: (A-X)*23+M/181
#define TREENODESIZE (sizeof (treeNode))
Postorder: AX-23*M 181/ +
275 276

Example - Evaluate Constant Expression Tree

int evalTree(treePtr inTree) ‘m
int leftValue, rightValue ;
if (inTree == NULL)
return O,
if (inTree - > nodeType == constant)
return inTree - > constValue ;
/* evaluate operands of operator */
leftValue = evalTree(inTree - > leftOp) ;
rightValue = evalTree(inTree - > rightOp) ;
switc h (inTree - > nodeType) {

case plus : return leftValue + rightValue ;

case minus . return leftValue - rightValue ;

case multiply : return leftValue * rightValue ;

case divide : return leftValue / rightValue ;

case power. return (int) pow(leftValue , rightValue) ;

default : assert (false) ;

277

