
P
ointer

D
eclarations

type-nam
e

*pointerV
ar

�

type-nam
e

is
the

base
type

for
the

pointer.
U

se
void

to
specify

a
generic

base
type.

int
*

P
;

/*
P

is
a

pointer
to

integer
variables

*/

void
*

Q
;

/*
Q

is
a

pointer
w

ith
no

type
*/

�
U

se
the

address-ofoperator
(&

)
to

create
addresses

ofany
ordinary

variable.
�

T
he

pointer
dereferencing

operator
(

*
)

is
used

to
access

the
variable

thata
pointer

variable
is

pointing
at.

�

W
A

R
N

IN
G

:
C

does
N

O
autom

atic
run-tim

e
checking

for
proper

pointer
usage

W
A

R
N

IN
G

:
itis

an
E

R
R

O
R

to
apply

the
*

operator
to

an
uninitialized

pointer
variable.

�

T
he
+
+

and
-
-

operators
change

a
pointer

variable
by

size
ofobjectthatthe

pointer

points
at.

T
his

feature
should

only
be

used
to

access
consecutive

elem
ents

ofarrays.

200

R
eading

A
ssignm

ent

K
.
N
.
K
i
n
g

C
h
a
p
t
e
r

1
1
,

1
2

K
.
N
.
K
i
n
g

S
e
c
t
i
o
n
1
7
.
7

198

P
ointers

in
C

�

D
uring

the
execution

ofa
program

,allvariables
in

the
program

are
stored

in

the
m

em
ory

ofthe
com

puter.

�

T
he

location
ofa

variable
in

m
em

ory
is

called
the

address
ofthe

variable.

T
hus

every
variable

has
tw

o
attributes.

V
alue

T
he

contents
ofthe

variable

A
ddress

T
he

location
ofthe

variable
in

m
em

ory

�

In
C

a
pointer

is
a

specialkind
ofvariable

w
hose

value
ifthe

address
ofother

variables.

�

In
C

alm
ostallpointers

hold
the

addresses
ofvariables

ofone
specific

type.

199

C
S

C
181F

Lecture
N

otes

T
hese

lecture
notes

are
provided

for
the

personaluse
of

students
taking

C
S

C
181F

in
the

Fallterm
1999/2000

atthe

U
niversity

ofToronto

C
opying

for
purposes

other
than

this
use

and
allform

s
of

distribution
are

expressly
prohibited.

c�

D
avid

B
.W

ortm
an,1995,1996,1998,1999

c�

H
iroshiH

ayashi,1997

0



�

Itis
extrem

ely
poor

program
m

ing
practice

to
do

anything
w

ith
a

pointer

thathas
an

incom
patible

address.
S

uch
usage

is
non-portable

and
inherently

error
prone.

�

P
ointer

variables
oftype

void
*

are
used

to
store

pointers
thatdo

have
a

declared
type.

�

T
here

are
N

O
operations

defined
for

the
data

type
void

,so
directly

dereferencing
a

void
pointer

is
an

E
R

R
O

R
.

A
ny

use
ofa

void
pointer

w
illrequire

a
type

castto
m

ake
itlegal.

E
xam

ple:
int

J
=

23,K
,*

IP
;

void
*

V
P

;

IP
=
&

J;

V
P

=
IP

;

K
=

*
V

P
;

/*
ILLE

G
A

L
*/

K
=

(
int

)
*

V
P

;

IP
=

(
int

*
)

V
P

;

204

M
ore

P
ointer

E
xam

ples

int
J

,
K

,
*P

,
*Q

;
P

=
&

J
;

Q
=

P
;

?
Q P

J

*P
=

1
;

1
PQ

J

P
=
&

J
;

Q
=
&

K
;

J
=

1
;

? 1
JK

Q P

*
Q

=
*

P
;

11

PQ

JK

N
ote

the
difference

betw
een

Q
=
P

and
*
Q

=
*
P

.

202

P
ointer

V
ariab

le
V

alues

�

A
pointer

variable
can

have
one

offour
values

1.
U

ninitialized.
T

he
variable

has
never

been
given

a
value.

2.
N

U
LL.T

his
is

a
distinguished

value
thatis

by
convention

used
to

indicate
a

pointer

thatdoesn’tpointatany
object.

F
or

convenience
in

building
loops,N

U
LL

usually
has

the
sam

e
value

as
false

.

3.
C

om
patible

address.
T

he
pointer

variable
points

atan
objectofits

declared
type

4.
Incom

patible
address.

T
he

pointer
points

atsom
e

object(or
atsom

e
random

location
in

m
em

ory)
thatis

notcom
patible

w
ith

its
declared

type.

�

Itis
an

E
R

R
O

R
in

C
to

1.
A

pply
the

pointer
dereferencing

operator
(

*
)to

an
uninitialized

pointer.

2.
A

pply
the

pointer
dereferencing

operator
(

*
)to

a
pointer

thathas
the

value
N

U
LL

203

P
ointer

E
xam

ple

int
J

,
K

=
12

,
*

intP
tr;

intP
tr

=
&

K
;

/*
S

etintP
tr

to
address

ofK
*/

J
=

*
intP

tr;
/*

D
o

J
=

K
the

hard
w

ay
*/

*
intP

tr
=

17
;

/*
D

o
K

=
17

using
intP

tr
*/

JK

intPtr

0xFFAD1284

0xFFAD1288

0 x F F A D 1 2 8 8

Variable
Value

Address

0xFFAD128C

1 21 7

201



H
O

W
TO

U
se

P
ointers

in
A

rra
y

Loops

�

Itis
often

m
ore

efficientor
m

ore
convenientto

use
a

pointer
rather

than
an

index
to

process
an

array.
Ifthe

type
ofthe

array
elem

entis
type-nam

e
,use

a

pointer
variable

w
ith

type
type-nam

e
*

�

F
or

an
array

A
,the

address
ofthe

firstelem
entin

the
array

is
&

A
[0

]

IfA
S

IZ
E

is
the

size
ofthe

array,the
address

ofthe
lastelem

entin
the

array
is

&
A

[A
S

IZ
E

-
1

]

T
he

address
ofthe

firstelem
entthatis

not
in

the
array

is
&

A
[A

S
IZ

E
]

doub
le

X
[400

],
Y

[400
];

doub
le

X
[400

],
Y

[400
];

int
K

;
doub

le
*

X
P

,
*

Y
P

;

...
...

for
(

I=
0

;
I�

400
;

I+
+

)
for

(
X

P
=
&

X
[0

],
Y

P
=
&

Y
[0

];
X

P

�

&
X

[400
];

)

X
[K

]=
Y

[K
];

*
X

P
+

+
=

*
Y

P
+
+

;

208

P
ointer

A
rithm

etic
and

A
rra

ys

C
supports

the
follow

ing
pointer

arithm
etic

�

A
dding/subtracting

an
integerK

to/from
a

pointerP
yields

a
pointer

to
the

elem
entthatis

K
places

after/before
the

one
thatP

points
to.

int
A

[10],*
P

,
*

Q
,

N
;

P
=
&

A
[2];

Q
=

P
+

3;
/*

Q
points

to
A

[5]*/

P
+

=
6;

/*P
points

to
A

[8]*/

�

S
ubtracting

pointers
yields

the
distance

(m
easured

in
array

elem
ent)

betw
een

the
pointers.

P
=
&

A
[5];

Q
=
&

A
[1];

N
=

P
-

Q
;

/*
N

is
4

*/

N
=

Q
-

P
;

/*
N

is
-4

*/

206

�

T
he

nam
e

ofan
array

is
the

sam
e

as
a

pointer
to

the
firstelem

entofthe
array.

Itis
a

pointer
constant.

int
A

[10];
*

A
=

7
;

/*
stores

7
in

A
[0]*/

*
(A

+
3)=

12
;

/*
stores

12
in

A
[3]*/

A
+

+
;

/*
E

R
R

O
R

,can’tm
odify

pointer
constant*/

�

A
pointerto

an
array

can
be

denoted
by

enclosing
*

pointerV
ar

in
parentheses.

int
(*

P
)[10];

/*
P

is
a

pointer
to

array
oflength

10
*/

int
*

Q
[20];

/*
Q

is
an

array
of20

pointers
to

int*/

�

W
A

R
N

IN
G

:
C

does
notcheck

addesses
com

puted
using

pointer
arithm

etic.

G
ood

S
tyle:

N
E

V
E

R
use

pointer
arithm

etic
to

address
outside

ofan
array.

�

T
here

is
an

equivalence
betw

een
array

subscripting
and

pointer

dereferencing.

A
[K

]is
the

sam
e

as
*

(
A

+
K

)
or

*
(&

A
[0

]+
K

)

207

A
rra

ys
and

P
ointers

�

In
C

itia
assum

ed
thatifA

is
an

array
and

J
is

less
than

K
,

the
address

ofA
[J

]is
less

than
the

address
A

[K
].

int
A

[1000],
sum

=
0

,
*

P
;

for
(

P
=
&

A
[0];

P

�

&
A

[1000
];

P
+

+
)

sum
+
=

*
P

;

�

T
he

*
and

+
+

operator
can

be
com

bined
in

statem
ents

thatprocess
array

elem
ents.int

A
[100

],*
P

,
J

,
K

,
sum

;
P

=
&

A
[K

];

T
he

statem
ent*

P
+
+

=
J

(or
*

(
P
+
+

)=
J)

assigns
J

to
A

[K
]and

sets
P

to

points
atA

[K
+

1
].

E
xam

ple:
P

=
&

A
[0];

w
hile

(
P

�

&
A

[100
])

sum
+
=

*
P
+
+

;

205



P
ointer

P
aram

eter
E

xam
ple

int
F

(
int

*
Z

);
/*

function
prototype

*/

...

int
X

,N
,*

P
;

P
=
&

X
;

scanf(”%
d”,P

);
/*

N
ote

no
&

in
frontofP

*/

N
=

F
(&

X
);

/*
equivalentto

N
=

F
(

P
)

*/

decom
pose(

3.14159,&
K

,&
F

);

...

void
decom

pose(float
X

,int
*int

part,float
*frac

part)

�

*int
part=

(int)
X

;

*frac
part=

X
-

*int
part;

�

3
int_part

frac_part
0.14159

3.14159
X

KF

212

M
ultidim

ensional
A

rra
ys

and
P

ointers

�

F
or

any
tw

o-dim
ensionalarray

A
,the

expression
A

[K
]is

a
pointer

to
the

first

elem
entin

row
K

ofthe
array.

�

T
he

nam
e

oftw
o-dim

ensionalarray
is

a
pointer

to
pointer.

int
A

[10][10];
/*

A
has

type
int

*
*

(pointer
to

pointer
to

int)
*/

E
xam

ples:

int
A

[N
U

M
R

O
W

S
][N

U
M

C
O

LS
],

*P
,

K
;

/*
C

lears
row

K
ofthe

array
A

*/

for
(

P
=

A
[K

];
P

�

A
[K

]+
N

U
M

C
O

LS
;

P
+
+

)

*
P

=
0

;
int

A
[N

U
M

R
O

W
S

][N
U

M
C

O
LS

],
K

,
(*P

)[N
U

M
C

O
LS

];

/*
C

lears
colum

n
K

ofthe
array

A
*/

for
(

P
=

A
;

P
<
=
&

A
[N

U
M

R
O

W
S

-
1

];
P
+
+

)

(*
P

)[K
]=

0
;

210

P
ointers,

P
aram

eters
and

A
rgum

ents

�

A
function

param
eter

thatis
declared

as
a

pointer
allow

s
the

function
to

directly
access

variables
in

the
calling

program
.

�

T
his

m
echanism

is
used

for
severalpurposes

–
A

s
an

alternative
w

ay
to

specify
array

param
eters.

type-nam
e

A
[]is

the
sam

e
as

type-nam
e

*
A

–
To

avoid
passing

large
objects

(e.g.
structures

and
unions)

by
value.

–
To

allow
a

function
to

return
m

ore
than

one
value.

–
To

allow
a

function
to

process
linked

data
structures

like
trees

and
lists.

�

T
he

function
param

eter
is

declared
as

a
pointer

to
the

appropriate
type.

T
he

corresponding
argum

entm
ust

be

1.
T

he
address

ofa
variable

ofthattype
created

using
the

&
operator.

2.
A

pointer
to

an
objectofthe

sam
e

type.

W
A

R
N

IN
G

:
M

any
C

com
pilers

do
notcheck

pointer
argum

ents
carefully.

211

�

F
or

any
one

dim
ensionalarray

type-nam
e

A
[A

S
IZ

E
]

;
type-nam

e
*

P
is

a
pointer

to
array

elem
ents

&
A

[0
]

is
the

address
ofthe

firstelem
ent

&
A

[A
S

IZ
E

-
1

]
is

the
address

ofthe
lastelem

ent

&
A

[A
S

IZ
E

]
is

an
address

justbeyond
the

end
ofthe

array

�

To
loop

through
an

entire
array,setthe

pointer
to

startatthe
firstor

lastelem
entofthe

array
P

=
&

A
[0

];
or

P
=
&

A
[A

S
IZ

E
-

1
];

�

M
ove

through
the

array
using

the
+
+

or
-
-

operators

N
ote:

thatthese
operators

change
P

in
units

ofone
arra

y
elem

ent

�

T
he

end
ofloop

condition
is

P

�

&
A

[A
S

IZ
E

]
or

P
<
=

A
[A

S
IZ

E
-

1
]

(
up

counting
)

P
>
=
&

A
[0

]
(dow

n
counting)

�

Loop
tem

plates

for
(

P
=
&

A
[0

]
;

P

�

&
A

[A
S

IZ
E

]
;

P
+
+

)
...

for
(

P
=
&

A
[A

S
IZ

E
-

1
]

;
P
>
=
&

A
[0

]
;

P
-
-

)
...

209



F
unction

P
ointer

E
xam

ples

float
bisection(

float
(*funcP

tr)(
float

),float
x0,float

x1
);

float
function1(

float
x

);
float

function2(
float

x
);

...

y
=

bisection(
function1,0.0,2.0

);
...

y
=

bisection(
function2,-10.0,10.0

);
...

float
bisection(

float
(*funcP

tr)(
float

),float
x0,float

x1)

�...

y
=

(
*

funcP
tr)(x0);

...

�

216

P
ointers

to
F

unctions
type-nam

e
(

*
funcP

ointer
)(

param
eterList);

�

T
his

declaration
declares

a
pointer

variable
(

funcP
ointer

)
thatis

a
pointer

to

a
function

.

T
he

function
returns

the
type

ofvalue
specified

by
type-nam

e
and

accepts
the

argum
ents

specified
by

param
eterList

�

T
he

nam
e

ofany
declared

or
defined

function
is

a
function

pointer
constant.

T
hese

are
the

only
values

thatm
ay

be
assigned

to
function

pointer
variables.‘

�

T
his

m
echanism

is
typically

used
for

tw
o

purposes

1.
To

allow
functions

to
take

a
function

nam
e

as
an

argum
ent.

2.
To

create
function

variables
thattake

on
the

value
ofm

ore
than

one
function

constant.

214

�

T
he

function
constantassigned

to
a

function
pointer

should
alw

ays
be

com
patible

w
ith

the
declaration

for
the

function
pointer

variable.

�

T
he

function
constantpassed

as
an

argum
entto

a
function

pointer
param

eter

should
alw

ays
be

com
patible

w
ith

the
corresponding

param
eter

declaration.

�

C
om

patible
m

eans

–
T

he
type

returned
by

the
function

is
the

sam
e.

–
C

orresponding
param

eters
are

ofthe
sam

e
type.

–
T

he
num

ber
ofparam

eters
is

the
sam

e.

�

Ifthese
rules

are
notfollow

ed
C

H
A

O
S

w
illensue.

215

P
ointer

R
eturning

F
unctions

�

A
function

m
ay

be
declared

to
return

a
pointer

to
som

e
type

ofobject.
D

eclare

the
function

as:

type-nam
e

*
functionN

am
e(

param
eters

);

�

the
follow

ing
rules

apply
to

the
value

ofthe
pointerreturned

by
such

a
function

–
T

he
pointer

should
alw

ays
be

a
pointer

to
an

objectofthe
correcttype.

–
Ifthe

pointer
isn’tnullthen

itshould
pointto

a
variable

outside
ofthe

function
or

to

som
e

storage
thatw

as
new

ly
allocated

by
the

function.

W
A

R
N

IN
G

:
a

pointer
pointing

to
the

local(autom
atic)

storage
ofa

function
points

atG
A

R
B

A
G

E
after

the
function

returns.

–
Itis

an
E

R
R

O
R

to
return

a
pointer

to
any

ofthe
functions

localvariables.
T

hose

variables
cease

to
existw

hen
the

function
returns.

213



S
tructure

D
eclaration

E
xam

ples

/*
Type

declarations
*/

struct
A

�

int
B

,
C

;
doub

le
X

,
Y

;
char

C
;

struct
A

*
nextA

;

�
;

typedef
struct

A
m

yA
;

D

XY
C

B

nextA

A

/*
V

ariable
declarations

*/

struct
A

S
1

,
S

2
;

struct

�

int
J

,
K

;

�

S
3

;
m

yA
S

4
;

S
1

S
2

S
3

S
4

JK

220

S
tructures

and
U

nions

�

A
structure

is
a

m
echanism

thatallow
s

severaldata
item

s
ofarbitrary

types
to

be
treated

as
a

single
entity.

�

S
tructures

are
typically

used
w

hen
som

e
block

oflogically
related

inform
antion

needs
to

be
processed

in
a

program
.

E
xam

ples:
nam

e,address,telephone
num

ber

X
coordinate,Y

coordinate,Z
coordinate

studentnam
e,studentnum

ber,assignm
entm

arks

�

A
union

is
a

m
echanism

for
saving

space
w

hen
severalm

utually
exclusive

data
item

s
need

to
be

stored.

�

G
ood

S
tyle:

alw
ays

use
a

typedef
to

create
a

single
pointofdefinition

for

any
structure

or
union

thathas
a

significantuse
in

a
program

.

218

S
tructure

D
eclaration

struct
structureTag

�

structureF
ields

�

identifierList;

�

T
he

structureTag
provides

a
nam

e
for

the
structure.

T
his

nam
e

can
be

used

like
a

type
nam

e
to

declare
variables

ofthe
structure

type.

�

T
he

optionalidentifierListis
a

listofstructure
variables

thatare
being

declared
atthe

sam
e

tim
e

as
the

structure.

�

T
he

structureF
ields

are
ordinary

data
declarations

thatdescribe
data

contained
in

the
structure.

E
xam

ple:
struct

exS
truct�

typedef
struct

�

char
nam

e[25
];

char
label[33

];

int
price

;
float

value
;

�

com
puter1,com

puter2
;

�

m
yS

truct;

struct
exS

tructcom
puter3

;
m

yS
tructs1,s2

;

219

R
eading

A
ssignm

ent

K
.
N
.
K
i
n
g

C
h
a
p
t
e
r

1
6
,
1
8

S
u
p
p
l
e
m
e
n
t
a
r
y
r
e
a
d
i
n
g

S
.
M
c
C
o
n
n
e
l
l

C
h
a
p
t
e
r
1
2

217



U
nion

Types

union
unionTag

�

fieldA
lternativesList

�

identifierList
;

�
unionTag

is
the

nam
e

ofthe
union

type
�

T
he

fieldA
lternativesListis

a
listofm

utually
exclusive

fieldA
lternatives.

E
ach

fieldA
lternatives

is
a

single
data

declaration.

U
se

a
structure

to
pack

severaldata
item

s
into

one
alternative.

�

T
he

optionalidentifierListis
a

listofunion
variables

thatare
being

declared
at

the
sam

e
tim

e
as

the
union.

224

�

To
access

a
field

in
a

structure
variable,use

the
field

access
operator.

com
puter1.price

=
2199

;

�

IfP
is

a
pointer

variable
thathas

been
declared

as
a

pointer
to

som
e

structure

type
S

,then
(assum

ing
P

points
ata

structure)
the

fields
ofthe

structure
can

be
accessed

using
the

pointer
operator-

>
struct

com
pS

tructcom
pP

tr
=
&

com
puter2

;
com

pP
tr-

>
price

=
3799

;

�

the
fields

in
a

structure
can

be
any

C
type-nam

e
including

arrays
and

structures.
Ifa

structure
has

a
structure

tag,a
pointer

to
the

structure
can

be

declared
inside

the
structure.

�

T
he

size
ofa

structure
is

approxim
ately

the
sum

ofthe
sizes

ofthe
fields

in

the
structure.

U
se

siz
eof

to
getthe

exactsize
ofany

structure.

222

H
O

W
TO

U
se

S
tructures

�

T
he

prim
ary

use
ofstructures

is
to

package
severalrelated

variables
together

so
thatthey

can
be

treated
as

a
single

object.

�

S
tructures

can
be

used
as

function
argum

ents
anda

function
can

return
a

structure
as

its
value.

W
A

R
N

IN
G

:
S

tructures
are

copied
w

hen
they

are
passed

by
value

or
returned.

E
xcessive

copying
oflarge

structures
can

m
ake

a
program

inefficient.

C
onsider

using
a

pointer
to

the
structure

instead.

�

A
ny

type
ofobjectcan

be
used

as
a

field
ofa

structure
including

another

structure.

E
xam

ples:
struct

A

�

struct
B

�

float
X

,
Y

;
struct

A
B

ow
nA

;

int
K

;
int

K
;

�

;
m

yA
A

rray[10
];

typedef
struct

A
m

yA
;

�

;

223

H
O

W
TO

U
se

S
tructures

�

E
ach

structure
body

represents
a

new
scope.

D
eclare

the
variables

thatyou

w
antto

treatas
a

unitin
this

scope.

�

S
tructure

variables
can

be
initialized

w
ith

declaration
by

giving
a

listofvalues

for
the

structure
fields.

struct
com

pS
truct�

char
nam

e[N
A

M
E

LE
N

+
1

];
int

price;

�

com
puter1

=

� ”IB
M

”,3499

� ,com
puter2

=

� ”D
ell”,2265

�

;

�

T
he

assignm
entoperator

applies
to

entire
structures.

T
he

contents
ofthe

structure
on

the
rightside

ofthe
=

is
copied

to
the

structure
on

the
leftside.

com
puter2

=
com

puter1
;

�

E
ntire

structures
can

not
be

com
pared.

221



H
O

W
TO

U
se

U
nions

�

U
nions

are
a

m
echanism

for
saving

space
w

hen
severalm

utually
exclusive

alternative
sets

ofdata
need

to
be

stored
and

treated
like

a
single

object.

�

T
he

fieldA
lternatives

overlap
in

m
em

ory
so

only
one

is
active

atany
instantin

tim
e.

�

T
he

size
ofa

union
is

approxim
ately

the
size

ofthe
largestfield

alternative
in

the
union.

U
se

siz
eof

to
getthe

exactsize
ofa

union.

�

C
does

N
O

run-tim
e

checking
for

proper
use

of
unions

�

T
he

program
m

er
m

ustprovide
som

e
w

ay
ofindicating

w
hich

field
alternative

is
active

atany
instantin

tim
e

226

E
xam

ple
ofa

self-identifying
structure/union.

typedef
en

um

�

point,
square

,
circle

,
triangle

�

uType
;

struct
uS

truct�

uType
unionK

ind
;

union

�

doub
le

side
;

/*
square

*/

int
radius;

/*
circle

*/

float
sideA

,
sideB

,
sideC

;
/*

triangle
*/

�

value
;

doub
le

X
coordinate

,
Y

coodinate
;

�

;

uKind

Xcoordinate

Ycoordinate

sideC
sidevalue

radiussideA
sideB

227

U
nion

D
eclaration

E
xam

ples

/*
Type

declarations
*/

union
A

�

int
B

,
C

;
doub

le
X

,
Y

;
char

C
;

struct
A

*
nextA

;

�

;
typedef

union
A

m
yU

A
;

/*
Type

declarations
*/

union
typeO

verlay

�

int
integer;

float
floater;

unsigned
char

bytes[4
];

void
*

pointer;

�

;

225


