CSC 181F Lecture Notes Reading Assignment

These lecture notes are provided for the personal use of
students taking CSC181F in the Fall term 1999/2000 at the

University of Toronto K. N King Chapter 11, 12
Copying for purposes other than this use and all forms of K.N. King Section 17.7
distribution are expressly prohibited.
(©David B. Wortman, 1995, 1996, 1998,1999
(©Hiroshi Hayashi, 1997

0 198

Pointer Declarations

Pointer s in C type-name *pointerVar

e During the execution of a program, all variables in the program are stored in
the memory of the computer.

type-name is the base type for the pointer. Use void to specify a generic base type.
e The location of a variable in memory is called the address of the variable. int *P; /*Pisapointer to integer variables */
Thus every variable has two attributes. void *Q, /*Qis a pointer with no type */

Value The contents of the variable

Use the address-of operator (&) to create addresses of any ordinary variable.

Address The location of the variable in memory

The pointer dereferencing operator (*) is used to access the variable that a pointer
e In C a pointer is a special kind of variable whose value if the address of other variable is pointing at.

variables.

WARNING: C does NO automatic run-time checking for proper pointer usage

e In C almost all pointers hold the addresses of variables of one specific type. WARNING: it is an ERROR to apply the * operator to an uninitialized pointer variable.

e The ++ and - - operators change a pointer variable by size of object that the pointer

points at. This feature should only be used to access consecutive elements of arrays.

199 200

Pointer Example More Pointer Examples

int J,K=12, *intPtr; intJ,K,*P,*Q;
intPtr = &K ; /* Set intPtr to address of K */ P&y J n I
: . Q=P; 9 n ? J
J=*intPtr; /* Do J = K the hard way */
*intPtr = 17 ; * Do K = 17 using intPtr */ P=1;
P[]
1
Variable Value Address o[+ EENN
J 121 ouranioss P=&J;
Q=&K; Pleg— 1 |0
K 17| o«FFAD1288 I=1; e~ 2 J«
*Q=*P
intPtr OXFFADI288 | oxrrAD128C I IEEE
Ql~ 1 [«
Note the difference between Q = Pand *Q =* P,
201 202

® |tis extremel y poor programming practice to do anything with a pointer
Pointer Variable Values that has an incompatible address. Such usage is non-portable and inherently
error prone.

e A pointer variable can have one of four values) .))
e Pointer variables of type void * are used to store pointers that do have a

1. Uninitialized. The variable has never been given a value. declared type.

2. NULL. This is a distinguished value that is by convention used to indicate a pointer
e There are NO operations defined for the data type void , so directly

that doesn’t point at any object.
)) o dereferencing a void pointer is an ERROR.
For convenience in building loops, NULL usually has the same value as false .

Any use of a void pointer will require a type cast to make it legal.

3. Compatible address. The pointer variable points at an object of its declared type

4. Incompatible address. The pointer points at some object (or at some random Example: int J=23,K,*IP;
location in memory) that is not compatible with its declared type. void * VP
e Itisan ERRORin C to IP=&J;

VP=IP;

1. Apply the pointer dereferencing operator (*)to an uninitialized pointer.
K=*VP, /* ILLEGAL */

2. Apply the pointer dereferencing operator (*)to a pointer that has the value NULL
K=(int)*VP;
IP=(int *) VP,

203 204

Arrays and Pointer s

e In C it ia assumed that if Ais an array and J is less than K,
the address of A[J] is less than the address A[K].
int A[1000] , sum=0,*P;
for (P=&A[0]; P < &A[1000]; P++)
sum+=*P

e The * and + + operator can be combined in statements that process array

elements.

int A{100],*P,J,K, sum;

P=&A[K];
The statement * P++ = J (or * (P++) = J) assigns J to A[K] and sets P to
pointsat AfK +11].
Example: P=&A[0];

while (P < &A[100])
sum+=*pP++;

205

e The name of an array is the same as a pointer to the first element of the array.

It is a pointer constant.

int A[10] ;

A=T7; / stores 7 in A[0] */

(A+3) =12, / stores 12 in A[3] */

A++ /* ERROR, can’t modify pointer constant */

® A pointer to an array can be denoted by enclosing * pointerVar in parentheses.
int (* P)[10]; /* P is a pointer to array of length 10 */
int * Q[20]; /* Q is an array of 20 pointers to int */

o WARNING: C does not check addesses computed using pointer arithmetic.
Good Style: NEVER use pointer arithmetic to address outside of an array.

e There is an equivalence between array subscripting and pointer
dereferencing.
A[K]isthesameas*(A+K) or *(&A[0]+K)

207

Pointer Arithmetic and Arrays

C supports the following pointer arithmetic

e Adding/subtracting an integer K to/from a pointer P yields a pointer to the
element that is K places after/before the one that P points to.
int A[10],*P,*Q,N;
P=&A[2];
Q=P+3; /* Q points to A[5] */
P +=6; /*P points to A[8] */

e Subtracting pointers yields the distance (measured in array element) between
the pointers.
P = &A[5];
Q=&A[1];
N=P-Q; /*Nis4¥
N=Q-P; /*Nis -4 *

206

HOW TO Use Pointer s in Array Loops

e |t is often more efficient or more convenient to use a pointer rather than an
index to process an array. If the type of the array element is type-name , use a

pointer variable with type type-name *

e For an array A, the address of the first element in the array is & A[0]
If ASIZE is the size of the array, the address of the last element in the array is
&A[ASIZE-1]
The address of the first element that is not in the array is & A[ASIZE]

double X[400], Y[400], double X[400], Y[400],
int K, double * XP , *YP

for (1=0;1<400; I++) | for (XP=&X[0],YP=&Y[0]; XP < &X[400];)

X[K]= Y[K]; *XP++ = % YP++

208

e For any one dimensional array type-name A[ASIZE] ;
type-name * P is a pointer to array elements
&A[0] is the address of the first element
&A[ASIZE -1] is the address of the last element
& A[ASIZE | is an address just beyond the end of the array

e To loop through an entire array, set the pointer to start at the first or last element of the
array P=&A[0]; or P=&A[ASIZE-1];

o Move through the array usingthe ++ or - - operators

Note: that these operators change P in units of one array element

e The end of loop condition is
P<&A[ASIZE] or P<=A[ASIZE-1] (up counting)
P>=&A[0] (down counting)

e Loop templates
for (P=&A[0] ; P<&A[ASIZE] ; P++) ..
for (P=&A[ASIZE-1] ; P>=&A[0] ; P--) ..

209

Pointer s, Parameter s and Arguments

e A function parameter that is declared as a pointer allows the function to

directly access variables in the calling program.

® This mechanism is used for several purposes

As an alternative way to specify array parameters.
type-name A[] is the same as type-name * A

To avoid passing large objects (e.g. structures and unions) by value.

To allow a function to return more than one value.

— To allow a function to process linked data structures like trees and lists.

e The function parameter is declared as a pointer to the appropriate type.
The corresponding argument must be

1. The address of a variable of that type created using the & operator.

2. A pointer to an object of the same type.

WARNING: Many C compilers do not check pointer arguments carefully.

211

Multidimensional Arrays and Pointer s

e For any two-dimensional array A, the expression A[K] is a pointer to the first

element in row K of the array.

e The name of two-dimensional array is a pointer to pointer.
int A[10][10]; /* A has type int * * (pointer to pointer to int) */

Examples:
int AINUM_ROWS]INUM_COLS], *P, K ;
/* Clears row K of the array A */
for (P=A[K]; P <A[K]+NUMCOLS; P++)
*P=0;
int AINUM_ROWS]INUM_COLS], K, (*P)[INUM_COLS] ;
/* Clears column K of the array A */
for (P=A; P<=&A[NUMRROWS-1]; P++)

(*P)IKI=0,
210
Pointer Parameter Example
int F(int *Z); /* function prototype */
int X, N,*P;
P=&X;

scanf("%d", P); /* Note no & in front of P */
N=F(&X); /* equivalentto N =F(P) *

decompose(3.14159, &K, & F);

void decompose(float X, int *int_part, float *frac_part)
*int_part = (int) X; xE
*frac_part = X - *int_part; int Lum:nlll K

¥ frac_part| +} | 014159 F

212

Pointer Returning Functions

e A function may be declared to return a pointer to some type of object. Declare

the function as:

type-name * functionName(parameters) ;

o the following rules apply to the value of the pointer returned by such a function

— The pointer should always be a pointer to an object of the correct type.

— If the pointer isn’t null then it should point to a variable outside of the function or to
some storage that was newly allocated by the function.
WARNING: a pointer pointing to the local (automatic) storage of a function points
at GARBAGE after the function returns.

— Itis an ERROR to return a pointer to any of the functions local variables. Those
variables cease to exist when the function returns.

213

e The function constant assigned to a function pointer should always be

compatible with the declaration for the function pointer variable.

e The function constant passed as an argument to a function pointer parameter

should always be compatible with the corresponding parameter declaration.
e Compatible means

— The type returned by the function is the same.
— Corresponding parameters are of the same type.

— The number of parameters is the same.

e [f these rules are not followed CHAOS will ensue.

215

Pointer s to Functions

type-name (* funcPointer)(parameterList) ;

This declaration declares a pointer variable (funcPointer) that is a pointer to
a function .

The function returns the type of value specified by type-name and accepts the

arguments specified by parameterList

The name of any declared or defined function is a function pointer constant.

These are the only values that may be assigned to function pointer variables.
This mechanism is typically used for two purposes

1. To allow functions to take a function name as an argument.

2. To create function variables that take on the value of more than one function

constant.

214

Function Pointer Examples

float bisection(float (*funcPtr)(float), float xO, float x1) ;
float function1(float x) ;

float function2(float x) ;

y = bisection(function1, 0.0, 2.0) ;

y = bisection(function2, -10.0, 10.0) ;

float bisection(float (*funcPtr)(float), float xO, float x1)

{

y = (* funcPtr)(x0) ;

216

Reading Assignment

K.N. King Chapter 16, 18
Suppl enentary readi ng

S. McConnel | Chapter 12

217

Structure Declaration
struct structureTag {
structureFields
} identifierList ;

e The structureTag provides a name for the structure. This name can be used
like a type name to declare variables of the structure type.

e The optional identifierList is a list of structure variables that are being
declared at the same time as the structure.

e The structureFields are ordinary data declarations that describe data

contained in the structure.

Example: struct exStruct { typedef struct {
char name[2517, char label[33];
int price ; float value ;

} computer1, computer2 ; } myStruct ;
struct exStruct computer3 ; myStruct s1, s2

219

Structures and Unions

® A structure is a mechanism that allows several data items of arbitrary types to

be treated as a single entity.

e Structures are typically used when some block of logically related
informantion needs to be processed in a program.
Examples: name, address, telephone number
X coordinate, Y coordinate, Z coordinate

student name, student number, assignment marks

® A union is a mechanism for saving space when several mutually exclusive

data items need to be stored.

e Good Style: always use a typedef to create a single point of definition for

any structure or union that has a significant use in a program.

218

Structure Declaration Examples

/* Type declarations */

struct A { B
int B, C; D
double X,Y; A W
char C; cR
struct A * nextA ; nextA

I

typedef struct A myA ;

[* Variable declarations */
struct AS1,S2;
struct {
intJ,K;
}s3;
myA S4 s3 [

sa

s2

Sa |t

220

HOW TO Use Structures

Each structure body represents a new scope. Declare the variables that you

want to treat as a unit in this scope.

Structure variables can be initialized with declaration by giving a list of values
for the structure fields.
struct compStruct {
char name[NAME_LEN +11];
int price;
} computerl = {"IBM", 3499}, computer2 = {"Dell", 2265} ;

The assignment operator applies to entire structures.
The contents of the structure on the right side of the = is copied to the
structure on the left side.

computer2 = computerl ;

Entire structures can not be compared.

221

HOW TO Use Structures

The primary use of structures is to package several related variables together
so that they can be treated as a single object.

Structures can be used as function arguments anda function can return a
structure as its value.

WARNING: Structures are copied when they are passed by value or returned.
Excessive copying of large structures can make a program inefficient.
Consider using a pointer to the structure instead.

Any type of object can be used as a field of a structure including another

structure.
Examples: struct A { struct B {
float X, VY, struct A BownA ;
int K; int K
s myA Array[101 ;

typedef struct AmyA; | };

223

e To access a field in a structure variable, use the field access operator
computerl.price = 2199 ;

e |f P is a pointer variable that has been declared as a pointer to some structure
type S, then (assuming P points at a structure) the fields of the structure can
be accessed using the pointer operator = >

struct compStruct compPtr = & computer2 ;
compPtr - > price = 3799 ;

e the fields in a structure can be any C type-name including arrays and
structures. If a structure has a structure tag, a pointer to the structure can be

declared inside the structure.

e The size of a structure is approximatel y the sum of the sizes of the fields in

the structure. Use sizeof to get the exact size of any structure.

222

Union Types

union unionTag {
fieldAlternativesList
} identifierList ;

® unionTag is the name of the union type

e The fieldAlternativesList is a list of mutually exclusive fieldAlternatives.
Each fieldAlternatives is a single data declaration.

Use a structure to pack several data items into one alternative.

e The optional identifierList is a list of union variables that are being declared at

the same time as the union.

224

Union Declaration Examples

/* Type declarations */ /* Type declarations */

union A { union typeOverlay {
int B,C; int integer ;
double X, Y; float floater ;

char C;
struct A * nextA ;

I b

typedef union A myUA ;

225

unsigned char bytes[4];
void * pointer ;

Example of a self-identifying structure/union.

typedef enum { point, square , circle , triangle }

uType ,
struct uStruct {
uType unionKind ;

union {
doub le side ; /* square */
int radius , /* circle */

float sideA , sideB , sideC ; /* triangle */
} value ;
doub le Xcoordinate , Ycoodinate ,

}i

227

IKind

i |
lls sk | Il 31 st

Kcourdnate
Yooordnate

HOW TO Use Unions

Unions are a mechanism for saving space when several mutuall y exclusive

alternative sets of data need to be stored and treated like a single object.

The fieldAlternatives overlap in memory so only one is active at any instant in

time.

The size of a union is approximatel y the size of the largest field alternative in

the union. Use sizeof to get the exact size of a union.
C does NO run-time checking for proper use of unions

The programmer must provide some way of indicating which field alternative

is active at any instant in time

226

