CSC 181F Lecture Notes Reading Assignment

These lecture notes are provided for the personal use of
students taking CSC181F in the Fall term 1999/2000 at the
University of Toronto

Supplementary reading

)) S. McConnell Chapter 26, 25
Copying for purposes other than this use and all forms of

distribution are expressly prohibited.

(©David B. Wortman, 1995, 1996, 1998,1999

(©Hiroshi Hayashi, 1997

Program Correctness
Software Debugging and Testing
® A program is correct if it compiles without errors and when executed produces
e Debugging is the process of finding errors in a program under development output that satisfies the specification for the program.

that is not thought to be correct)) . .
e Correctness is more impor tant than efficienc y (or anything else)

e Testing is the process of attempting to find errors in a program that is thought
e Levels of Correctness:
to be correct. Testing attempts to establish that a program satisfies its

Specification® 1. No syntax errors

. L . . . 2. No semantic errors
e Exhaustive testing is not possible for real programs due to combinatorial

explosion of possible test cases. Amount of testing performed must be 3. There exists some test data for which program gives a correct answer

balanced against the cost of undiscovered errors 4. Program gives correct answer for reasonable or random test data

. N - . 5. Program gives correct answer for difficult test data
® Regression Testing is used to compare a modified version of a program

against a previous version 6. For all legal input data the program gives the correct answer

7. For all legal input and all likely erroneous input the program gives a correct or
“Testing can establish the presence of errors but cannot guarantee their absence (E.W.

Dijkstra)

reasonable answer

8. For all input the program gives a correct or reasonable answer

148 149

Testing Strategy

Try simple cases first

S0 you can hand compute answer
Try boundary conditions & special cases
Try reasonable & random input
Try input containing errors
Try really hard input

Be really cruel
What is the worst thing you can do to the program?

Try to test all parts of the program

150

Sources for Test Cases

Requirements and Specification for the program

General knowledge about the application area

Program design and user documentation

Specific knowledge of the program source code (White Box Testing)

Specific knowledge of the programming language and implementation

techniques

Test at and near (inside and outside) the boundaries of the programs
applicability

Test with random data
Test for response to probable errors (e.g. invalid input data)

Think nasty when designing test cases.
Try to destr oy the program with your test data

152

Testing & Bad Attitude

The goal in testing software is to find as many errors as possible in the
program under test with the least effort expended

Testing efficiency is measured in the number of errors discovered per hour of

testing

When testing your attitude should be
What is the absolutel y worst thing | can do to the program?
and not

What can | do to make this program look good?
Test case selection is one key factor in successful testing

Insight and imagination are essential in the design of good test cases

151

Testing Based on the Source Program

Basic Path Testing - design test cases to guarantee that every path through
the program is executed at least once
(i.e both branches of every if , every loop, all function calls)

Derive test cases from examination of the program

Condition Testing - design test cases to test all possible outcomes for each
condition (Boolean expression) in the program.

Branch testing - design test cases to cause each condition in an if to evaluate

to true and false. Test every case and default in each switc h statement.

153

o Defi
and use of variables in the program

ion-Use Testing - design tests to link definition (i.e. value assignment)

Try to execute every definition-use chain at least once

e Simple Loop Testing - design test cases to exercise every loop in the program

Loop not executed at all - tests code after loop for correct handling of null case

— Loop executed once - tests lization and exit condition

— Loop executed twice - tests passing of values between iterations
— Loop executed random legal number of times

— Loop executed one less than allowable maximum

— Loop executed exactly allowable maximum

— Loop executed one more than allowable maximum

154

Testing - Example

Program Search an array for a given value

int Search(int Ar[] , const int ArSize, const int val)

Specification if val is an element of the array Ar then Search

returns its index in Ar. Otherwise Search returns -1

156

Testing Example - Quadratic Program

Easy quadratics with two real roots
Easy quadratics with complex roots
Degenerate cases, a, b and/or c = 0.0

Hard quadratics
very large or very small coefficients
b? ~ dac

—b ~ Vb2 — 4dac

T1=T20rTy ~ T2

155

Test Data for Search

Each of these tests is designed to catch a specific kind of error.

Array with zero elements
Array with one element
val in, not in below, not in above
Array with random even size
val not in, in random, in first, in last, in middle &= 1
Array with random odd size
val not in, in random, in first, in last, in middle, in middle 4 1
Array with two elements
val not in below, not in above, in first, in last
Arrays containing ordered, reverse ordered and unordered data
Array random size containing all one value, equal, not equal to val
Array of maximum allowable size
Array with upper bound of largest allowable integer
Array containing largest and smallest integers

157

Uninitializ ed Variable Errors

An uninitialized variable error occurs when the value of a variable is used (e.g. the

variable occurs in an expression) before a value has been assigned to the variable.

Except for some rare pathological cases, it is an ERROR to use a variable before it
has a value. GARBAGE IN implies GARBAGE OUT.

Any incorrect program behavior may be a symptom of an
uninitialiazed variable error.

Uninitialized variable errors are often vary hard to find.

— Symptoms may vary from one run to another. Different Garbage.
— Heisenbug Effect — adding debugging code may change or obscure the error.

— The program "looks” OK. Unitialized variable errors are hard to see.

158

Program Inspection to Improve Quality

Program inspection is the process of examining a program in fine detail to find

errors.
Much more effective in terms of programmer effort than testing.

Read through the program a few (<= 3) lines at a time. Try to describe in

words exactly what the lines do.

Program inspection was pioneered by Bell Northern Research. It is widely
used in industry by real programmers since it's by far the most cost and time

effective way to find errors in programs.

With careful inspection it is possible to write programs that wi

— compile without errors the first time they are compiled

— run without errors the first time they are executed

160

e Eliminating unitialized variable errors by Inspection is much more effective

than tracing and debugging a running program.

At each place where a variable is used in a program it should be possible to

give an (informal) argument that the variable always has a value.
e |f you can't make the argument then you have

— an ERROR in your program (99.36% probability).

— arare pathological case that needs a special comment.

e Example:
float sum , A[ASIZE],
int K ;
/* Assume A is given a value here */
forff K=0; K< ASIZE ; K++)
sum += A[K] ;
159
How to inspect Programs ¢
e Check that every variable will always have a value before it is used.

Check all expressions to make sure the correct value is being computed.

Check that all subscript expressions will be valid.

Check conditions in all if statements
Do they partition between the true and false cases correctly?
Are all possibilities covered? Check cases in switc h statements.

Check all for , while and do statements
Is the exit condition correctly specified?

Beware of off-by-one errors

Check all function calls for the correct type and order of parameters.

Learn from your mistakes! If you consistently make one kind of error, inspect extra

hard for that error.

@B.W. Kernighan and P.J. Plauger, Elements of Programming Style, McGraw-Hill, 1978

161

9T

S9T

Buo| paubisun

slq ¢e

[_Zgz

jur Buoj

slq ¢e

186~

Buoj

SHq ¢€

186

paubisun

Slg ¢e

[‘ggz
I—ng

sasse|D abeiols e

Ul paubisun

SHg ¢e

siojesado asimilg e

paubis

slq ¢e

186~

w

SHq ¢€

186

suonesswnuyl e

1J0oys paubisun

SHq 9T

[‘916

(6unseo) uoisianuo) adAl 1oNdxT e

I 1J0ys

SHq 9T

e1G—

sadAl s|gnoQ pue 1eo|4 e

1Joys

Siq 9T

e1G
167

reyo paubis

S1qg 8

[‘LZ
[_8Z

sadAl Jabaju| noge v e

reyos paubisun

S1qg 8

D Inoge s|ielag SI0N SWoS

aweu-adA

azIS

san|e Jo abuey

sadAl Ja ba syl

€97

Program Inspection Example

/* Read in year and day, output month, day, year. */
const char * monthName[13] = /* monthName[0] unused */
{ ™, "January”, "February”, "March”, "April”, "May", "June”,
"July”, "August”, "September”, "October”, "November”, "December” } H
shor t monthLength[13] = /* monthLength[0] unused */
{ 0,31, 28,31, 30, 31, 30, 31, 31, 30, 31,30, 31 } ;
int year, daylInYear, preceedingDays, month ;
while (true) {
while (true) {
printf ("Enter year and number of day in year\ n”) ;
if (scanf ("%d%d", & year, & day) == 2)
if (1900 <= year && year <= 3000 &&dayInYear >= 1)
if (year%4==0) {
monthLength[2] = 29 ;
if (dayInYear <= 366)
break ;
}else {
monthLength[2] = 28 ;
if (daylnYear <= 365)
break ;

I* Infinite loop to read then output dates */
I* Process one correct input */

}

precedingDays =0 ;

while (dayInYear < precedingDays + monthLength[month]) {
precedingDays = precedingDays + monthLength[month] ;
month++ ;

}

printf ("The Date is %s %d , %d \\ n",
monthName[month], daysinYear - precedingDays, , year

Buryy "N

SuoNoas
SuoI99Sg

‘5ot
TL TL

¢'8T T'0¢C
SL

wawubissy Buipeay

Float and Double

type-name Size Range of Values (£) Precision
float 32 bits 1.17-107%8 .. 3.40-10% 6 digits
double 64 bits 2.22.1073098 || 1.79.10%%® 15 digits
long double 80/128 bits varies varies

e float and doub le constants are written in form of scientific notation.
The constant consists of a mantissa followed by an optional exponent part.
A float or double constant must contain a decimal point or an exponent part to
distinguish it from an integer constant.

o The mantissa is a sequence of decimal digits. The manitssa may optionally include
one decimal point. Example mantissas: 0.1 .23 45. 678.9

e The optional exponent part consists of an upper or lower case letter E followed by an

optional sign and one or more exponent digits. Examples: E12 E-4 E+145 e-67 €89

e Constants are represented internally as type double unless they are followed by the
letter F (float) or L (long double).

o Examples: .0123 12.34 1234. 123.456e+7 123.456E-12F

166

Enumerations

enum enumTag { identifierList } ;

e The enum declaration specifies a list of symbolic names (the identifierList)

e The optional enumTag is an identifier which provides a name for the

enumeration type.

e Usually the compiler assigns an internal representation to the identifiers in the
list. The programmer can specify the values used by including assignments in
the identifier list as in

enum Numbers { two = 2, three, four, eight = 8, nine } ;
The default representation starts at zero and gives each identifier a value one

greater than the identifier that precedes it.

168

Casting - Explicit Type Conversion

(typeName) expression

Explicit type conversion forces expression to be treated as if it were the type

specified by typeName
Effect as if expression was assigned to a variable of type typeName

Examples:
int|;
float X ;
I=(int)X;
X=(float)I;

167

HOW TO Use Enumerations

Enumerations are a mechanism that allows you to declare a set of related
symbolic names in cases when you don’t care about the internal

representation.

Use enumerations to represent the state of variables that take on a small

number of values. The symbolic names make the program easier to read.

The same effect could be achieved using #define but enum is more elegant

and makes the program easier to read.

Almost all enumeration declarations should have an enumeraton tag (unless
they appear in a typedef declaration.

Examples:
enum directions { south, southWest, west, northWest,
north, northEast, east, southEast } ;
enum StopLight { green, flashingGreen, yellow, red } ;
typedef enum { Clubs, Diamonds, Hearts, Spades } Suit ;

169

Bitwise Operator s Bitwise Operator s Defintions

& Bitwise and A B|"A|A|B|A&B | A" B

| Bitwise or 0 0| 1 0 0 0

- Bitwise not 0 1 1 1 0 1

h Bitwise exclusive or 1 0| 0 1 0 1

<< Left shift n bits 1 1 0 1 1 0

>> Right shift n bits

A A>>1 | A>>2 >AAH7 A<<2 7
Bitwise operations are used to manipulate the pattern of bits in an expression, e.g
11010 01101 | 00110 | 110100 | 1101000

extracting or combining information.
WARNING: BE CAREFUL, don't confuse 00101 00010 | 00001 | 001010 | 0010100

& and &&, | and || , ~ and !
A & B could be zero (false) even if A and B are non-zero (true).

170 171
Bitwise Operator Examples HOW TO Use Bitwise Operator s
unsigned short A, B, C, D ; [* 16-bit variables */ o Bitwi
itwise operators can be used for several purpose
/* Value in Binary (base 2) */
A = 03567 /* 0000011101110111 */ — To pack data into less space and to extract packed data.
B = 255 ; /* 0000000011111111 */ — To access packed information in hardware registers.
C = Ox35AF) /* 0011010110101111 */ — To emulate higher level data structures, e.g. sets
- e Bitwise operations should not be used if they make the program hard to understand
= . % *
D _ C . * 1100101001010000 *\ and there is a simpler alternative.
D = zw & C / 0000000010101111 / To use bitwise operators you need to understand how information is represented
D= B&C; /*0011010100000000 *l internally in the computer. See previous slide.
D=A]| C; /¥ 0011011111111111 */
D=A" C: /4 0011001010111000 */ e [tis usually w_wém.q to moom.wm packed information so packing should only be used when
D=B<< 3 : /* 0000011111111000 */ the space saving is really important.
D=C>17; /* 0000000001101011 */ o The & operator can be used to extract information and to create a hole to put

information into. The | operator can be used to insert information into a large item.

172 173

Data Packing Example /¥ Extract D from x and store in dtmp *
dtmp = (x & DMASK) >> DSHIFT ;
Assume that six 5-bit integers (values 0 .. 31) are to be packedina 32-bit .~ L o o
unsigned variable. The six subfields are called A, B, C, D, E, F . 1100101011100001 1101101101110101 X
This example shows how to access one field (D) of the packed information. 0000000000000000 011 1110000000000 DMASK
0000000000000000 0101100000000000 X & DMASK
#define DMASK (0x00007C00) /* 0..0111110000000 000 */ 0000000000000000 0000000000010110 (x & DMASK) >> DSHIFT
#define FIVEBITS (Ox1F) * 0 011111 */))
#define DSHIFT (10) /* # bits to the right of D ¥ I+ Extract D using only shift operators */
unsigned X ; /* Variable containing AB,CDEF ¥ . T sy e mm m T T T
1100101011100001 1101101101110101 X
short dtmp dtmpl ; /% Variable to hold D ¥ 1011011011101010 0000000000000000 X << 17
0000000000000000 0000000000010110 (x << 17) > 27
x = OxCAE1DBY75 ;
dtmpl = 0x35 ;
174 175
1* Insert new D value (dtmpl) into x, trim to fit. */ Storage Classes
Xx = (x & DMASK) | ((dtmpl & FIVEBITS) << DSHIFT) ;
................ e oo e ® A storage class is associated with every declared object.
1100101011100001 1101101101110101 X This storage class determines the extent (lifetime) of the storage associated
11111111121111111 1000001111111111 ~ DMASK with the object.
1100101011100001 1000001101110101 (x & "DMASK) In some cases the storage class also affects the visibility of the object.
0000000000110101 dtmpl)
0000000000011111 FIVEBITS ® The storage classes in C
0000000000010101 (dtmpl & FIVEBITS) auto locally created storage this is the default
0101010000000000 (dtmpl & FIVEBITS) static for variables indicates statically created permanent storage
<< DSHIFT also restricts visibility to file of declaration
1100101011100001 1101011101110101 (x & DMASK) | extern static extern but name is visible outside file of declaration
((dtmpl & FIVEBITS))) .))
<< DSHIFT) register hint to compiler to store variable in a hardware register
Examples

176

static doub le RandomSeed = 123456.789 ,
register int |, K,

extern long sharedData ;

177

Reading Assignment

K.N. King Section 9.6
Supplementary reading
S. McConnell Chapter 16

Also Recommended
E. Roberts, Thinking Recursively
SHORT-TERMLOAN - ENGINEERING LIBRARY

E. Roberts, Programming Abstractions in C
Chapters 4, 5 6
SHORT-TERMLOAN - ENGINEERING LIBRARY

178

Why Recursion ?

e Recursive solutions are frequently simpler than non-recursive solutions
® Recursive programs are easier to make correct
e Use of recursion often leads to simpler, more elegant algorithms

e Recursion divides a large problem into smaller, easier to solve pieces

180

Recursion

e Extremel y impor tant programming technique

e Based on
Divide and Conquer

Induction
e Think of recursion when a problem involves embedded instances of itself

e You should become proficient in using recursion as a problem solving

technique

179

Simple Example - Factorial

e The factorial function is a very simple example of a function that can be

computed using recursion.

o Mathematical Definition

1 ifN =0
N - (N —=1)! otherwise

NI =

e Key insights
1! is really easy to compute
if N > 0then N — 1 approaches 1 in the limit
N can be defined in terms of (N — 1)!

181

Example - Factorial

/* Computing factorial */

int factorial(int N) Final value = 120

ﬁ 5! =5* 24 = 120 isreturned

TnN==0) [5ran
return 1; /* basis */ 41 = 4* 6 = 24 isreturned

. 3! =3* 2=6isreturned
return N * factorial (N - 1);

2! =2 * 1! isreturned
1 returned

1 returned

Trace of call factorial(5)

182

Generic Recursive Model

type-name Func (parameters)
{
if simpleCase {
/* Handle Simple Case */
return ..
}
else {
/* Decompose problem into parts */
/* Call the function Func recursively */
Solutionpars == Func (Problempart)
Solution,ess := Func (Problemes;)
I* Combine Solutionpers and Solution est */

return ..

184

HOW TO Use Recursion

Analyze the Problem
Identify simple cases
Identify ways to divide problem
Simple cases
Rest of problem same/similar form as the problem

Select data structure to represent problem
Write recursive functions & procedures
Handle simple cases directly
Use decomposition and recursion on the rest

Similar to mathematical induction

183

The Towers of Hanoi Problem

In the great temple at Benares beneath the dome which marks the center of the
world, rests a brass plate in which are fixed three diamond needles each a cubit
high and as thick as the body of a bee. On one of these needles at the creation,
God placed 64 disks of pure gold, the largest disk on the brass plate and the
others getting smaller and smaller up to the top one. This is the Tower of Brahma.
Day and Night unceasingly, the priests transfer the disks from one diamond
needle to another according to the fixed and immutable laws of Brahma, which
require that the priest on duty must not move more than one disk at a time and
that he must place this disk on a needle so that there is no smaller disk below it.
When all the 64 disks have been thus transfered from the needle on which at the
creation God placed them to one of the other needles, tower, temple and
Brahmins alike will crumble into dust and with a thunderclap the world will

vanish.®

@W.W.R. Ball as quoted by E. Roberts, Programming Abstractions in C, page 196

185

Example - Hanoi

Example - Towers of Hanoi /* Solution to Towers of Hanoi Puzzle */

void hanoi(const char source, const char dest, const char temp, const int N)

{

Move N disks from one peg to another by moving one disk at a time subject to

the constraint that a larger disk may never be placed on a smaller disk /* Move N disks from source peg to dest peg, using temp peg as temporary storage */

Analysis: if (N==1) A
printf ("Move a disk from %c to %c\ n”, source, dest) ;
e Simple cases: move one disk return |

h

e Division: Move top N -1 disks out of the way. else {

Move bottom disk to final destination. * Move top N-1 disks out of the way to temp peg */

. o) o hanoi(source, temp, dest, N-1) ;
e Composition: Move the remaining N -1 disks to the destination. i -
/* Move bottom source disk to destination */

B c printf ("Move a disk from %c to %c\ n”, source, dest) ;

/* Move remaining N-1 disks from temp peg to destination */

hanoi(temp, dest, source, N - 1) ;

Towers of Hanoi W
186 187
HOW TO Find a Recursive Strategy HOW TO Avoid Pitfalls in Recursive Solutions ¢

e Any problem you want to solve using recursion must satisfy the conditions ® Are simple cases checked for first?

Are the simple cases solved correctly?

1. There must be one or more simple cases. i.e. cases that can be done

directl e Does the recursive decomposition make the problem simpler?
irectly.

Each recursion should make progress toward reaching one of the simple

2. It must be possible to break the problem down into simpler subproblems cases

of the same form.
e Will the recursion always terminate?
3. Solution of the subproblems must somehow help to solve the larger S .
Does the simplification process always reach the simple cases?
problem. .
Have some simple cases been overlooked?

® Decomposition and recombination are often the hardest parts of the strategy. e Do the recursive calls represent subproblems that are truly identical in form to

. . . igi ?
e Once you've designed a recursive strategy, you should validate the strategy the original problem?
by working through a few simple examples by hand. Do the solutions to the recursive subproblems provide a complete solution to

the original problem?

@ Adapted from E.Roberts, Programming Abstractions in C, Chapter 4

188 189

Example - Detecting Palindr omes

A palidrome is a string that reads identically forward and backward.
Examples: "level” "Madam | am Adam”

Design a recursive strategy to determine if a given string is a palindrome.

Analysis:

e Simple cases: empty string is a palindrome,

a string containing one character is a palindrome .

Division: If a string is a palindrome then the first and last
characters in the string must be the same.
If a string is a palindrome than the string formed by removing the

first and last characters must also be a palindrome.

Composition: if first and last characters are unequal return false
otherwise return palindromness of string with first and last characters

removed.

190

HOW TO Use Helper Functions

The solution to IsPalindrome uses a helper function IsPalindrome2 to do the

real work.

Helper functions are appropriate when you need some extra parameters to

carry additional information between levels of recursive calls

Think of using helper functions in cases where the function you need to write
(i.e. it’s specifications are a given) doesn't have all the parameters you need

to compute its value efficiently.

Try to use the minimum number of extra parameters required to solve the

problem. Usually one or two.

192

Example - IsPalindr ome

Bool IsPalindrome(const char string[]) {
/* Return TRUE if string is a palindrome, FALSE otherwise */

return IsPalindrome2(string, O, strlen(string)-1) ;

Bool IsPalindrome2(const char string[], const int first, const int last) A
if (last - first<=1)
return true ;
else
return (string[first] == string[last])
&&IsPalindrome2(string, first + 1, last- 1) ;

191

Example - Binary Search

Search sorted table (array) for key

Return table index if found, -1 otherwise.

Analysis:

e Simple cases: empty table,
table with one entry

e Division: Split table in half

e Composition: Result from half of table

193

Example - Binary Search

int binSearch(const int table[], const int low, const int high, const int key)

{

/* Search sorted array table low .. high for key */
/* Return table index if found, otherwise -1 */
const int mid = (low + high)/2; /* middle of table */
if (high < low) /* empty table */

return -1; /* key not found */
else if (table(mid) == key)

return mid; /* key found at table(mid) */
else if (table(mid) < key)

/* search upper half of table for key */

return binSearch(table, mid + 1, high, key) ;
else

/* search lower half of table for key */

return binSearch(table, low, mid - 1, key) ;

194

Trees using Arrays

#define MAXTREE (10000)

#define STUMP (0) /* null tree */
#define STUMP_VALUE (0)

typedef short Tree ;

typedef enum (branch, leaf) treeNodeType ;
typedef long int treeLeafType ;

/* Storage for trees® */

treeNodeType treeNode[MAXTREE | ;
treeLeafType treeLeafl MAXTREE] ;
Tree treeLeftf MAXTREE] ;

Tree treeRightf MAXTREE] ;

2We'll see much better ways to do trees later in the term.

196

Example - Sum Binary Tree

Binary tree:

71 7 o

Analysis:

e Simple cases: null tree, leaf
e Decomposiiton: left branch & right branch

e Composition: sum of left and right branches

195

Example - Tree Sum

treeLeafType treeSum(const Tree treePtr) ,ﬁ
/* return sum of leaves of tree */
if (treePtr == STUMP)
return STUMP_VALUE ;
if (treeNode][treePtr] == leaf)
[* process leaf */
return treelLealf[treePtr] ;
else
I* process branch */
return treeSum(treeLeft[treePtr])

+ treeSum(treeRight[treePtr]) ;

197

0

