CSC 181F Lecture Notes

These lecture notes are provided for the personal use of
students taking CSC181F in the Fall term 2000/2001 at the
University of Toronto

Copying for purposes other than this use and all forms of
distribution are expressly prohibited.

(©David B. Wortman, 1995, 1996, 1998, 1999

(©Hiroshi Hayashi, 1997

(©Ray Ortigas, 2000

CSC180F & CSC181F

CSC180F CSC181F
no previous experience assumes previous experience
no previous programming assumes previous programming
covers introductory C covers more (advanced) C
covers C++
basic programming skills covers advanced material

more emphasis on technique and style

teaches effective programming

FinalAverage(CSC180F) < FinalAverage(CSC181F)

CSC181F Introduction to Computer Programming

Instructor: Ray Ortigas

Lectures: R11in GB119, F12 in GB220, T12 in RS211
Tutorial: M12 in GB405, HA403

Practical: W4-6 in SF1106, SF1012

Office Hours: T2-4, F11 in SF3207

E-mail: rayo@dgp.toronto.edu

News group: ut.ecf.cscl81

Web Page: www. dgp. t or ont 0. edu/ peopl e/ rayo/ csc181/

What's Impor tant
Writing and Communication Skills
Writing and Communication Skills
Mathematical Skills
Computer Skills

A typical commercial software project involves creating more than 20 kinds of
paper documents on such items as requirements and functional, logic, and data
specifications. For civilian projects, at least 100 English words are produced for
every source code statement in the software. For military software, about 400
words are produced for every source code statement. Many new software
professionals are surprised when they spend more time producing words than

code.®

@ Capers Jones, Gaps in programming education , IEEE Computer Magazine, pp. 70-71, April 1995

Books for CSC181F

® Required Text Books

K.N. King, C Programming: A Modern Approach, Norton, 1996

o Recommended Text Books

S.P Harbison and G.L. Steele Jr., C A Reference Manual, Prentice Hall,
4th edition, 1995

S. McConnell, Code Complete - A Practical Handbook of Software Construction,
Microsoft Press, 1993

e Reference Texts

E. Roberts, The Art and Science of C, Addison-Wesley, 1995
E. Roberts, Programming Abstractions in C, Addison-Wesley, 1998

B.W. Kernighan & D.M. Ritchie, The C Programming Language (ANSI edition),
Prentice-Hall, 1988

B.W. Kernighan and R. Pike, The Practice of Programming, Addison-Wesley, 1999

Grading Scheme

Assignment1l Due 26 Sep 4%
Assignment 2 Due 10 Oct 4%
Term Test 1 TBA (Week of 16 Oct) 20%
Assignment 3 Due 31 Oct 4%
Assignment 4 Due 14 Nov 4%
Term Test 2 TBA (Week of 20 Nov) 20%
Assignment 5 Due 5 Dec 4%

Final Exam TBA (December) 40%

Reading Assignment

K. N. King, Chapter 1

Suppl enent al readi ng

S. McConnel | Chapters 1 to 3

Assignments and Tests
e Assignments are due at the START of lecture on the due date.
e Assignments may be handed in early to the instructor.

e Late assignments will NOT be accepted except in case of documented illness
or family problems. Similarly, midterms may not be missed except in case of
documented illness or family problems. Consult the instructor if you need

special consideration.

The test and exam are closed book, but a single page (8.5 by 11 inch, both sides)

aid and non-programmable calculators will be allowed.

Plagiarism and Cheating

Plagiarism is a kind of fraud: passing off someone else’s work or ideas as your own in

order to get a higher mark.
Plagiarism is a serious offense at U of T. It will not be ignored.

We have programs to compare students’ programs for evidence of similar code. We shall
ask you to submit electronic versions of all of your assignments, and we shall run our
programs on these. Due to the way programs work, it does not help to change comments,

variable names or even code organization.

You can really screw up your career at U of T AND YOUR FUTURE by committing an
act of plagiarism.

The assignments you hand in must be your own and must not contain anyone else’s

ideas.

Refer to Appendix A in the U of T Code of Behavior on Academic Matters for a more
detailed description of plagiarism.

Helping Each Other

Although you must not solve your assignments with the help of others, there are
still many ways in which students can help each other.

For instance, you can go over difficult lecture or tutorial material, work through

exercises, or help each other understand an assignment handout.
You can ask the tutors to explain material that you are having difficulty with.

This sort of course collaboration can be done in study groups or through the

newsgroup.

10

Guidelines for Avoiding Plagiarism

You may discuss assignments with friends and classmates, but only up to a point: You may
discuss and compare general approaches and also how to get around particular difficulties,
but you should not leave such a discussion with any written material. You should not look
at another student’s solution to an assignment on paper or on the computer screen, even in
draft form. The actual coding of your programs, analysis of results, and writing of reports
must be done individually.

If you do talk with anyone about an assignment, please state this in your assignment and
state the extent of your discussion.

Note that it is also a serious offense to help someone commit plagiarism. Do not lend your
printouts, reports or diskettes, and do not let others copy or read them. To protect yourself
against people copying your work without your knowledge, retain all of your old printouts
and draft notes until the assignments have been graded and returned to you. If you

suspect that someone has stolen a printout or diskette, contact your instructor immediately.

Program Construction

e Understand the Problem
e Design Algorithms and Data Structures
e Design to Program

e Write the program

e Inspect the program for errors

o Compile and Debug the Program

e Test the program thoroughly

e Document the program

11

Impor tant Considerations
Correctness
Correctness
Correctness
Program maintainability and modifiability
Program’s efficiency

Programmer’s efficiency

12

Program Development
Stepwise refinement
Choose data structures
Choose algorithms
Think before programming
KISS - Keep It Simple Stupid

Solve most general instance of problem, minimize special cases

14

Knowing a Programming Language

® Syntax
The form of legal constructs

® Semantics
The meaning of legal constructs

e Technique

How to use the language effectively and efficiently

13

Program Development
® Requirements
® Specification
e Design
e Implementation

e Debugging & Testing

15

Requirements & Specification

e Understand the problem
General case
Special cases
Boundary conditions
Errors & Exceptions

e Requirements
What the user needs

Often described informally

e Specification
Formal & Precise description of Problem
Describe problem not the solution

16

Design Techniques

e Top Down

Stepwise refinement
e Bottom Up

e Yo-yo, Chaotic
BAD - leads to rotten programs

Program design should be systematic and methodical!

18

Program Design

e The Designer’s Palette
Data Structures
Algorithms

Programming Language

e Design Goals
Always correctness
Time or space efficiency
Development time
Maintainability

e Designer's Resources
Experience

Books and articles on algorithms and design

17

Problem Analysis

e What are the inputs?

domain & range? special cases?

e What are the outputs?

domain & range? special cases?

o How are outputs related to inputs?

What is the general case of the problem?
e Have | solved this problem or a similar problem before?

e Has someone solved this problem or a similar problem before?

19

Design Technique
Data structures then algorithms
Algorithms then data structures

Try to find efficient method for the most general case

Minimize special cases and exceptions

Iterate on design

more efficient or more general

KISS - Keep It Simple Stupid
Simplicity is the virtue

20

Design by Stepwise Refinement
Start with the whole problem

Subdivide problem into several separate subparts

e.g. input, compute, output
Decide how to represent data and carry it between subparts
Subdivide each subpart into simpler subsubparts
Continue subdividing until sub* parts are small

Combine sub* parts to make complete program

22

Problem Analysis ¢

Analogy, Conditions

Decomposition & Recombination

Use all the problem description?

Solve subproblem & generalize?

Induction, work backwards?

Identify intermediate results

e Check the results?

Iterate on simplifying solution

2G. Polya, How to Solve It, Princeton University Press

21

Stepwise Refinement Example

Problem: Solve quadratic equations

ax® +bx +c=0.0

Analysis

general case 2 real or imaginary roots

special cases a, b and/or ¢ = 0.0

Applicable algorithm

—b + Vb2—4dac
2a

23

Quadratic Equation Case Analysis

az? + bz +c¢=0.0

b=0.0 b+ 0.0 b # 0.0 b=0.0

c=0.0 c=0.0 c#0.0 c#0.0

a=0.0 o0 roots one real root one real root no roots

0.0=0.0 bx = 0.0 br+c=0 c=0.0

a#£ 0.0 | two real roots two real roots two roots two roots
ar? =00 | ax®> +bx =00 | az? +bz+c=0.0 | az® +¢c=0.0

Applicable algorithm is only valid when a # 0.0
Applicable algorithm is overkill if c = 0.0
Roots are imaginary if b2 < 4ac

24

Second Refinement

Inputy 1:read a
Inputy o: read b
Inputq 3: read c

) x&:@@m&mu.h determine if equation has valid roots
Analysisy o: deterimine if special case or not

Analysisy 3: determine if non-special case roots are real or imaginary.

Compute; 1: compute roots for special cases

Compute; 2: compute roots for non-special cases

Outputy 1: Print coefficients
Outputy o: Print roots

26

First Refinement

Inputy: read quadratic coefficients
Analysisy: identify type of roots
Compute: calculate roots

Qutputy: print coefficients and roots

25

Third Refinement

Analysisi.1.1: no valid roots if a = 0.0 and b = 0.0
Analysisi.2.1: special case if a = 0.0 and b # 0.0
Analysisy.2.2: non-special case if a 7 0.0

Analysisy.s.1: if non-special case, compute disc = b% — 4ac
Analysisy.z.2: roots are real if disc > 0.0

mgiw,ﬁ.m;.u” otherwise roots are imaginary

Computei.2.1: compute roots if special case
Compute; 2.2 compute non-special case real roots

Compute 2.3: compute non-special case imaginary roots

Outputy. 1.1: Printa, b, c

Outputy 2.1 if no valid roots, print error message
Outputi.2.2: if special case print roots

Outputy .2.3: if non-special case real roots, print roots

O:%@S.w.»” if non-special case imaginary roots, print roots

27

Reading Assignment C Programming Language

e \ery widely used general purpose programming language

Available on many machines and operating systems

K. N. King Chapter 2 e Designed to be flexible, powerful, and unconstraining
) e Originally a replacement for assembly language
K. N. King Chapter 3
e C requires extreme care in programming
K-N. King Sections 7.1 to 7.3, 7.6 e Crequires extreme care in programming

Traditional C and ANSI C

Suppl enent ary readi ng
e C++is a superset of C with Object Oriented features

S. McConnel | Chapter 19
28 29
BE REALLY REALLY CAREFUL INC Good Style: , Good Technique: and WARNING:
e C provides no run-time checking ® Good Style: indicates a preferred way of programming in C. Programs with
e.g. array subscripts, undefined variables Good Style: are easier to read, understand, modify and get correct.

. . Markers just love programs that exhibit Good Style:
e Programmer must manage dynamic storage allocation

)) e Good Technique: indicates a good way to do some particular programming
e Pointers are widely used but are unc hecked . .) . L
task in C. The technique is good because its efficient, easy to understand,

Program with extreme care easy to get correct.

e There are good software tools for developing C programs An entire slide of Good Technique: usually has HOW TO in the title.

debuggers, program checking aids o WARNING: is used to indicate a particularly tricky or dangerous part of C.
large libraries of existing software Good programmers avoid WARNING: constructs or are extremely careful

about how they use them.

30 31

Comments

e Comments start with the characters [/ *
Comments end with the characters ~ */
Any arbitrary text can be included in a comment.
Comments can be placed anywhere that a blank is legal.

e Good Style: comments should add to the readers understanding of the

program by providing information that is not available just by reading the

program. Just repeating the program in English is dumb and useless .

e Good Style: use lots of comments to make program easy to read and easy to

understand.

32

Bloc k Comment Styles

e Simple, unadorned
/* first line
following lines

*

o Head and Trail Markers

first line of comment

many more lines of comment

e Full Block
/ /

/* Comment that extends over several lines to explain */

/* some really vital concept about the program. */

! !

34

o WARNING: An unterminated comment in C will silentl y EAT part of your

program.
This will almost certainly lead to bugs in your program.
Example:
/* The programmer forgot to end this one line comment
rootl=x*y-z;
root2 =rootl/(a-c);

/* the original comment REALLY ends here — */

Good Style: Do not use comments to delete code from a program.
Use the #if and #endif constructs as shown below:
#if 0
This code is ignored
#endi f

Good Style: Use a comment style that leaves no doubt as to where the

comment starts and ends.

33

HOW TO Comment

e Declarations

— Describe the purpose of the thing being declared
— Include any knowledge about range of values, special encodings, etc.

— Describe where the thing is used, if that's important.

e Statements

— Describe the purpose of the statement or block of statements.

— Describe any assumptions necessary for the correct execution of the statements

e Tricky Code

— Any particularly tricky, clever or obscure piece of code should get a really large
block comment that explains what’s going on.

Tricky Code should really be rewritten.

35

e Procedures and Functions
— Describe what the procedure or function does

— Describe the purpose of each parameter including any assumptions about
parameter values or usage.
Say if parameter is used for input, output or both.

e Data Structures
— Describe the purpose of any complicated data structure
— Describe any assumptions about how the data structure is used.

— Describe how this data structure is linked to other data structures.

The purpose of comments is to make the program easier to

understand. Use comments generously

36

Basic Data Types

Use keyword(s) constants

integers unsigned , int , short, long -237, 0, 23, 101467

real numbers float , double -0.123, +417.6, 1234e+7, 0.23e-12
characters char a’, A’ 3, T+

® Values of type char can be used in integer expressions.

e The character data type is for single characters.

Character strings will be described later.

e Notation: the phrase type-name will be used to denote any valid type in C.

int , double and char are instances of type-name .

38

Identifier s (basic names)

e |dentifiers start with a letter or - (underscore)
Identifiers contain letters, digits or _
Upper and lower case letters are distinct, e.g. A # a
Examples: i, |, total , bigNumber , DEBUG._, testing-123

e Words that have a special meaning in C (keywords , See King Table 2.1) are

reserved and can not be used as identifiers. Examples: int, while, if
e |dentifiers are used to name variables, constants, types and functions in C.

® Good Style: Use mnemonic identifiers!!
Mnemonic means that the identifier describes its purpose in the program, e.g.
use sum and index instead of Mary and fabulous
Mnemonic identifiers help you (and others) understand what the program is

supposed to do.

37

Integ er Constants

Type Digits Starts with Examples
decimal integer 0123456789 1.9 1 123L 456790U
octal integer 01234567 0 01 0123 0456707V

hexadecimal integer 01234567899 abcdef ABCDEF Ox or 0X 0x14 0x123 OXDEADBEEF

Add an upper case L after a constant to force it to be treated as a long number.
Good Style: Don'’t use lowercase I (el), it looks like 1 (one).

Add an upper case U after a constant to force it to be treated as an unsigned number.

WARNING: numbers starting with 0 (zero) are octal constants.
123 and 0123 have different values. (01235 = 8310)

39

HOW TO Use Integ er Types
For almost all integer variables, use int

Use shor t or char when saving space is really important AND IT'S KNOWN
that the range of values for the variable will fit in -32768 .. 32767.

Short or char integer variables may be slower to access.

On a few machines long is 64 bits and provides a much larger range of

values. Don’t assume long is larger than int unless you check.
Use unsigned for STRICTLY NON-NEGATIVE integer values.

For maximum portability use:
int or short int for integers in the range -32768 .. 32767
long int for all other integers
C standard only requires: sizeof(short) < sizeof(int) < sizeof(long)

40

Variables and Types
Variables are the basic containers used to hold data in C.
Every variable must be declared before it is used.
Every variable is associated with a specific type.

The type of a variable detrermines the kind of values that it can hold and the

amount of storage that is allocated for the variable.

scalar variables can hold exactly one variable at a time. Non-scalar variables

(e.g. arrays) can hold many different values at the same time.

42

Character and String Constants

Type Contains Starts and Examples
ends with
character a single character ’ (single quote) a '@ ‘1T C
string arbitrary characters ” (double quote) "abc” "CSC181F" ™arbitrary”

The backslash (\) notation can be used to create character or string constants
containing arbitrary non-printable characters.

See "Escape Sequences” in King Section 7.3.

WARNING: be careful to use character constants where a single character is required and

string constants where a string is required.

41

Declarations for Scalar Variables

e The declaration for a scalar variables has the form
type-name identifierList ¢
Examples: int 1,J,K

char tempChar, nextChar ;

e A variable can be declared and initialized at the same time using

identifier = expression

Example: int xPosition =25, yPosition =30 ;
WARNING: Each variable must be individually initialized.
int M,N=0, /* only lizes N. */

e Good Style: All variables should be initialized with some value before they

are used in a program.

e BAD Style: do not depend on the "system” to automatically initialize variables
for you. This is lazy and dangerous. Someday the variables will be initialized
to RUBBISH and your program will CRASH.

“identifierList is a comma separated list of identifiers

43

Named Constants

A named constant is an identifier that serves as a synonym (name) for a
constant value.

Named constants are often used to provide a single point of definition for a

constant value that is used throughout a program.

Using named constant makes programs more easily modifiable and easier to
understand.

Named constants makes program more readable, use mnemonic name for
constant.

Named constants makes program correctness easier to achieve.

Good Style: Avoid Magic Number s
Use named constants for all values that have any significant impact on the

program’s operation.

44

Named Types

A named type is an type that has been associated with a specific identifier.

Named types are created using the typedef declaration.

Named types make program more easily modifiable, since there is a single
point of definition for the type.

If mnemonic names are used for the types, named types make programs
more readable.

Named types make it easier to write a correct program.

Good Style: Avoid Magic Types
Use named types for all types that have any significant impact on the
program'’s operation.

46

Defining Named Constants

e Use the #define construct to create named constants

#define identifier expression

e The identifier becomes a synonym for the expression in the rest of the
program. If the expression is a constant expression then the identifier can be

used anywhere that a constant can be used

e Good Technique: ALWAYS enclose the expression in parentheses.
Good Style: Use UPPER CASE names for defined constants to make them

stand out in the program.

e Examples: #define CUBIC_IN_PER_LB (166)
#define SCALE_FACTOR (5.0/9.0)
#define ARRAY_SIZE (1100)

o WARNING: common errors
#define N =100 /* WRONG, defines N to be "= 100" */
#define N 100 ; /* WRONG, defines N to be "100 ;" */

45

Typedef Declaration

® A named type is created with the declaration

typedef type-name identifier ;

® type-name can be any valid type including compound types or a new type

e identifier becomes a new name for this type
® Good Style: Use typedefs for all complicated types.

Examples: typedef long int portablelnt ;
typedef float realType ;
portableint 1, J, A[100] ,

realType xAXxis , YAXis , ZAXis ;

47

Reading Data and Printing in C*

e Input and Output are not part of the C language.

e Builtin library functions are used for all reading and printing.

e Put the construct

#include < stdio.h >

at the start of every program to make the builtin input and output functions

available.

e The printf function does simple printing

® The scanf function is used to read values into variables.

“The description of printf and scanf below is intended to get you started. Reading and Printing will

be discussed in more detail later in the course.

48

Conversion Specifier Character s

Type
int
char
Strings
double
double
float
shor t

long

Conversion

Specifier

%d or %i

%c

%s

%f or %e or %g printf
%If or %le or %lg scanf
%f or %e or %g

%hd

%ld

Note that printf and scanf use different specifiers for doub le .

Use %% to print a %. Use \ n to print a newline.

50

Format Strings

e A format string is used to specify how printf and scanf should operate.
For printf the format string specifes exactly how the printed output should look.
For scanf the format string specifes the exact form of the input that will be
read.

e The format string consists of

— conversion specifications a percent sign (%) followed by some optional
information, followed by a conversion specifier character that indicates the type of

data to be printed or read.

— ordinary text Everything else. Printed as is by printf. Matched against the data

being read by scanf®

“This feature is rarely used

49

The printf Function
printf (format-string , expressionList ¢) ;
® The format-string controls how the information is printed.

® The expressions in the expressionList are printed in the order given.
The type of each expression must be compatible with the % item used in the

format-string

e By default each expression is printed using the minimum number of
characters required to express its value.

All formatting and spacing must be provided by the programmer.

@ An expressionList is a list of expressions separated by commas

51

Printing Technique Examples Printing the Value of a Scalar Variable

e In a format string a constant between the % and the following control Examples:
character, specifies that the expression is to be printed using the number of int i , height , width ;
characters specified by the constant. This feature can be used to print char ¢ -
columns of values. Examples: %40d 9%d.6e float x :
double vy ;

e The printf prints to standard output.

If you are working at a terminal, this means printing to your screen. . .
printf("%d", i) ;

There are Unix/Windows commands that let you redirect standard out to a file. . -
printf("%", c) ;

e WARNING: make really sure that the type of the expression matches the type printf("9%", x) ; /* decimal form */
of % character that you use to print it. printf("%", x) ; /* scientific form */
printf("%", y) ; /* decinal or scientific form?*/
o WARNING: make really sure that you have provided a % character for each
expression in the expression list. printf("height is %l and width is %\ n", height , width)
printf("i = %8d, x = %W4f\n", i, x) ;
printf("\n") ; /* blank line */
52 53

The scanf Function
int scanf (format-string , variable-address-list @) : e scanf returns the number of varaibles that it successfully read and stored.
Returns special value EOF if an error or end of input was detected.
e The format-string controls how the information is read

Any ordinary text in the format string must match the input exactly. e Use the address-of operator & to create the addresses of variables for the

arguments to scanf.

e scanf attempts to read values for each of the variables in the order given. The address-of operator is almost always REQUIRED

The type of each variable must be compatible with the % item used in the

format-string o WARNING: forgetting the address of operator in a call to scanf will almost

certainly cause your program to CRASH.
e scanf automatically skips white space between input values

e Good Style: always check the value returned by scanf to make sure that you

A variable-address-list is a list of addresses of variables separated by commas read as many varaibles as you mxvmoﬁma to®.

@We may sometimes not do this check in these slides in order to keep the examples simple, but it
should always be done

54 55

Examples - Reading Input Main Program in C

Examples: e In C the main program is a function called main
int i, k; e The body of the function is enclosed in left ({) and right (}) curley braces.
char ¢ ; .)
® Minimal main program example:
double vy ;
scanf ("%", &) ; /* read one integer */ #_do_cgm <stdio. h>
scanf ("%", &c) ; /* read one character */ mai n()
scanf("%f", &) ; [* read one double value */ {

scanf ("%l%l", &, &): /* read two integers */ /* declarations and statenents go here */

56 57

