Faculty of Applied Science and Engineering, University of Toronto
CSC181: Introduction to Computer Programming, Fall 2000

First Term Test
October 18, 2000

Duration: 80 minutes
Aids allowed: None

Do NOT turn this page until you have received the signal to start. (In the meantime, please fill out
the identification section below, and read the following instructions carefully.)

This term test consists of 9 questions on 8 pages (including this one). When you receive the signal to
start, please make sure that your copy of the test is complete.

Answer each question directly on the test paper, in the space provided, and use the reverse side of the
pages for rough work. (If you need more space for one of your solutions, use the reverse side of the page
and indicate clearly which part of your work should be marked.)

Be aware that concise, well thought-out answers will be rewarded over long rambling ones. Also,
unreadable answers will be given zero (0) so write legibly.

Unless otherwise stated, programming questions will be marked for correctness primarily, with efficiency
and style as secondary considerations. Comments are not required, but they should accompany any long
or tricky bits of code to aid the marker’s understanding.

DON'T PANIC. KEEP COOL.

Family name: . /2
Given name: 2. 16
Student number: | ||| 1|11 __ 3: /8
4 /14

5 |5

6: /10

7 ]10

8& /15

9: /10

Total: /80



Faculty of Applied Science and Engineering, University of Toronto First Term Test, CSC181, Fall 2000
Question 1. [2 marks]

Write your student number LEGIBLY on the top of every page of this term test.

Question 2. [2 x 3 = 6 marks]

For each of the terms below, concisely define the term and explain its significance (using at least one
example).

Dangling pointer:
A dangling pointer refers to memory that has been deallocated. Here is an example of a dangling

pointer:

int *p = (int*)malloc(sizeof (int));

*p = 2,

free(p); /* p is now dangling */

printf(“%l”, *p); /* attenpt to dereference dangling pointer */

Programmers must be vigilant about the possibility of dereferencing a dangling pointer, as this
can produce unexpected (and perhaps chaotic) results. Dangling pointers can be hard to spot,
since several pointers may point to the same (deallocated) block of memory.

Table lookup:

Table lookup allows us to carry out a mapping function between some argument (sometimes
called key), and some fixed corresponding value. This is sometimes implemented using an array:

const char* romanNuneral s[] = {“", “I", “LI", “11"};
printf(“%”, romanNuneral s[1]); /* prints out “1”, the Roman numeral for 1 */

Table lookup is a useful technique because it allows us to avoid writing a complicated set of if or
switch statements.

Question 3. [4 x 2 = 8 marks]

Consider the following declarations, which compile without error:
int a=1, b=0, ¢c=-1, d = 2

What is the value of each of the logical expressions listed below?

a & c && d FALSE TRUE
a>=d && a FALSE TRUE
al||l d&&b FALSE TRUE
a& !c || 'a&!b FALSE TRUE



Faculty of Applied Science and Engineering, University of Toronto First Term Test, CSC181, Fall 2000
Question 4. [7 x 2 = 14 marks]

Consider the following declarations, which compile without error:

int a=2, b =3;
int c[] = {1, 2, 3};
int d[] = {4, 5, 6};
int *p = &b;

int *q, *r;

int *s[5];

Assume that the assignments listed below directly follow these declarations, and that none of the
assignments have an effect on any of the other assignments. For each of these assignments:

= [f the assignment is illegal, circle "ILLEGAL" and state why it is illegal.

» [f the assignment is legal, circle "LEGAL", give an example of how to get a non-pointer value using
the Ivalue of the assignment, and state what that non-pointer value is.

g is not initialized

*q = *p; ILLEGAL LEGAL

ro=oc ILLEGAL LEGAL *r or r[0] will give us 1, the first element of c

d =c: ILLEGAL LEGAL Idv;lsluaepointer constant, so it’s not a valid

&b = &a; ILLEGAL LEGAL &b is an address, so it’'s not a valid lvalue

xxg = b ILLEGAL LEGAL *s or s[0] is not initialized

s[2] = p; ILLEGAL LEGAL *s[2] will give us 3 (same result as *p)

*(s+1) = c; ILLEGAL LEGAL **(s+1) or *s[1] will give us 1 (same result as *c

or c[0])
Question 5. [5 marks]

Complete the function r ever se below, which takes as arguments an array of integers, a, and the size of
the array, n, and rearranges the integers of a in reverse order.

void reverse(int a[], int n) {
int i, j;
for (i 0, j = n-1; i <j; i++ j--){
int temp = a[j];
= ali];
=t



Faculty of Applied Science and Engineering, University of Toronto First Term Test, CSC181, Fall 2000
Question 6. [1 + 2 + 7 = 10 marks]
a) [1 mark]

Vancouver native Carrie-Anne Moss was one of the actresses in the 1999 action film The Matrix. Name
one of the actresses in The Matrix.

Carrie-Anne Moss.
b) [2 marks]

A square matrix A with dimension n (that is, an nxn matrix), is symmetric if for O <=i<nand 0 <=j<n, A;;
= Aj,i-

Suppose we want to write a C function i sSymmet ri ¢, which would take as arguments a square array A
(representing the square matrix) and an integer n (representing the dimension of the matrix), and return
true if Ais symmetric, false otherwise. We might be tempted to use the following prototype:

int isSymretric(int A[J[], int n);
Why won't this prototype compile?

The second and subsequent dimensions of multi-dimensional array parameters must be specified.
c) [7 marks]

Consider the following code fragments, which belong to a program that compiles without error:

/* Represents a square matrix. */

typedef struct squarematrix {
int n; /* The dinmension of this matrix. */
/* Rest of inplenentation omtted. */

} SquareMatri x;

/* Returns the element Ai,j. */

int get(const SquareMatrix A, const int i, const int j) {
/* lnplementation onitted. */

}

Using those fragments, complete the function i sSynmet ri ¢ below, which takes as arguments a square
matrix A and returns true if A is symmetric, false otherwise.

int isSymretric(const SquareMatrix A) {

int i, j;
for (i =0; i !'= An; i++) {
for (j =1i+41; j < An; j++) {
if (get(A i, j) '=get(A j, 1)) {
return O;
}
}
}
return 1;



Faculty of Applied Science and Engineering, University of Toronto First Term Test, CSC181, Fall 2000
Question 7. [3 + 7 = 10 marks]
a) [3 marks]

Consider the following function, which compiles without error:

int g(const int n) {

int i, j;

int x = 0;

for (i =1, j =n; i <n; i++ j--) {
X += i+4j;

return x/2;

}

Write a mathematical expression for what this function calculates and returns, in terms of its parameter n.

((n-1)(n+1))/2

b) [7 marks]

Consider the following program, which compiles without error:
int hl(const int k, const int m { return k %m }

int h2(const int k, const int m { return1l + (k % (m2)); }
int h(const int k, const int i, const int n) {

return (hi(k,m + i*h2(k,m) % m

int main(void) {
int a[10] = {0};
int b[5] = {32, 15, 20, 5, 11};

int j;
for (j =0; j !'=5; j++) {
int i;
for (i =0; i !'=10; i++) {
int x = h(b[j], i, 10);
it (a[x] ==0) {
a[x] = b[j];
br eak;
}
}
}
return O;
}
Using the table below, show what are the contents of the array a just before the program exits.
20 5 32 0 0 15 0 0 0 11
a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]



Faculty of Applied Science and Engineering, University of Toronto First Term Test, CSC181, Fall 2000
Question 8. [15 marks]

A set is a collection of distinguishable objects (that is, it contains no duplicate elements). For the
purposes of this question, consider an integer set, for which the following related operations can be
performed:

» init(): Returns an empty integer set.
= add(s, i): Adds integeri tosets.
= contains(s, i): Returns true if set s contains integer i , false otherwise.

Implement an integer set in C; that is, define a suitable struct (with accompanying typedef) to represent
the set and implement functions for the operations described above. While doing this, you must take the
following three points into consideration:

» The operations have been described abstractly so that you can use either structs or pointers to
structs as arguments and return values. For full marks, you should use pointers to structs. If you do
not know how to do this, you may use structs instead for partial credit.

= The set should be able to accommodate any number of integers. To facilitate this, your struct should
have a field for a pointer to integer--which you can manipulate to point to any integer array space of
your choosing--rather than a field for an array of fixed size. If you do not know how to do this, you
may use a fixed-size array implementation instead for partial credit.

= If you do use pointers, you will need to sensibly use the memory management function mal | oc and
handle null pointer situations. Do not worry about avoiding memory leaks (using f r ee).

You may define any constants or helper functions you feel are necessary. Clearly state any assumptions
you feel are necessary for your code to work properly.

If you find yourself needing more space for your solution, use the next page.

Solution without pointers

#defi ne NUM_ELEMENTS (100)

typedef struct set { int size; int elenments][ NUM ELEMENTS]; } Set;

Set setlnit(void) {
Set result;
result.size = 0O;
return result;

}

Set set Add(Set s, const int e) {
if (!setContains(s, e)) s.elenments[s.size++] = e;

return s;
}
i nt setContains(const Set s, const int e) {
int i;
for (i =0; i 1= s.size; i++)
if (s.elements[i] == e)
return 1;
return O;
}



Faculty of Applied Science and Engineering, University of Toronto First Term Test, CSC181, Fall 2000

Solution with pointers

#i ncl ude <assert. h>
#i ncl ude <stdlib. h>

#defi ne CAPACI TY_I NCREMENT ( 10)

struct set {
int size;
int capacity;
int *el ements;
1
typedef struct set Set;
typedef Set* SetPtr;

SetPtr setlnit(void) {
SetPtr result;
result = (SetPtr)mall oc(sizeof (Set));
assert(result !'= NULL);
result->size = 0;
resul t->capacity = CAPACI TY_I NCREMENT;
result->elenments = (int*)malloc(result->capacity * sizeof(int));
assert(result->elements != NULL);
return result;

}

void set Add(SetPtr sptr, const int e) {
assert(sptr != NULL);
if (!setContains(sptr, e)) {

if (sptr->size == sptr->capacity) {
int *tenpEl enments;
int i;

sptr->capacity += CAPACI TY_| NCREMENT,;
tenpEl ements = (int*)mall oc(sptr->capacity * sizeof(int));
assert (tenpEl ements !'= NULL);
for (i =0; i != sptr->size; i++) {
tenpEl ements[i] = sptr->elenments[i];
}

free(sptr->el enents);
sptr->el enents = tenpEl enents
}
sptr->el enent s[sptr->size] = e;
sptr->size++

}
}
int setContains(SetPtr sptr, const int e) {
int i;
assert(sptr != NULL);
for (i =0; i != sptr->size; i++) {
if (sptr->elenments[i] == e) {
return 1,
}
}
return O;
}



Faculty of Applied Science and Engineering, University of Toronto First Term Test, CSC181, Fall 2000
Question 9. [1 + 9 = 10 marks]
a) [1 mark]

What is your favourite Scrabble tile? (If it's the blank tile, write down “Blank”--do NOT leave this question
blank. If you don’t have a favourite tile, then just write down: “Don’t have one”.)

Any tileis fine.
b) [9 marks]

Complete the function br i ngQXToFr ont below, which rearranges the elements of a character array t so
that all the g's and x's (just the lowercase ones) are at the front, and the leftover characters follow.

Specifically, if at the start of the function t [ 0. . n- 1] contains characters in some arbitrary sequence S,
then just before the function returns, t [ 0. . g- 1] should contain all the g's from S, t [ g. . x- 1] should
contain all the x's from S, and t [ X. . n- 1] should contain the remaning characters from S (which can be
arranged in an arbitrary order).

(Note: If x is an array, then x[ a. . b] refers to the range of x from a to b inclusive, that is, the subarray of
x consisting of elements x[a], ..., x[b].Ifa == b,thenx[a..b] contains one element x[ a] . If a
== b+1, then x[ a. . b] does not contain any elements.)

voi d bringQXToFront(char t[], const int n, int *qp, int *xp) {
int q, x;

[
q
X

while (x '=j) {
if (t[x] =="x") {

X++;
}
else if (t[x] =="q") {
t[x] = t[a];
tfal ="9;
X++;
q++
}
el se {
char tenp;
i--s
temp = t[j];
t[j] = t[x];
t[x] = tenp;
}
}
*qp = q;
*Xp = X;

[END OF TEST]



