
Faculty of Applied Science and Engineering, University of Toronto
CSC181: Introduction to Computer Programming, Fall 2000

Final Examination
December 20, 2000

Examiner: R. Ortigas
Duration: 150 minutes (2.5 hours)
Aids allowed: One official double-sided 8.5 x 11 inch aid sheet and non-programmable calculator.

Do NOT turn this page until you have received the signal to start. (In the meantime, please fill out
the identification section below, and read the following instructions carefully.)

This exam consists of 4 questions on 12 pages (including this cover page and 2 pages of appendices at
the end). When you receive the signal to start, please make sure that your copy of the exam is complete.

Answer each question directly on the exam paper, in the space provided, and use the reverse side of the
pages for rough work. (If you need more space for one of your solutions, use the reverse side of the page
and indicate clearly which part of your work should be marked.)

Be aware that concise, well thought-out answers will be rewarded over long rambling ones. Also,
unreadable answers will be given zero (0) so write legibly.

Unless otherwise stated, programming questions will be marked for correctness primarily, with efficiency
and style as secondary considerations. Comments are not required, but they should accompany any long
or tricky bits of code to aid the marker’s understanding. If you need to make any assumptions in order to
answer a question, be sure to state those assumptions clearly.

DON’T PANIC. KEEP COOL. IT’S ALL GOOD.

Family name: ____________________________________

1: ____ / 50

Given name: ____________________________________

2: ____ / 35

Student number: __ | __ | __ | __ | __ | __ | __ | __ | __ 3: ____ / 25

4: ____ / 40

Total: ____ / 150

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 2 of 12

Question 1. [5 + 10 + 20 + 15 = 50 marks]

A sorted set is a collection of unique elements which are sorted in some order. For the purposes of this
question, consider a set of integers sorted in increasing order, on which the following operations can be
performed:

� contains(e): Returns true if this set contains integer e, false otherwise.

� add(e): Adds integer e to this set.

� addAll(s): Adds all of the integers in set s to this set, effectively creating a union.

� retrieve(k): Returns the kth smallest integer in the set.

Consider the following declaration for class Sor t edSet , which represents sorted sets of integers:

cl ass Sor t edSet {

pr i vat e:
/ / The number of el ement s i n t hi s set .
i nt s i ze;

/ / The el ement s i n t hi s set , sor t ed i n i ncr easi ng
/ / or der wi t h t he l owest el ement at i ndex 0 and t he
/ / hi ghest el ement at i ndex s i ze- 1.
i nt el ement s[100] ;

publ i c :
/ / Const r uct s an empt y set .
Sor t edSet () { s i ze = 0; }

/ / Sor t edSet oper at i ons (descr i bed above) .
bool cont ai ns(i nt e) const ;
voi d add(i nt e) ;
voi d addAl l (const Sor t edSet & s) ;
voi d r et r i eve(i nt k) const ;

} ;

a) [5 marks]

Write the function cont ai ns for Sor t edSet . It doesn’t have to be efficient; it just has to work.

bool Sor t edSet : : cont ai ns(i nt e) const {
f or (i nt i = 0; i ! = s i ze; i ++)

i f (el ement s[i] == e)
r et ur n t r ue;

r et ur n f al se;
}

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 3 of 12

Question 1. [continued from previous page]

b) [10 marks]

Write the function add for Sor t edSet . It doesn’t have to be efficient; it just has to work.

voi d Sor t edSet : : add(i nt e) {
asser t (s i ze < 100) ;

i f (cont ai ns(e))
r et ur n;

i nt i , j ;

f or (i = 0; i ! = s i ze && e > el ement s[i] ; i ++) ;

f or (j = s i ze; j ! = i ; j - -)
el ement s[j] = el ement s[j - 1] ;

el ement s[i] = e;
s i ze++;

}

c) [20 marks]

Write the function addAl l for Sor t edSet . For this question, efficiency is really important. (Hint: Think
about the algorithm for merging two sorted sequences.)

voi d Sor t edSet : : addAl l (const Sor t edSet & s) {
/ / Assume number of uni que i nt eger s i n s and
/ / t hi s set i s l ess t han or equal t o 100.

i nt t emp[100] ;
i nt i , j , k ;

f or (i = 0, j = 0, k = 0; j ! = s i ze && k ! = s. s i ze; i ++) {
i f (el ement s[j] < s. el ement s[k]) {

t emp[i] = el ement s[j] ; j ++;
}
el se i f (el ement s[j] > s. el ement s[k]) {

t emp[i] = s. el ement s[k] ; k++;
}
el se {

t emp[i] = el ement s[j] ; j ++; k++;
}

}

f or (; j ! = s i ze; i ++, j ++)
t emp[i] = el ement s[j] ;

f or (; k ! = s. s i ze; i ++, k++)
t emp[i] = s. el ement s[k] ;

s i ze = i ;
memmove(el ement s, t emp, s i ze * s i zeof (i nt)) ;

}

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 4 of 12

Question 1. [continued from previous page]

d) [15 marks]

Because Sor t edSet uses a sorted array, the r et r i eve function is easy to implement. This function
would be difficult to write, however, if Sor t edSet stored its numbers in a BST. We can address this
problem by making a slight modification to the BST.

Define the weight of a tree to be simply the number of nodes in the tree, and the weight of a node to be
the weight of the tree rooted at that node. Now, consider a weighted BST, where each node stores its
weight in addition to its key and pointers to its left and right children:

st r uct Wei ght edBSTNode {
i nt key, wei ght ;
Wei ght edBSTNode * l ef t , * r i ght ;

} ;

Given the root of a weighted BST, we can determine whether the kth smallest key is in the left subtree, at
the root or in the right subtree, simply by examining the weight of the root’s left child. Using this
observation and the Wei ght edBSTNode definition given above, write a recursive function (which does
not contain any loops) kt hSmal l est with the following prototype:

Wei ght edBSTNode* kt hSmal l est (i nt k, Wei ght edBSTNode* r) ;

This function should return a pointer to the node containing the k th smallest key in the weighted BST
rooted at the node pointed to by r . Assume that r is not null, and that k is in the range from 1 to the
weight of the node pointed to by r , inclusive.

Examples: (Each node is represented as key| wei ght .)

Contents of weighted BST Arguments to kthSmallest Result from kthSmallest

1, poi nt er t o node w/ 8| 8 poi nt er t o node wi t h 4| 1

5, poi nt er t o node w/ 8| 8 poi nt er t o node wi t h 8| 8

6, poi nt er t o node w/ 8| 8 poi nt er t o node wi t h 9| 1

 ____8| 8____
 / \
 5| 4 10| 3
 / \ / \
 4| 1 6| 2 9| 1 12| 1
 \
 7| 1 1, poi nt er t o node w/ 10| 3 poi nt er t o node wi t h 9| 1

Wei ght edBSTNode* kt hSmal l est (i nt k, Wei ght edBSTNode* r) {
i nt l Wei ght = (r - >l ef t == nul l) ? 0 : r - >l ef t . wei ght ;
i f (k <= l Wei ght)

r et ur n kt hSmal l est (k, r - >l ef t) ;
el se i f (k == l Wei ght + 1)

r et ur n r ;
el se

r et ur n kt hSmal l est (k - (l Wei ght + 1) , r - >r i ght) ;
}

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 5 of 12

Question 2. [10 + 25 = 35 marks]

a) [10 marks]

Write a function st r nchr with the following prototype:

char * st r nchr (char * s, char c) ;

This function returns a pointer to the first character, in the string pointed to by s , that is not c . It returns 0
(the null pointer) if no character which is not c is found. Assume s is not null.

char * st r nchr (char * s, char c) {
char * r esul t = 0;
i nt n = st r l en(s) ;
f or (i nt i = 0; i ! = n && r esul t == 0; i ++) {

i f (s [i] ! = c)
r esul t = &s[i] ;

}
r et ur n r esul t ;

}

b) [25 marks]

Consider a class St r i ngTokeni zer with the following public interface:

cl ass St r i ngTokeni zer {
publ i c :

St r i ngTokeni zer (const char * s) ;
bool hasMor eTokens() ;
char * next Token() ;

} ;

This class allows a string to be broken into tokens, and allows these tokens to be read in one at a time.
The St r i ngTokeni zer constructor creates a tokenizer for the string pointed to by s . hasMor eTokens
tests if there are more tokens available from the tokenizer’s string. If this function returns true, then a
subsequent call to next Token will successfully return the next token from the string. The tokenizer looks
for blank spaces (single spaces or runs of spaces) to identify where each token begins and ends.

On the following page, complete the definition of St r i ngTokeni zer by adding private instance
variables to the class and implementing its constructor and functions.

You may use st r nchr from part (a). Assume that it works correctly, even if you didn’t answer that
question (correctly). You may also use any of the string processing functions in Appendix A.

Example:

Consider the following code fragment:

St r i ngTokeni zer st (" t he qui ck br own f ox ") ;
whi l e (st . hasMor eTokens())

cout << st . next Token() << ‘ | ’ ;
cout << endl ;

This fragment should print: t he| qui ck| br own| f ox| . Note that leading and trailing spaces, as well as
runs of spaces, are not included in the tokens.

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 6 of 12

Question 2. [continued from previous page]

[Space for your solution to part (b)]

cl ass St r i ngTokeni zer {
pr i vat e:

char * st r i ng;
char * cur sor ;

publ i c :
St r i ngTokeni zer (const char * s) ;
bool hasMor eTokens() ;
char * next Token() ;

} ;

St r i ngTokeni zer : : St r i ngTokeni zer (const char * s) {
st r i ng = new char [st r l en(s) +1] ;
st r cpy(st r i ng, s) ;
cur sor = st r nchr (st r i ng, ’ ’) ;

}

bool St r i ngTokeni zer : : hasMor eTokens() {
r et ur n cur sor ! = 0;

}

char * St r i ngTokeni zer : : next Token() {
asser t (hasMor eTokens()) ;

char * r esul t ;
char * end = st r chr (cur sor , ’ ’) ;
i f (end ! = 0) {

r esul t = new char [end- cur sor +1] ;
st r ncpy(r esul t , cur sor , end- cur sor) ;
r esul t [end- cur sor] = (char) 0;
cur sor = st r nchr (end+1, ’ ’) ;

}
el se {

r esul t = new char [st r l en(cur sor) +1] ;
st r cpy(r esul t , cur sor) ;
cur sor = 0;

}

r et ur n r esul t ;
}

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 7 of 12

Question 3. [25 marks]

Consider the game of Tic-Tac-Toe. If you are not familiar with the rules of Tic-Tac-Toe, please consult
Appendix B.

Starting from the initial board below, which has one X in the centre square, carry out the minimax
algorithm to a cutoff depth of 2 (i.e. two X’s and one O on the board), taking symmetry into account. If you
are not familiar with the minimax algorithm, please consult Appendix C.

In carrying out the minimax algorithm, use the following evaluation function:

eval(board) = 3X2 + X1 - (3O2 + O1)

Xn is the number of rows, columns or diagonals with exactly n X’s and no O’s, and On is similarly defined
as the number of rows, columns or diagonals with just n O’s.

Show all your work. That is, show the whole game tree starting from the initial board below down to depth
2 (i.e. two X’s and one O on the board); show the evaluations of the boards at the cutoff depth; show the
values calculated by the minimax algorithm for the boards higher up the tree; and at the end, indicate
what is the best move for O from the initial board below, as suggested by minimax.

X

minimize so
move to
corner

X

O

max = 6

X

O

max = 5

X X X
X X X X X X X X X X
O X O O O X O X O O O

6 - 0 = 6 6 - 1 = 5 7 - 1 = 6 4 - 1 = 3 5 - 1 = 4 6 - 1 = 5 6 - 2 = 4 5 - 2 = 3

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 8 of 12

Question 4. [2 x 20 = 40 marks]

Consider the selection sort algorithm. If you are not familiar with the selection sort algorithm, please
consult Appendix D.

a) [20 marks]

Consider the following declaration of Li st Node, which represents a node in a singly-linked list of
integers. Each node contains an integer and a link to the next node:

st r uct Li st Node {
i nt dat a;
Li st Node* next ;

} ;

Write a function l i nkedSor t with the following prototype:

Li st Node* l i nkedSor t (Li st Node* x) ;

This function should sort the integers in the linked list whose first node is pointed to by x , in
nondecreasing order, using the selection sort algorithm. It should also return a pointer to the first node of
the sorted linked list (which may or may not be x depending on how you write the function). Assume x is
not null.

You may not use any auxiliary data structures. You may write helper functions for l i nkedSor t , but
these also cannot use any auxiliary data structures.

Li st Node* l i nkedBr i ngMi nToFr ont (Li st Node* x) {
Li st Node* mi n = x;
Li st Node* cur r = x- >next ;

whi l e (cur r ! = 0) {
i f (cur r - >dat a < mi n- >dat a) {

mi n = cur r ;
}
cur r = cur r - >next ;

}

i f (mi n ! = cur r) {
i nt t emp = mi n- >dat a;
mi n- >dat a = x- >dat a;
x- >dat a = t emp;

}

r et ur n mi n;
}

Li st Node* l i nkedSor t (Li st Node* x) {
i f (x- >next ! = 0) {

l i nkedBr i ngMi nToFr ont (x) ;
l i nkedSor t (x- >next) ;

}
r et ur n x;

}

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 9 of 12

Question 4. [continued from previous page]

b) [20 marks]

Write a function ar r aySor t with the following prototype:

voi d ar r aySor t (i nt a[] , i nt n) ;

This function should sort the first n integers of array a in nondecreasing order using the selection sort
algorithm. Assume n > 0, and that a has at least n integers.

You must use recursion. You may not use any loops or auxiliary data structures. You may write helper
functions for ar r aySor t , but these also cannot use any loops or auxiliary data structures.

i nt ar r ayMi nI ndex(i nt a[] , i nt n) {
i f (n == 1) {

r et ur n 0;
}
el se {

i nt mi nI ndexOf Rest = 1 + ar r ayMi nI ndex(&a[1] , n- 1) ;
r et ur n (a[mi nI ndexOf Rest] < a[0]) ? mi nI ndexOf Rest : 0;

}
}

voi d ar r ayBr i ngMi nToFr ont (i nt a[] , i nt n) {
i nt mi nI ndex = ar r ayMi nI ndex(a, n) ;
i f (mi nI ndex ! = 0) {

i nt t emp = a[0] ;
a[0] = a[mi nI ndex] ;
a[mi nI ndex] = t emp;

}
}

voi d ar r aySor t (i nt a[] , i nt n) {
i f (n > 1) {

ar r ayBr i ngMi nToFr ont (a, n) ;
ar r aySor t (&a[1] , n- 1) ;

}
}

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 10 of 12

Question 0. [5 x 2 = 10 bonus marks]

a) [2 bonus marks]

Write your student number LEGIBLY on the top of every page of this exam. (On the first page of this
exam, write your student number where you are asked to write it.)

b) [2 bonus marks]

What’s my symbol for Bad? A cross. (
�

)

c) [2 bonus marks]

What’s my symbol for Good? A checkmark. (
�

)

d) [2 bonus marks]

You’ve been a great group of students, and I’ve really enjoyed teaching you. Congratulations on your first
semester of Engineering Science at U of T, and best of luck in the future.

e) [2 bonus marks]

Thanks for coming, and happy holidays.

[END OF EXAM]

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 11 of 12

Appendix A: String Library Functions

(Source: Appendix D of C Programming: A Modern Approach by K.N. King.)

char * st r cat (char * s1, const char * s2) ;

Appends characters from the string pointed to by s2 to the string pointed to by s1. Returns s1.

char * st r chr (const char * s, i nt c) ;

Returns a pointer to the first occurrence of the character c in the string pointed to by s . Returns 0 (null
pointer) if c isn’t found.

i nt s t r cmp(const char * s1, const char * s2) ;

Returns a negative, zero or positive integer, depending on whether the string pointed to by s1 is less
than, equal to, or greater than the string pointed to by s2.

char * st r cpy(char * s1, const char * s2) ;

Copies the string pointed to by s2 into the array pointed to by s1. Returns s1.

si ze_t st r l en(const char * s) ;

Returns the length of the string pointed to by s , not including the null character.

char * st r ncat (char * s1, const char * s2, s i ze_t n) ;

Appends characters from the array pointed to by s2 to the string pointed to by s1. Copying stops when a
null character is encountered or n characters have been copied. Returns s1.

char * st r ncpy(char * s1, const char * s2, s i ze_t n) ;

Copies the first n characters of the array pointed to by s2 into the array pointed to by s1. If it encounters
a null character in the array pointed to by s2, st r ncpy adds null characters to the array pointed to by s1
until a total of n characters have been written. Returns s1.

char * st r r chr (const char * s, i nt c) ;

Returns a pointer to the last occurrence of the character c in the string pointed to by s . Returns 0 (null
pointer) if c isn’t found.

char * st r st r (const char * s1, const char * s2) ;

Returns a pointer to the first occurrence in the string pointed to by s1 of the characters in the string
pointed to by s2. Returns 0 (null pointer) if no match is found.

voi d * memcpy(voi d * s1, const voi d * s2, s i ze_t n) ;

Copies n characters from the object pointed to by s2 into the object pointed to by s1. May not work
properly if the objects overlap. Returns s1.

voi d * memmove(voi d * s1, const voi d * s2, s i ze_t n) ;

Copies n characters from the object pointed to by s2 into the object pointed to by s1. Will work properly if
the objects overlap, although it may be slower than memcpy . Returns s1.

Faculty of Applied Science and Engineering, University of Toronto Final Examination, CSC181, Fall 2000

Page 12 of 12

Appendix B: Rules of Tic-Tac-Toe

The game of Tic-Tac-Toe is played between two players, X and O, who each have a set of playing pieces
they can place on a grid with 3 columns and 3 rows of squares. It is governed by the following rules:

� X and O alternate moves (with X starting) until one of them has won, or there are no more legal
moves.

� To move, a player puts one of their pieces on the grid. Each square on the grid can hold only one
piece.

� The winner is the first player to connect three consecutive pieces of theirs in a line, either horizontally,
vertically or diagonally. It is possible for the game to end in a draw; in this case, the entire grid is filled
with neither player having achieved the winning condition.

Appendix C: Minimax Algorithm

(Source: Chapter 5 of Artificial Intelligence: A Modern Approach by S. Russell and P. Norvig.)

MINIMAX-CUTOFF is identical to MINIMAX-VALUE except TERMINAL-TEST is replaced by CUTOFF-TEST (which
indicates whether the given game state/board is at the cutoff depth) and UTILITY is replaced by EVAL (the
evaluation function).

Appendix D: Selection Sort Algorithm

Consider a sequence of n integers. To rearrange these integers in nondecreasing order, use the following
algorithm:

	 Find the smallest integer in the sequence and swap it with the first integer.

 Find the second smallest integer in the sequence and swap it with the second integer.

� Continue in this manner for the n integers of the sequence.

