

Software Requirements Specification
for the Dragon Adventure Game

Document # CSC444-SRS-001B

Revision B

15th October 2002

CSC444-SRS-001B Page 1 10/15/02

Table of Contents
1 SCOPE ...3

1.1 PURPOSE..3
1.2 DEFINITIONS, ACRONYMS AND ABBREVIATIONS ..3
1.3 REFERENCE DOCUMENTS..3
1.4 DOCUMENT OVERVIEW...3

2 OVERALL DESCRIPTION ..4

2.1 SYSTEM PERSPECTIVE ...4
2.2 SYSTEM FUNCTIONS ..4

2.2.1 Class hierarchy...4
2.3 USER CHARACTERISTICS...4
CONSTRAINTS ..5
2.5 ASSUMPTIONS AND DEPENDENCIES ..5

3 SPECIFIC REQUIREMENTS ..6

3.1 EXTERNAL INTERFACE REQUIREMENTS ...6
3.1.1 User Interfaces ...6
3.1.2 Hardware Interfaces...6
3.1.3 Software Interfaces ...6
3.1.4 Communication Interfaces..6

3.2 FUNCTIONAL REQUIREMENTS..6
3.2.1 Dialogue Management CSCI (DM) ..6
3.2.2 Mapping CSCI (MP)...7
3.2.3 Artifact Management CSCI (AM) ...8
3.2.4 Creature and Fight Management CSCI (CFM)..10

3.3 PERFORMANCE REQUIREMENTS ..11
3.4 DESIGN CONSTRAINTS...12

3.4.1 Standards Compliance..12
3.5 SOFTWARE SYSTEM ATTRIBUTES..12

3.5.1 Reliability..12
3.5.2 Availability..12
3.5.3 Security and Privacy...12
3.5.4 Maintainability ...12
3.5.5 Portability ...12
3.5.6 Safety ..12
3.5.7 Training-related Requirements...12
3.5.8 Packaging Requirements ..12

3.6 OTHER REQUIREMENTS...12

4 APPENDICES...13

5 INDEX..14

CSC444-SRS-001B Page 2 10/15/02

1 Scope
This specification establishes the functional, performance, and development requirements for Release 1 of the
Dragon Adventure Game Software.

1.1 Purpose
The Dragon Adventure Game is an interactive computer game with a textual interface, in which the user
explores a series of interconnected rooms, collecting artifacts, and fighting monsters. The set of rooms, artifacts
and monsters can be extended or replaced to give different game variations.

1.2 Definitions, Acronyms and Abbreviations
CSCI Computer Software Configuration Item
SRS Software Requirements Specification
DM Dialogue Management CSCI
MP Mapping CSCI
AM Artifact Management CSCI
CFM Creature and Fight Management CSCI

1.3 Reference Documents
The following standards apply

DOD-STD-498A US Department of Defence Software Documentation Standard
J-STD-016-1995 IEEE/EIA Standard for Information Technology, Software Lifecycle Processes,

Software Development, Acquirer-Supplier Agreement
IEEE-STD-P1063 IEEE Standard for Software User Documentation

The following documents describe the course in which this software is to be developed:

CSC444-HND-001 Course Orientation Handout
CSC444-HND-002 Notes on the Software Trading Game
CSC444-ASG-001 Content description for Assignment 1

1.4 Document Overview
Section 1 identifies the scope of this document, the purpose of the software, and lists the definitions, acronyms
and reference documents. Section 2 provides an overview of the system, and a description of the functional
architecture and object hierarchy. Section 3 identifies the four main Computer Software Configuration Items
(CSCIs) that comprise the system, and gives the functional requirements and constraints for each CSCI. Section
3 also describes the quality requirements for the software. There are no appendices.

CSC444-SRS-001B Page 3 10/15/02

2 Overall Description
2.1 System Perspective
Back in the days before graphical user interfaces became popular, a number of entirely text-based computer
games were written, the most famous of which was “Adventure” which was found on most UNIX systems. In
this game, the user “roamed” through a series of interconnected rooms (or rather, caves) by conducting a textual
dialogue with the machine. The machine would describe what the user could “see”, and the user typed in
various commands which were a simple subset of English language sentences. Each command contained one of
a limited number of verbs (e.g. go, open, hit, look, grasp, throw), together with an object and/or direction.
During the game, the user would collect various artifacts, such as weapons, treasure and magical potions, and
fight the monsters he or she encountered. This particular game has entered the computing folk-law, mainly for
the phrase “you are in a maze of twisty passages all alike” as there was one portion of the game from which it
was virtually impossible to escape. Part of the difficulty of the game arose from remembering where you were,
and where you had been, as the computer offered no map of the rooms. Drawing your own map helped, but was
not easy, as the interconnectivity of the rooms was often a little complicated.

This specification is essentially a re-implementation of the Adventure game. As with the original adventure
game, the game specified here is single user only. The specification is, of course, open ended, in that an
unlimited set of rooms, artifacts, and monsters can be added.

2.2 System Functions
There are essentially four main functional areas, which correspond to the four CSCIs specified in section 3:

• Dialogue Management: The system uses a simple command line interface, with a simplified natural
language interface. A limited vocabulary is used, but the vocabulary is not defined a priori (the vocabulary
depends on the game configuration). Interaction proceeds between the user and the game proceeds as a
dialogue, in which the user enters a command, and the system describes a response to the command. Users
are shown some sample commands, and may try creating further commands by guessing the vocabulary.

• Mapping: At the beginning of the game, a map is set up of all the rooms in the game, the doors that connect
the rooms, and directions needed to move from room to room. A short and long description is maintained
of each room, and each door; the user can access these by using various exploration commands. The
mapping functions also include keeping track of which artifacts and monsters are in which room. The
contents of each room and the descriptions of monsters, objects and rooms are updated during the game, for
instance during fights, or when the player picks up or drops things.

• Artifact Management. The player can find and collect a number of artifacts during a game. These include
weapons, food, tools, treasure and so on. Different artifacts can be used for different things. The artifact
management functions include keeping track of descriptions of artifacts, and of what can be done with
them. For example, some artifacts are tools that can be used on other artifacts (e.g. a key to a locked box).

• Creature and Fight Management: When a player encounters monsters during the game, a fight can ensue.
Players can employ a number of different weapons to attack monsters, and monsters may attack back. If the
monster wounds the player, points are deducted from the player’s current strength. The game ends if the
players’ strength reaches zero. Monsters may also pursue users as they move from room to room, and may
attack one another.

2.2.1 Class hierarchy
Figure 2.1 shows the class hierarchy for the game. This kind of diagram shows the classes of objects that need
to be represented in the game, and the attributes that each class of object has. Object classes are shown in bold,
and the attributes are shown in italic. Note that there is full inheritance, which means that objects inherit all the
attributes of their parents. For example, every object has a unique id and a description, whereas only moveable
objects have short names.

2.3 User Characteristics
The game should be useable by any users, via a command line interface. No special knowledge or skills should
be assumed on the part of the users. Users are should not be expected to learn a set of commands in order to
start using the game.

CSC444-SRS-001B Page 4 10/15/02

2
N

2
N

C

Object

Artifact Creature Room

Portal

Weapon
Treasure

Food
Tool

Monster
Player

unique id
description

actions
usage
strength

weapon list
strength
predilection
artifact list

portal list
artifact list
creature list

direction
successor

points

Moveable
Object

Fixed
Object

short name
location

motility

usage class
usage objects

Thing

Figure 2.1: The Class Hierarchy
.4 Constraints
o special constraints have been identified.

.5 Assumptions and Dependencies
o special assumptions or dependencies have been identified.

SC444-SRS-001B Page 5 10/15/02

3 Specific Requirements
3.1 External Interface Requirements

3.1.1 User Interfaces
All interaction with the user is via a command line interface. Once the game has started, the user is prompted
for a command. The game prints out a response and prompts for the next command. If the user enters a
command that is badly formed, the system shall report that the command was not understood.

3.1.2 Hardware Interfaces
None

3.1.3 Software Interfaces
The system shall be capable of running on any version of UNIX system, including Linux. The system shall
make use of the operating system calls to the file management system to store and retrieve game states.

3.1.4 Communication Interfaces
None

3.2 Functional Requirements
The functional requirements are described for each of the four CSCIs: Dialogue Management (DM), Mapping
(MP), Artifact Management (AM), and Creature and Fight Management (CFM).

The management of game state data (i.e. the responsibility for representing information about objects during the
game) is distributed between the MP, AM and CFM. MP is responsible for storing all data concerned with fixed
objects, including the location of all the moveable objects (these are allocated to rooms at initialization). AM is
responsible for all artifacts, including their descriptions and usage. CFM is responsible for storing all creature
data. Note that the player is a creature (see figure 2.1), and therefore CFM will be responsible for keeping track
of information about the player (i.e. how much strength she has left, how many points she has accumulated,
etc.).

3.2.1 Dialogue Management CSCI (DM)
The Dialogue Management CSCI initializes the game, and controls the dialogue with the user. This CSCI does
not store any data about the creature, artifacts and players during the game. It calls functions from the other
CSCIs as and when they are needed.

DM is the main controlling software for the game. It implements a cycle of providing a message to the user, and
asking for a command. It processes the user’s commands, and performs the appropriate actions. It constructs all
messages and descriptions given to the user, based on information provided by the other CSCIs. It provides
appropriate feedback if the user types an invalid command. It calculates scores when asked, and can save and
restore game states.

3.2.1.1 DM Internal Data

DM must parse the user’s commands. Each command should consist of a verb with one or more objects,
together with various connecting words. The connecting words are optional. For example the command “go to
the north” is equivalent to “go north”. DM should accept either. Commands can be grouped according to the
type of verb used, as follows:

• movement verbs (e.g. go, move, walk, etc.) – these are used with a direction to move between rooms. The
direction must be one of those supplied as a valid portal from the current room.

• fight words (e.g. hit, attack, etc.) – these are used to attack a monster, using the current weapon, if any. If
there is more than one monster in the room, then the fight word must be used with the short name of the
monster to be attacked. Otherwise, the fight word can be used on its own or with ‘it’.

• information words (e.g. look, inspect, etc.) – these are used to get detailed descriptions. Used on their own,
they apply to the room. If combined with a direction, they get the description of the portal in that direction.
If used with a moveable object, they get the full description of that object.

CSC444-SRS-001B Page 6 10/15/02

• inventory words (e.g. put, get, pick up, drop, grasp, wield, list, etc.) – these are used to manipulate artifacts.
The player may pick up any artifact in the current room, by giving the appropriate verb, and the artifact’s
short name. Artifacts picked up are removed from the room, and added to the player’s artifact list.
Similarly, items may be put down. Any artifact that has been picked up may be used as a weapon by using
the verb wield, plus the artifact’s short name. The verb ‘list’ can be used to list the short names of all
artifact’s carried by the player.

• action words – These are all the verbs that can be used on specific objects, or classes of objects. This list
must be compiled from the various objects used in the game, and is generated by a function provided by
AM. These words must be combined with an object, to perform an action on that object. Tool use words
are a special subset of action words. These require both an object and a tool. E.g. “unlock the oak door with
the brass key”; “hit the egg with the hammer”, etc.). It may be desirable to break this into two interactions,
e.g. “hit the egg” to which the system responds “with what?”...

• game commands (e.g. save, restore). These commands are used to save the current state of the game, or to
restore a previous game from a file. The name of a file is required as a parameter.

In addition to these commands, the user can always give the command ‘help’ which provides a limited amount
of help about how to play the game. This help message should also be given at the beginning of the game.

DM does not keep track of information about the player. The player always has unique id 0. The location and
other attributes of the player can be determined using the locate(creature) command in CFM, with unique id 0.

3.2.1.2 DM Control Structure

After initialization of the rooms and things, the program describes the first room, and then enters the main loop.
The main loop carries out the following steps:

1. The system prompts the user for input

2. The user types in a command (usually in the form verb + object, e.g. “go north”)

3. The user’s command is parsed, and the verb and object are checked to see if they are on the master list:

a) if the verb is a movement word, and the direction is a valid portal from the current room, it moves the
player into a new room. The user gets a full description of the room and its portals, and the short
names of any moveable objects in the room.

b) if the verb is a fight word, and the named monster is in the current room, then the monster is attacked.
If no monster is specified, and there is only one monster in the room, then this monster is attacked.
CFM handles the fighting.

c) if the verb is an information word, then a description is output. If the word is used alone, then a
description of the current room, plus its exits is given. If it is used with a direction, the portal (if any)
in that direction is described. If it is used with an artifact, then the full description of that artifact is
given. Note that DM does not store any of these descriptions – they are obtained from MP, AM and
CFM as needed.

d) if the verb is an inventory word, and the given action can be performed, then the named artifact is
added/removed from the player’s artifact list; or is wielded as a weapon; or the inventory is listed.

e) if the verb is an action word, and is used with an artifact, then the artifact is checked to see if it is a
valid action. If it is a valid action, the action is performed on the artifact. The result is described to the
user. If the command is an eat action, and the artifact is food, then the strength of the artifact is added
to the player’s strength.

4. The fight and move functions of CFM are called to see if any monsters attack the player, or move from
room to room. A description of any fighting and its result is given to the user.

5. If the player is dead the game ends. Otherwise the loop continues.

3.2.2 Mapping CSCI (MP)
The mapping CSCI maintains a list of rooms and connections between them, and keeps track of the things
contained in each room. It also provides a textual description of each room when needed.

3.2.2.1 MP Internal Data

Each room is represented within this CSCI using the following information:

CSC444-SRS-001B Page 7 10/15/02

• a unique id – Each room has a different number. This information is never divulged to the user. The player
will always start in room 0.

• a description – this is the textual description given to the user upon entering the room, or upon giving the
‘look’ command. The description should not contain any information about the exits, nor any removable
objects or monsters, as these are described separately. It should provide information about furniture and
fixed objects.
E.g. Description: [a huge banqueting hall with chandeliers hanging from the ceiling and a very long oak
table capable of seating fifty or so guests, but there are no chairs. There is no other furniture in the room.
The chandeliers are not lit, and the only light comes from a small barred window set high into the south
wall]

• a portal list – each exit from the room is represented by a unique id, a description, a direction and a
successor, which is the room number of the connecting room. The direction allows the user to specify
which exit she wishes to go through, and the description is provided merely to help the user visualize and
remember the scene.
E.g. For each portal:
Unique id: [Door 57]
Description: [a heavy wooden door with large iron hinges set high into the wall]
Direction: [north]
Successor: [42].
The user will be presented with the text “To the north, there is a heavy wooden door with ...”, and might
then issue the command “go north”.

• an artifact list – the list of artifacts in the room, represented by their unique ids.

• a creature list – a list of creatures in the room, represented by their unique ids.

3.2.2.2 MP External Interface

MP will provide the following functions to be used by other CSCIs:

• A successor function: Given the unique id of a room, and a direction, returns the unique id of the next
adjacent room in that direction, or an error flag if there is no portal in the given direction for the given
room.

• A map initializer: reads in a set of rooms from a game configuration file.

• A rooms initializer: Given a set of moveable objects, represented as a list of unique ids, randomly places
the things in various rooms, and returns an ordered list of the unique ids of the rooms the moveable objects
were placed in.

• A room describer: Given the unique id of a room, returns a textual description of that room.

• A room decorator: Given the unique id of a room, and a piece of text, adds the text to the end of the
description of the room. This function is used for permanent changes to a room (e.g. broken furniture and
fittings, bloodstains, etc).

• A portal lister: Given the unique id of a room, provides a list containing the direction and description of
every portal in the room.

• An artifact lister: Given the unique id of a room, provides a list of unique ids of all artifacts in that room.
Note this list will not include artifacts carried by any monsters in the room.

• A creatures lister: Given the unique id of a room, provides a list of unique ids of all creatures in that room.

• An add moveable object function: Given the unique id of an object, and its class (creature or artifact) and
the unique id of a room, adds the object to the relevant list of things in that room.

• A remove moveable object function: Given the unique id of an object, and its class (creature or artifact) and
the unique id of a room, removes the object from the relevant list of things in that room.

3.2.3 Artifact Management CSCI (AM)
AM provides data structures to hold information about each artifact. It initializes and updates the information
about artifacts during the game. It also keeps track of what actions can be performed on which type of artifacts.
Artifacts can be picked up by the player, and carried from room to room. They can also be used for various
purposes, and using them sometimes destroys them.

CSC444-SRS-001B Page 8 10/15/02

3.2.3.1 AM Internal Data

Artifacts are represented with the following information:

• A unique id – used to refer to the artifact. This information is never divulged to the user.

• A short name – used to refer to the object when interacting with the user. This should be long enough to
identify the object, but short enough to allow the user to type it in easily. It is possible to have more than
one object with the same short name.

• A description – a detailed description of the artefact. When the player enters a room, she will be given the
short names of any artefacts found there (“there is a short bow, a cloth bag and a red gem here)”. If she
looks at an object specifically (“look gem”) the detailed description will be given. The detailed description
may be empty, in which case the user will get a message such as “it is an ordinary red gem”.

• A type – An artifact may be one of: food; weapon; treasure; tool, thing. Food may be eaten to gain strength,
weapons may be wielded to improve fighting ability, treasure adds to the player’s points; tools are artifacts
that operate on other objects, things are simple artifacts and are usually of no particular relevance to the
game.

• A list of actions – these are the actions that can be performed on the artifact, represented as a verb, and a
message. These are in addition to the actions that can be performed on any artifact (such as pick up, put
down, throw) or on all of a particular type of artifact (e.g. food always has the action eat). The message is
given to the user if she performs the action. If the message is empty the user will get a message of the form
“nothing happens”.
E.g. if the artifact is “red gem”, an action might be
Verb: [rub]
Message: [the gem shines a little more brightly].

• Usage – A positive integer representing the number of times the artifact can be used. If this value reaches
zero, the artifact is destroyed. For example, a banana can only be eaten once, but a bunch of bananas could
be used, say, six times. This number is decremented each time the artifact is used. The special value -1 is
used for artifact that can be used any number of times (e.g. most weapons, and all treasure can be used any
number of times).

• Strength – An integer representing the strength of the artifact (the default is 1). E.g. for food, this is the
number of strength points gained by eating the artifact, for a weapon this is a multiplier for determining
how much damage is done. For treasure, this is its financial value (in gold pieces).

Tools require some special treatment. Tools are a class of artifact that operate on other artifacts, or on fixed
objects. For example, a tin of beans might only be eaten if it is first opened with a tin opener. A locked door
might only be opened by a certain key. A tool has all the attributes of an artifact, plus a list of the classes of
objects on which it can operate, and optionally, a list of unique ids of specific objects on which it can operate.
More general tools just list the classes of objects on which they operate, while specific tools will work only on
specific objects. For example, a brass key might only open door id 5; a skeleton key might open any door. A
hammer might work on any artifact, etc. The result of applying a tool to another object is stored either in the list
of actions of the tool, or in the list of actions for the object. The tool action acts as a default (e.g. for a hammer:
“hit X” results in “X breaks into millions of pieces”) which can be over-ridden if the object itself has an action
(e.g. for a bent key “hit with hammer” results in “the key is now straightened out”).

Some thought must be given to the placement of tools in the game initialization process. For instance, some
tools might be found only in the same room as the objects on which they operate. Furthermore, a key must not
be located in a portion of the game that cannot be reached without it. A key should also not be located in the
first room of the game, nor in the room that contains the door that it unlocks.

3.2.3.2 AM External Interface

The object manager will provide the following functions to be used by other CSCIs:

• An artifact namer: Given the unique id of a moveable object (creature or artifact), returns the short name of
the thing.

• An artifact describer: Given the unique name of a moveable object (creature or artifact), returns a full
description of that object

• An artifact initialiser: Loads a list of moveable objects (creatures and artifacts) from a game configuration
file, and returns a list of their unique ids.

CSC444-SRS-001B Page 9 10/15/02

• An artifact placement checker: Given a list of artifacts in a room, checks that all placement constraints on
those artifacts are obeyed.

• An artifact/action checker: Given the unique name of an artifact, and an action word, returns true or false
depending on whether the action is valid for that artifact.

• An artifact/action updater: Given the unique name of an artifact, and an action word, updates the artifact’s
attributes. Returns true if the artifact was destroyed, false otherwise. Returns an error flag is the action is
not valid for the artifact.

• An artifact metamorphasizer: Given the unique name of an artifact, and a description, changes the
description of the artifact to the given description.

• An action lister: Returns a complete list of all action words used for all artifacts included in the game,
including those action words that apply to whole classes of artifacts.

• A tool action checker: Given a tool and an action and an object, checks that the action is valid for that tool
on that object.

• A tool action describer: Given a tool and an action and an object, returns a description of the result of using
that tool on that object, and updates the tool and/or object description accordingly.

3.2.4 Creature and Fight Management CSCI (CFM)
CFM keeps track of all creatures in the game, including the player. It also manages fight sequences. Fights can
be initiated by either a monster in the same room as the player, or by the player attacking a monster in the
current room. If there are several monsters in a room, several of them can attack the player. They can also attack
each other. Monsters do not attack one another unless the player is present in the room. As the player moves
from room to room, monsters may decide to give chase. The decision about whether a monster should attack the
player is calculated by generating a random number between 0 and 100, and comparing it with the monster’s
predilection. If the player attacks a monster, the monster attacked has its predilection changed to 100. When a
player attacks a monster, the strength of the currently wielded weapon is deducted from the monster’s strength.
When a monster attacks another creature (monster or player) the strength of the monster’s weapon is deducted
from the other creature’s strength.

If the monster attacks, it may attack with any (or all) of its weapons. The strength of each weapon used is
deducted from the player’s strength.

CFM also keeps track of the player, initializing and updating information about the player during the game,
including the list of objects in the player’s inventory, and the currently wielded weapon. Artifacts that are not of
the weapon class can be wielded as weapons, but are ineffective (i.e. they do no damage to any monsters). The
player can only wield one weapon at a time; wielding a new weapon implies the previous weapon is unwielded;
although both are still in the player’s artifact list.

3.2.4.1 CFM Internal Data

Creatures are represented using the following information:

• A unique id – This information is never divulged to the user. The player has id 0.

• A short name – used to refer to the creature when interacting with the user.

• A description – a detailed description of the creature. When the player enters a room, she will be given the
short names of any monsters lurking there (“there is a dragon here)”. If she looks at an object specifically
(“look dragon”) the detailed description will be given (“it is a small green dragon, with very fierce eyes,
and dangerously sharp claws. There is smoke coming from its nostrils”). The detailed description may be
empty, in which case the user will get a message such as “it is just a dragon”.

• A list of weapons – these are the weapons used by the creature, represented as a verb, a short name, and a
strength. The verb describes what the creature does with the weapon. The strength describes how much
damage the creature does each time it successfully uses the weapon.
E.g.
Verb: [scorches]
Short name: [fiery breath]
Strength: [20].
The verb and the object are used to describe to the user what is happening (“The dragon scorches you with
its fiery breath”). As a monster can carry more than one weapon, it may attack the player once with each
weapon it carries during each round of a fight. For the player, the list of weapons can have at most one

CSC444-SRS-001B Page 10 10/15/02

weapon in it. If the player is not currently grasping a weapon, then bare fists are used, which have a
strength of 1.

• Strength – An integer representing the remaining strength of the creature. When it gets to zero, the monster
is dead. The player’s creature always starts the game with strength 100.

• Predilection – A number between 0 and 100 indicating the percentage chance that the creature will attack
without being provoked. 0 indicates the creature will never attack first, 100 indicates it will always attack
first, any other value will be combined with a random number to find out whether the creature attacks for
each turn that the player is in the same room as it. All monsters will always fight back if the player attacks
them. Note that the player has a predilection too, but it is never used.

• Artifacts carried – A list of artifacts carried by the creature, represented using their unique ids. These will
be available to the player once a monster is killed, and may include some of the weapons wielded by the
monster.

Note that the player is represented as a creature too, and has all the attributes given above. The player starts
with a strength of 100. Note also, the player can only wield one weapon at a time. The player has an additional
attribute of score.

Monsters have one additional attribute:

• Motility – A number between 0 and 100 indicating the percentage chance that the creature will chase the
player from room to room. After each move in the game, if the player has moved to another room, then
each creature in that room that has been attacked is given the chance to chase. A random number is
generated, and compared with the creature’s motility, to determine whether the monster makes it into the
next room.

3.2.4.2 CFM External Interface

• A monster angrifier – Given the unique id of a creature, changes it’s predilection to 100.

• A creature strengthener – Given the unique id of a creature, and an integer (positive or negative), add the
integer to the creature’s strength. Returns true if the creature is still alive, false otherwise.

• A creature checker – Given the unique id of a creature, returns true if the creature is alive, false otherwise.

• A creature weapon lister – Given the unique id of a creature, lists the weapons wielded by that creature.

• A weapon wielder – Given the unique id of a weapon in the player’s inventory, makes that the currently
wielded weapon.

• A fight request – Given the unique id of a room containing the player, determines which creatures in the
room will attack the player. Updates the monsters and the player’s strength accordingly. Returns a textual
description of the fight.

• A monster attacker – Given the unique id of a monster, calculates the result of the player hitting the
monster with the currently wielded weapon, updates the state of the monster, and returns a description of
the outcome.

• A monster chaser – Given the unique id of a two connected rooms, A and B, where the player is in B,
determines whether any monsters in room A chase the player into room B.

• An artifact adder – Given the unique id of an artifact in the current room, adds it to the player’s inventory
(and removes it from the list of moveable objects in that room)

• An artifact dropper – Given the unique id of an artifact in the player’s inventory, removes it from the
inventory and adds it to the list of moveable objects in the current room. If it was the currently wielded
weapon, the player’s weapon list is emptied.

3.3 Performance Requirements
The system should respond to each user input within 2 seconds. There are no other performance requirements.

CSC444-SRS-001B Page 11 10/15/02

3.4 Design Constraints

3.4.1 Standards Compliance
All language used in the game should comply with current University of Toronto guidelines for decency and
equal opportunities. Usage of the game (other than planned testing episodes) on University of Toronto
equipment shall be governed by the current guidelines for game playing.

3.5 Software System Attributes

3.5.1 Reliability
The system should never crash or hang, other than as the result of an operating system error.

3.5.2 Availability
There are no specific availability requirements

3.5.3 Security and Privacy
There are no specific security and privacy requirements, other than those generally governing use of student
login accounts on University of Toronto computer equipment.

3.5.4 Maintainability
All code shall be fully documented. Each function shall be commented with pre- and post-conditions. All
program files shall include comments concerning authorship and date of last change.

The code should be modular, to permit future modifications. Anticipated updates include changes to the sets of
objects and their descriptions used during the game. These should be stored in a separate data file, rather than
embedded in the program code.

3.5.5 Portability
The system should be portable to any UNIX system, including Linux. No other specific portability requirements
have been identified.

3.5.6 Safety
The system should warn the use to take a break after every two hours continuous play to prevent eyestrain and
repetitive strain injury. No other safety requirements have been identified.

3.5.7 Training-related Requirements
No specific training should be necessary for a user to begin playing the game. The game should give the user a
brief guide for how to play (with some examples) when first invoked, before the first command prompt. Players
should not be required to learn a list of commands before commencing play.

3.5.8 Packaging Requirements
The system should be packaged along with source code and all documentation, and be available for electronic
transfer as a single compressed file to any purchaser. The uncompressed set of files should include a README
file containing a minimal guidance for installing and running the game, including recompilation if needed. For
recompilation, the system should include a makefile.

3.6 Other Requirements
There are no other requirements.

CSC444-SRS-001B Page 12 10/15/02

4 Appendices
There are no appendices

CSC444-SRS-001B Page 13 10/15/02

5 Index

Adventure, 1, 3, 4
artifacts, 3, 4, 6, 7, 8, 9, 10, 11
attributes, 4, 7, 9, 10, 11

artifact list, 7, 8, 10
creature list, 8
description, 3, 4, 6, 7, 8, 9, 10, 11
list of actions, 9
Motility, 11
portal list, 8
Predilection, 11
score, 11
short name, 6, 7, 9, 10
Strength, 9, 11
type, 9
unique id, 4, 7, 8, 9, 10, 11
Usage, 9

constraints, 3, 5, 10
creature data, 6

direction, 4, 6, 7, 8
Dragon Adventure Game, 1, 3

fights

fight sequences, 10
file management system, 6
full inheritance, 4

game states, 6
graphical user interfaces, 4

help, 7, 8

Linux, 6, 12

magical potions, 4
makefile, 12
monsters, 3, 4, 7, 8, 10, 11
Motility. See attributes
moveable objects, 4, 6, 7, 8, 9

natural language interface, 4

Object classes, 4

parsing, 6
player, 4, 6, 7, 8, 9, 10, 11
postconditions, 12
preconditions, 12
Predilection. See attributes
prompt, 12

quality requirements, 3

random number, 10, 11
rooms, 3, 4, 6, 7, 8, 11

scope, 3
score. See attributes
scores, 6
standards, 3
strength, 4, 6, 7, 9, 10, 11

tools

placement of..., 9
Tools, 9
treasure, 4, 9

UNIX, 4, 6, 12
user, 3, 4, 6, 7, 8, 9, 10, 11, 12

verb

action word, 7, 10
fight word, 6, 7
information word, 7
inventory word, 7
movement word, 7

verbs, 4, 6, 7
vocabulary, 4

weapons, 4, 9, 10, 11
wield, 7, 11

CSC444-SRS-001B Page 14 10/15/02

	Scope
	Purpose
	Definitions, Acronyms and Abbreviations
	Reference Documents
	Document Overview

	Overall Description
	System Perspective
	System Functions
	Class hierarchy

	User Characteristics
	Constraints
	Assumptions and Dependencies

	Specific Requirements
	External Interface Requirements
	User Interfaces
	Hardware Interfaces
	Software Interfaces
	Communication Interfaces

	Functional Requirements
	Dialogue Management CSCI (DM)
	DM Internal Data
	DM Control Structure

	Mapping CSCI (MP)
	MP Internal Data
	MP External Interface

	Artifact Management CSCI (AM)
	AM Internal Data
	AM External Interface

	Creature and Fight Management CSCI (CFM)
	CFM Internal Data
	CFM External Interface

	Performance Requirements
	Design Constraints
	Standards Compliance

	Software System Attributes
	Reliability
	Availability
	Security and Privacy
	Maintainability
	Portability
	Safety
	Training-related Requirements
	Packaging Requirements

	Other Requirements

	Appendices
	Index

