
Java Inspection Checklist, Page 1

Java Inspection Checklist

Copyright © 1999 by Christopher Fox. Used with permission.

1. Variable, Attribute, and Constant Declaration Defects (VC)

� Are descriptive variable and constant names used in accord with naming conventions?
� Are there variables or attributes with confusingly similar names?
� Is every variable and attribute correctly typed?
� Is every variable and attribute properly initialized?
� Could any non-local variables be made local?
� Are all for-loop control variables declared in the loop header?
� Are there literal constants that should be named constants?
� Are there variables or attributes that should be constants?
� Are there attributes that should be local variables?
� Do all attributes have appropriate access modifiers (private, protected, public)?
� Are there static attributes that should be non-static or vice-versa?

2. Method Definition Defects (FD)

� Are descriptive method names used in accord with naming conventions?
� Is every method parameter value checked before being used?
� For every method: Does it return the correct value at every method return point?
� Do all methods have appropriate access modifiers (private, protected, public)?
� Are there static methods that should be non-static or vice-versa?

3. Class Definition Defects (CD)

� Does each class have appropriate constructors and destructors?
� Do any subclasses have common members that should be in the superclass?
� Can the class inheritance hierarchy be simplified?

4. Data Reference Defects (DR)

� For every array reference: Is each subscript value within the defined bounds?
� For every object or array reference: Is the value certain to be non-null?

5. Computation/Numeric Defects (CN)

� Are there any computations with mixed data types?
� Is overflow or underflow possible during a computation?
� For each expressions with more than one operator: Are the assumptions about order of

evaluation and precedence correct?
� Are parentheses used to avoid ambiguity?

6. Comparison/Relational Defects (CR)

� For every boolean test: Is the correct condition checked?
� Are the comparison operators correct?
� Has each boolean expression been simplified by driving negations inward?
� Is each boolean expression correct?
� Are there improper and unnoticed side-effects of a comparison?
� Has an "&" inadvertently been interchanged with a "&&" or a "|" for a "||"?

Java Inspection Checklist, Page 2

7. Control Flow Defects (CF)

� For each loop: Is the best choice of looping constructs used?
� Will all loops terminate?
� When there are multiple exits from a loop, is each exit necessary and handled properly?
� Does each switch statement have a default case?
� Are missing switch case break statements correct and marked with a comment?
� Do named break statements send control to the right place?
� Is the nesting of loops and branches too deep, and is it correct?
� Can any nested if statements be converted into a switch statement?
� Are null bodied control structures correct and marked with braces or comments?
� Are all exceptions handled appropriately?
� Does every method terminate?

8. Input-Output Defects (IO)

� Have all files been opened before use?
� Are the attributes of the input object consistent with the use of the file?
� Have all files been closed after use?
� Are there spelling or grammatical errors in any text printed or displayed?
� Are all I/O exceptions handled in a reasonable way?

9. Module Interface Defects (MI)

� Are the number, order, types, and values of parameters in every method call in agreement
with the called method's declaration?

� Do the values in units agree (e.g., inches versus yards)?
� If an object or array is passed, does it get changed, and changed correctly by the called

method?

10. Comment Defects (CM)

� Does every method, class, and file have an appropriate header comment?
� Does every attribute, variable, and constant declaration have a comment?
� Is the underlying behavior of each method and class expressed in plain language?
� Is the header comment for each method and class consistent with the behavior of the method

or class?
� Do the comments and code agree?
� Do the comments help in understanding the code?
� Are there enough comments in the code?
� Are there too many comments in the code?

11. Layout and Packaging Defects (LP)

� Is a standard indentation and layout format used consistently?
� For each method: Is it no more than about 60 lines long?
� For each compile module: Is no more than about 600 lines long?

12. Modularity Defects (MO)

� Is there a low level of coupling between modules (methods and classes)?
� Is there a high level of cohesion within each module (methods or class)?
� Is there repetitive code that could be replaced by a call to a method that provides the behavior

of the repetitive code?
� Are the Java class libraries used where and when appropriate?

Java Inspection Checklist, Page 3

13. Storage Usage Defects (SU)

� Are arrays large enough?
� Are object and array references set to null once the object or array is no longer needed?

14. Performance Defects (PE)

� Can better data structures or more efficient algorithms be used?
� Are logical tests arranged such that the often successful and inexpensive tests precede the

more expensive and less frequently successful tests?
� Can the cost of recomputing a value be reduced by computing it once and storing the results?
� Is every result that is computed and stored actually used?
� Can a computation be moved outside a loop?
� Are there tests within a loop that do not need to be done?
� Can a short loop be unrolled?
� Are there two loops operating on the same data that can be combined into one?
� Are frequently used variables declared register?
� Are short and commonly called methods declared inline?

