
University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec23 1

Lecture 23:
Course Sum

m
ary

Course Goals

Sum
m
ary of what we covered

Feedback questions for you

Sam
ple Exam

 Q
uestion

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec23 2

Course Rationale
The goals for this course were:

introduce the m
ain ideas of software engineering

offer practical experience of developing large software system
s

especially evaluating and m
odifying software developed by others

raise awareness of the need for a disciplined approach
build on your existing experience with program

m
ing

A
pproach

Typical Software Engineering courses generally:
introduce the issues of software engineering at a high (theoretical) level
follow a waterfall lifecycle through the m

ain phases
introduce one analysis and design m

ethod in detail with a team
 project

Problem
s with these courses

students do not get sufficient experience of the difficulties of large scale software
developm

ent and m
aintenance

students learn how to use the techniques, but don’t gain an appreciation of why they
are useful

H
ence, the trading gam

e…

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec23 3

Course O
utline

Introductory stuff
Case Studies
Software Lifecycles
Project M

anagem
ent, Risk

M
anagem

ent

Program
 D

esign
D
ecom

position and A
bstraction

Procedural A
bstraction

D
ata A

bstraction
Software qualities; m

odularity
D
esign Representations

Verification & Validation
Testing
Reviews & Fagan Inspections
Form

al verification
D
ebugging and exception handling

Software in the large
Requirem

ents Engineering
Structured A

nalysis
O
bject O

riented A
nalysis

Form
al A

nalysis

Specifications

Software A
rchitectures

Software M
aintenance

evolution
reengineering
reuse

Software Process M
odeling

process im
provem

ent
capability m

aturity

Software M
easurem

ent

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec23 4

Conclusions
Key lessons

software developm
ent is far m

ore than just writing program
s

com
m
unication is m

ore im
portant than coding

testing and inspection are vital for quality assurance
software engineers need to reflect upon their own developm

ent processes and
seek to im

prove them
 continuously

Key skills
judging software quality
reading/m

odifying other people’s code
working with vague or incom

plete specifications
working to tight (im

possible!) deadlines
working with changing requirem

ents/constraints
com

m
unicating about technical work

negotiating contracts to buy (and sell) software
working in team

s
learning from

 m
istakes (and learning to reflect on your experiences)

deciding how m
uch and what types of docum

entation are helpful
deciding what is im

portant (because perfect software is im
possible)

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec23 5

Feedback Q
uestions

D
id the course m

eet your expectations?

H
ow useful do you think the course was to you?

W
hat do you feel you have learned?

W
hat did you not learn, that you had hoped to?

W
hat was the best part of the course?

W
hat was the worst part of the course?

H
ow m

ight the course be im
proved in the future?

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec23 6

Sam
ple Exam

 Q
uestion

a) W
hy is random

 testing insufficient even for relatively sm
all program

s?
[2 m

arks]
b) U

nit testing is the process of testing a single program
 unit (e.g. a

procedure) in isolation from
 the rest of the program

. H
ow would you go

about choosing test cases for unit testing?
[4 m

arks]
c) Integration testing can be tackled top-down or bottom

-up. D
escribe each of

these strategies. W
hy is integration testing harder than unit testing?

[4 m
arks]

d) Explain the purpose of each of the following. W
hat types of error is each

likely to find?
i)

Endurance testing ii) Recoverability testing iii) Regression testing
 [6 m

arks]
e) The com

pany you work for develops internet applications. To reduce tim
e to

m
arket, the com

pany is considering dispensing altogether with integration
testing. Instead, the com

pany plans to rely on Beta testing, in which free
trial versions of new software will be sent to existing, trusted custom

ers to
try out, with the agreem

ent that they will report any problem
s they

encounter. W
hat are the advantages and disadvantages of this approach?

[4 m
arks]

1

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec23 7

H
ow we grade it...

a) W
hy is random

 testing insufficient even for relatively sm
all program

s?
[2 m

arks]
2 m

arks fo
r a d

etailed
 exp

lan
atio

n
, 1 m

ark fo
r a p

artial an
sw

er. S
everal p

o
ssib

le reaso
n

s:
Each decision point in the code represents a branch. A

s the num
ber of decision points

grows, the num
ber of possible paths through the code grows exponentially. Random

choices of test data is unlikely to cover all paths.
M

ost of the interesting errors in software occur for particular data points, e.g. on the
boundaries between different input ranges. Choosing test data random

ly is unlikely to
hit the boundary conditions.

To properly test software, you need to define its operational profile (i.e. how frequently
it is likely to see each type of input/behaviour). Random

 selection of test cases is
unlikely to m

atch the operational profile.

b) U
nit testing is the process of testing a single program

 unit (e.g. a procedure) in
isolation from

 the rest of the program
. H

ow would you go about choosing test cases
for unit testing?

[4 m
arks]

4 m
arks fo

r fo
u

r d
ifferen

t w
ays o

f ch
o

o
sin

g
 test cases O

R
 tw

o
 d

ifferen
t w

ays o
f ch

o
o

sin
g

 test
cases to

g
eth

er w
ith

 a g
o

o
d

 exp
lan

atio
n

 o
f w

h
y each

 ap
p

ro
ach

 is g
o

o
d

. C
an

 g
ive o

n
e m

ark fo
r

talkin
g

 ab
o

u
t th

e d
ifferen

ce b
etw

een
 b

lack an
d

 w
h

ite b
o

x testin
g

, b
u

t n
eed

s m
o

re sp
ecific

w
ays o

f ch
o

o
sin

g
 test cases to

 g
et m

o
re m

arks:
Boundary conditions
N
orm

al behaviours
O
ff-nom

inal cases (inputs that the program
 is not supposed to be able to handle)

Param
eters in the wrong order

D
ifferent ‘paths’ through the specification

Test each branch
Test each conditional statem

ent

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec23 8

H
ow we grade it...

c) Integration testing can be tackled top-down or bottom
-up. D

escribe each of
these strategies. W

hy is integration testing harder than unit testing?
[4 m

arks]
1 m

ark fo
r d

escrib
in

g
 each

 strateg
y. 1 extra m

ark fo
r m

akin
g

 th
e d

ifferen
ce clear, o

r fo
r

d
escrib

in
g

 ad
van

tag
es o

f each
. 1 m

ark fo
r sayin

g
 w

h
y in

teg
ratio

n
 testin

g
 is h

ard
er.

Top-down: test the top level (‘m
ain’) procedure first, with stubs for each procedure it

calls. Stubs should check whether param
eters passed downs are okay, and return

som
e test data. Then integrate the next level of procedures and test again, repeat

until you’ve integrated the bottom
 level procedures

Bottom
-up: first test those procedures that don’t call any others. Then integrate &

test the procedures that call the ones you’ve tested, repeat until you reach the top
level (m

ain) procedure.
In

teg
ratio

n
 testin

g
 is h

ard
er b

ecau
se it is im

p
o

ssib
le to

 en
su

re every p
ath

 th
ro

u
g

h
 th

e
in

teg
rated

 system
 is tested

, it’s m
u

ch
 h

ard
er to

 track d
o

w
n

 erro
rs, an

d
 in

terface erro
rs th

at
sh

o
w

 u
p

 in
 in

teg
ratio

n
 testin

g
 ten

d
 to

 b
e m

o
re su

b
tle.

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec23 9

H
ow we grade it...

d) Explain the purpose of each of the following. W
hat types of error is each likely

to find?
i) Endurance testing
ii) Recoverability testing
iii) Regression testing

[6 m
arks]

1 m
ark fo

r exp
lain

in
g

 each
 o

f th
ree typ

es, 1 m
ark fo

r d
escrib

in
g

 th
e typ

es o
f erro

r each
 w

ill fin
d

.

Endurance testing m
eans leaving the system

 running for long periods of tim
e. It will

catch errors that show up only after a long run, e.g. m
em

ory leaks.
Recoverability testing tests how well the software can recover from

 bad data, from
hardware failure, from

 failure of system
s it interacts with, from

 failure of
com

ponents within the software. Type of error found are where data (e.g. file
system

) gets corrupted and cannot be recovered, program
 can’t be re-started after

a crash, etc.
Regression testing m

eans running all the tests again (even those that already passed)
each tim

e the software is m
odified. This catches errors that are introduced as the

result of fixing other errors.

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec23 10

H
ow we grade it...

e) The com
pany you work for develops internet applications. To reduce tim

e to
m
arket, the com

pany is considering dispensing altogether with integration testing.
Instead, the com

pany plans to rely on Beta testing, in which free trial versions
of new software will be sent to existing, trusted custom

ers to try out, with the
agreem

ent that they will report any problem
s they encounter. W

hat are the
advantages and disadvantages of this approach?

[4 m
arks]

2 m
arks fo

r g
o

o
d

 ad
van

tag
es. E

.g
:

Cheaper
M

ay be able to get the software to m
arket quicker

Generates early interest in the software, lets users know its on the way.
Real users are m

ore likely to try out typical patterns of usage
Real users are m

ore likely to try doing dum
b things to the software

Real users will try out the software on all sorts of weird hardware configurations
2 m

arks fo
r g

o
o

d
 d

isad
van

tag
es. E

.g
:

Cannot control the testing
Cannot guarantee anything about how thoroughly the software was tested
Com

petitors m
ay get hold of your software quicker

Cannot guarantee the beta testers will report all errors they find
Beta testers will report all sorts of things that are not errors

