
University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec22 1

Lecture 22:
Software M

easurem
ent

Basics of software m
easurem

ent
m
etrics

predictive m
odels

validity

Som
e exam

ple m
odels

CO
CO

M
O
 (for effort and tim

e estim
ation)

Function Points (for estim
ating software size)

Reliability M
odels

Cyclom
atic Com

plexity

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec22 2

Basics of Software M
easurem

ent
D
efinitions

M
etric - a quantifiable characteristic of software

M
easurem

ent - the process of m
apping from

 real world attributes to a
m
athem

atical representation
M

odel - a m
athem

atical relationship between m
etrics

e.g. between quality factors and available m
etrics

Validity - D
oes the m

etric accurately m
easure what it purports to m

easure
Prediction system

 - a set of m
etrics and a m

odel that can be used to predict
som

e attribute of a future entity.
D
eterm

inistic predictions give the sam
e result for the sam

e inputs
Stochastic predictions provide a window of error around the actual value

D
ifficulties with software m

easurem
ent

W
e are not m

easuring repeatable, objective phenom
ena

Software developm
ent is so com

plex that all m
odels are weak approxim

ations
m
odels that work for one project or team

 don’t work for others
local contingency factors m

ay be m
ore im

portant than the m
etrics in the m

odel

Source: A
dapted from

 P
fleeger 1998, p465-470

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec22 3

CO
nstructive CO

st M
odel (CO

CO
M

O
)

U
sed to predict cost of a project from

 a m
easure of size (lines of code)

Basic m
odel is:

E = aL b

M
odeling process

Establish type of project (organic, sem
idetached, em

bedded)
this gives sets of values for a and b

Identify the com
ponent m

odules, and estim
ate L for each m

odule
A
djust L according to how m

uch is reused
CO

CO
M

O
 has a m

odel for adjusting according to how m
uch design, code and integration data is

reused
Com

pute effort for each m
odule using E = aL b

A
djust E according to difficulty of the project

CO
CO

M
O
 identifies 15 effort m

ultipliers to take into account
Product attributes: eg required reliability, com

plexity, database size
Com

puter attributes: eg execution tim
e constraints, storage constraints, etc.

Personnel attributes: eg capability & experience of analysts and program
m
ers,

Project attributes: eg use of CA
SE tools, program

m
ing language, schedule

Com
pute tim

e using T = cE d

c and d provided for different project types like a and b were

Exam
ple m

odel: CO
CO

M
O

effort

lines of code

project specific factors

Source: A
dapted from

 van V
liet, 1999, section 7.3.2

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec22 4

Exam
ple m

odel: Function Points
Function Points

used to caculate size of software from
 a statem

ent of the problem
tries to address variability in lines of code estim

ates used in m
odels such as

CO
CO

M
O

e.g. because SLO
C varies with different languages

O
riginally for inform

ation system
s, although other variants exist

Basic m
odel is:

FP = a
1 I + a

2 O
 + a

3 E + a
4 L + a

5 F

Exam
ple

Sets of weightings (ai) provided for different types of project
M

easure properties of the problem
 statem

ent:
I = num

ber of user inputs (data entry)
O
 = num

ber of user outputs (reports, screens, error m
essages)

E = num
ber of user queries

L = num
ber of files

F = num
ber of external interfaces (to other devices, system

s)
Exam

ple calculation:
FP = 4I + 5O

 + 4E + 10L + 7F weighting factor for this m
etric

m
etric from

 problem
 statem

ent

Source: A
dapted from

 van V
liet, 1999, section 7.3.5

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec22 5

M
otorola’s Zero-failure testing m

odel
Predicts how m

uch m
ore testing is needed to establish a given reliability goal

basic m
odel:

failures = a
 e -b(t)

Reliability estim
ation process

Inputs needed:
fd = target failure density (e.g. 0.03 failures per 1000 LO

C)
tf = total test failures observed so far
th = total testing hours up to the last failure

Calculate num
ber of further test hours needed using:

ln(fd/(0.5 + fd)) x th
ln((0.5 + fd)/(tf + fd))

Result gives the num
ber of further failure free hours of testing needed to

establish the desired failure density
if a failure is detected in this tim

e, you stop the clock and recalculate

N
ote: this m

odel ignores operational profiles!

Exam
ple m

odel: Reliability growth

em
pirical constants

testing tim
e

Source: A
dapted from

 P
fleeger 1998, p359

test tim
e

failures

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec22 6

Exam
ple m

odel: Cyclom
atic Com

plexity
M

cCabes’ com
plexity m

easure
This is a m

easurem
ent m

odel, not a predictive m
odel

It m
easures com

plexity as a function of the num
ber of paths through a

program
Basic m

odel is:
CV = e - n + p + 2

A
pplication

D
raw each m

odule as flowchart
Convert each flowchart to a graph

nodes show statem
ents, edges show control paths

branches (IF, W
H
ILE, etc) have m

ultiple edges com
ing out of them

Count edges and nodes in each graph
CV also corresponds to the num

ber of linearly independent paths in the graph
CV > 10 is usually taken as an indicator that a m

odule is overly com
plex

But the validity of this m
easure is hotly disputed!

Source: A
dapted from

 van V
liet, 1999, pp308-311

“cyclom
atic com

plexity”
num

ber of nodes

num
ber of edges

num
ber of graphs (procedures)

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec22 7

But software m
easurem

ent is hard
Key problem

s for software m
easurem

ent:
M

ost attributes of interest cannot be m
easured directly

M
ost m

etrics are very hard to validate
M

ost m
odels are at best vague approxim

ations
The validity of each of the m

odels described is disputed
M

odels usually have to be adapted to a particular organization
N
eed to collect data over a long period to validate and adapt the m

odels
The technology keeps changing

param
eters for these m

odels are derived from
 past projects which m

ight be unlike
future projects

Predictive m
odels can be self-fulfilling

Predictive m
odel is used to generate effort and tim

e estim
ates

…which are used to generate a project plan
…which is used by m

anagers to m
anage the project to

…so the project ends up having to conform
 to the estim

ate!

But you cannot control it if you cannot m
easure it

poor m
odels m

ay be better than no m
odels at all

predictions will need to be continuously revised as the project proceeds

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec22 8

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd Edition)” W
iley,

1999.Chapter 6 has som
e introductory com

m
ents about m

easurem
ent of various different things in software

engineering, especially with respect to any attem
pt to m

easure software quality. Various m
etrics are

introduced throughout the book, at appropriate places. For exam
ple, cost estim

ation (CO
CO

M
O
, Function

Point A
nalysis, etc) is in chapter 7; m

easurem
ent of design com

plexity (H
alstead, M

cCabe, …) is in
chapter 11; m

easurem
ent of testing (test coverage, test adequacy criteria) is in chapter 13; and

reliability estim
ation is in chapter 18. This is of course appropriate – m

easurem
ent should be an

integrated part of software engineering, not som
ething you bolt on afterwards!

Pfleeger, S. L. “Software Engineering: Theory and Practice” Prentice H
all, 1998.

Pfleeger’s research area is software m
easurem

ent, so she gives it a very strong treatm
ent throughout

her book.

