
University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec21 1

Lecture 21:
Process Im

provem
ent

Basics of Process M
odeling

background in industrial process im
provem

ent and statistical control

definitions

M
anaging Process Change

The quest for continuous process im
provem

ent

H
um

phrey’s Capability M
aturity M

odel (CM
M

)

Towards Zero-D
efect Software

lessons from
 N

A
SA

’s Software Engineering Lab

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec21 2

Basics of process m
odeling

Software Process
“the collection of related activities, events, m

echanism
s, tasks, and

procedures seen as a coherent process for production of a software system
to m

eet a given need”
“Software processes are software too!”

Benefits of explicitly m
odeling the process:

im
proved com

m
unication am

ong team
process reuse: successes can be repeated
process im

provem
ent: can ensure lessons learnt are incorporated after each

project
A
 software developm

ent project has two m
ain outputs: a product and som

e
experience

The experience is often thrown away
Individuals m

ay rem
em

ber and apply the lessons (but individuals m
ove on, or don’t

have the authority to change things)

U
nderlying principle

Fix the process not the product

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec21 3

Background
Industrial Engineering

Product Inspection (1920s)
exam

ine interm
ediate and final products to detect defects

Process Control (1960s)
m
onitor defect rates to identify defective process elem

ents & control the process
D
esign Im

provem
ent (1980s)

engineering the process and the product to m
inim

ize the potential for defects

D
em

ing and TQ
M

U
se statistical m

ethods to analyze industrial production processes
Identify causes of defects and elim

inate them
Basic principles are counter-intuitive:

in the event of a defect (sam
ple product out of bounds)…

…don’t adjust the controller or you’ll m
ake things worse.

Instead, analyze the process and im
prove it

A
dapted to Software

N
o variability am

ong individual product instances
A
ll defects are design errors (no m

anufacturing errors)
Process im

provem
ent principles still apply (to the design process!)

Source: A
dapted from

 B
lum

, 1992, p473-479. See also van V
liet, 1999, sections 6.3 and 6.6

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec21 4

com
pany process
database

Process M
odeling & im

provem
ent

Process D
escription

understand and describe current
practices

Process D
efinition

Prescribe a process that reflects the
organization’s goals

Process custom
ization

adapt the prescribed process m
odel for

each individual project

Process enactm
ent

Carry out the process
I.e. develop the software!
collect process data

Process im
provem

ent
use lessons learnt from

 each project to
im

prove the prescriptive m
odel

e.g. analyze defects to elim
inate causes

process
description

process
definition

process
custom

-
ization

process
enactm

ent

current
m
odel

observations
quality
goals

prescriptive
process m

odel

prescriptive
process m

odel

software
product

lessons
learnt

custom
ized

process m
odel

project
goals

process
im

provem
ent

PRO
JECT X

im
proved

process
m
odel

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec21 5

M
anaging Process Change

H
um

phrey’s principles:
M

ajor changes to software processes m
ust start at the top

… with senior m
anagem

ent leadership

U
ltim

ately everyone m
ust be involved

Effective change requires a goal and knowledge of the current process
you need a m

ap
you need to know where you are on the m

ap!

Change is continuous
process im

provem
ent is not a one-shot effort

Software process change will not be retained without conscious effort and
periodic reinforcem

ent
Software process im

provem
ent requires investm

ent

Software Engineering Process Groups (SEPGs)
Team

 of people within a com
pany responsible for process im

provem
ent

identifies key problem
s, establishes priorities, assigns resources, tracks progress,

etc.

N
eeds senior m

anagem
ent support

Source: A
dapted from

 H
um

phrey, 1989, chapter 1.

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec21 6

Capability M
aturity M

odel
Source: A

dapted from
 H

um
phrey, 1989, chapter 1. See also van V

liet, 1999, section 6.6.

level
characteristic

key challenges
5. optim

ized
im

provem
ent fed

back into process
identify process indicators,
“em

pow
er” individuals

4. m
anaged

(quantitative)
m

easured process
autom

atic collection of process
data, use process data to analyze
and m

odify the process

3. defined
(qualitative)
process defined,
institutionalized

process m
easurem

ent, process
analysis, quantitative quality
plans

2. repeatable
(intuitive) process
dependent on
individuals

establish process group, identify
a process architecture, introduce
SE m

ethods and tools

1. initial
ad hoc, chaotic, no
cost estim

ation,
planning,
m

anagem
ent

project m
anagem

ent, project
planning, configuration
m

anagem
ent, change control,

softw
are quality assurance

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec21 7

Towards Zero D
efect Software

Cannot test-in software quality
testing or inspection cannot im

prove the quality of a software product
(by that stage it is too late)

D
efect rem

oval
Two ways to rem

ove defects:
fix the defects in each product (i.e patch the product)
fix the process that leads to defects (i.e. prevent them

 occurring)

The latter is cost effective as it affects all subsequent projects

D
efect prevention (from

 H
um

phrey)
Program

m
ers m

ust evaluate their own errors
feedback is essential for defect prevention
there is no single cure-all for defects (m

ust elim
inate causes one by one)

process im
provem

ent m
ust be an integral part of the process

process im
provem

ent takes tim
e to learn

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec21 8

SEL Experience Factory
N
A
SA

 Goddard’s Software Engineering Lab (SEL)
20 years of m

easurem
ent and evaluation of software processes

Large baseline of experience accum
ulated

Card’s conclusions:
Software engineering without m

easurem
ent is not engineering

A
 software enterprise can collect too m

uch data
data collection is expensive (e.g. 5%

-10%
 of developm

ent cost)
need to know why you’re collecting data before you collect it

Software science m
odels do not appear to have practical usefulness

H
alstead’s, M

cCabe’s com
plexity m

odels based on theory, not practical utility
Standards that arbitrarily lim

it m
odule size seem

 to be ill-advised
Inform

ation hiding is m
ore im

portant than reducing ‘bad’ form
s of coupling

Productivity num
bers are often crude and m

ay be m
isleading

because they don’t distinguish between necessary and unnecessary code
D
elivered source lines of code is not a good m

easure of work output
Standards are often too com

prehensive
U
nique projects can still be m

easured against them
selves

m
easurem

ent is for controlling and im
proving, not for com

paring projects
Test coverage is a vital but seldom

 used m
easure

U
nreferenced variables are a good indicator of trouble

M
easurem

ent m
akes productivity and quality im

provem
ent m

eaningful

Source: A
dapted from

 B
lum

, 1992, p484-486

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec21 9

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd Edition)” W
iley,

1999.van Vliet gives an overview of quality m
anagem

ent practices in chapter 6. H
e covers ISO

 9001 as well as CM
M

, and has a
brief com

parison with other international standards including IEEE Std 730, BO
O
TSTRA

P, and SPICE. H
e also does a nice

sum
m
ary of quality, quoting appropriately from

 “Zen and the A
rt of M

otorcycle M
aintenance” (see lecture 12!). van Vliet also

then segues into software m
easurem

ent issues, including a cute analogy on the uses of m
easurem

ent, in which we observe
that black cows produce m

ore m
ilk than white cows, and use this to conclude that we should paint all the cows black. This

sum
m
arizes very nicely what quality process m

anagem
ent ends up doing when applied blindly!

H
um

phrey, W
. S. “M

anaging the Software Process”. A
ddison-W

esley, 1989.
This book set out m

any of the central ideas of process m
anagem

ent and process im
provem

ent. H
um

phrey describes the
capability m

aturity m
odel (CM

M
) in detail. Chapter 1 of this book (in which the CM

M
 is first introduced) is included in the

course readings. O
f course, H

um
phrey was one of the m

ain inventors of CM
M

, and hence he doesn’t cover any of it’s
weaknesses, but van Vliet gives a m

ore balanced coverage.

Blum
, B. “Software Engineering: A

 H
olistic View”. O

xford U
niversity Press, 1992.

Section 6.2.5 is a very sensible overview of process im
provem

ent. Since Blum
’s book was written, the CM

M
 and its variants

have been widely adopted across the industry, prom
oted by the U

S D
oD

-sponsored Software Engineering Institute (SEI).
The CM

M
 has been elaborated with detailed “key process areas” (KPA

s), which have com
e to be seen as attainm

ent targets
by com

panies, and the CM
M

 has been used as a way of assessing a com
pany’s software quality. U

nfortunately, along the way,
m
uch of the im

portant insights have been lost; very few authors understand what is im
portant about process im

provem
ent as

well as Blum
 does.

