@ .. .
- University of Toronto Department of Computer Science

¥
Lecture 21:

Process Improvement

Basics of Process Modeling

background in industrial process improvement and statistical control

definitions

Managing Process Change

The quest for continuous process improvement
Humphrey's Capability Maturity Model (CMM)

Towards Zero-Defect Software

lessons from NASA's Software Engineering Lab

© 2001, Steve Easterbrook CSC444 Lec21 1

@ .. .
- University of Toronto Department of Computer Science

W Basics of process modeling
Software Process

“the collection of related activities, events, mechanisms, tasks, and
procedures seen as a coherent process for production of a software system
to meet a given need”

"Software processes are software tool”

Benefits of explicitly modeling the process:

improved communication among team
process reuse: successes can be repeated

process improvement: can ensure lessons learnt are incorporated after each
project
A software development project has two main outputs: a product and some
experience
The experience is often thrown away

Individuals may remember and apply the lessons (but individuals move on, or don't
have the authority to change things)

Underlying principle

Fix the process not the product

© 2001, Steve Easterbrook CSC444 Lec21 2

&

£ _University of Toronto Department of Computer Science
@v Source: Adapted from Blum, 1992, p473-479. See also van Vliet, 1999, sections 6.3 and 6.6
A
ndustrial Engineering wanxm1ocza

Product Inspection (1920s)

examine intermediate and final products to detect defects

Process Control (1960s)

monitor defect rates to identify defective process elements & control the process

Design Improvement (1980s)
engineering the process and the product to minimize the potential for defects

Deming and TQM

Use statistical methods to analyze industrial production processes
Identify causes of defects and eliminate them

Basic principles are counter-intuitive:
in the event of a defect (sample product out of bounds)...
..don't adjust the controller or you'll make things worse.
Instead, analyze the process and improve it

Adapted to Software

No variability among individual product instances
All defects are design errors (no manufacturing errors)
Process improvement principles still apply (fo the design process!)

© 2001, Steve Easterbrook CSC444 Lec21 3

< University of Toronto

e Department of Computer Science
]

Process Description

understand and describe current
practices

observations
process

description

Process Definition

Prescribe a process that reflects the
organization's goals

Process customization

adapt the prescribed process model for

Process Modeling & improvement

current quality
model goals
process
definition
prescriptive
procesg Bnum_
company process
database
improved

each individual project

project
yelk process
Process enactment
custom-
Carry out the process ization
I.e. develop the softwarel!
collect process data)
customize

process model

Process improvement

use lessons learnt from each project to
improve the prescriptive model

PROJECT X

prescriptive
process model

process

process
mprovemen

enactment

lessons
learnt

e.g. analyze defects to eliminate causes

moissq./m/v
product

© 2001, Steve Easterbrook

CSC444 Lec21 4

@ .. .
- University of Toronto Department of Computer Science

") Managing Process Change

. . . Source: Adapted from Humphrey, 1989, chapter 1.
Humphrey's principles:
Major changes to software processes must start at the top
.. with senior management leadership
Ultimately everyone must be involved

Effective change requires a goal and knowledge of the current process
you need a map
you need to know where you are on the map!

Change is continuous
process improvement is not a one-shot effort

Software process change will not be retained without conscious effort and
periodic reinforcement

Software process improvement requires investment

Software Engineering Process Groups (SEPGs)

Team of people within a company responsible for process improvement

identifies key problems, establishes priorities, assigns resources, tracks progress,
etc.

Needs senior management support

© 2001, Steve Easterbrook CSC444 Lec21 5

University of Toronto

Department of Computer Science

Capability Maturity Model

Source: Adapted from Humphrey, 1989, chapter 1. See also van Vliiet, 1999, section 6.6.

level

characteristic

key challenges

5. optimized

improvement fed
back into process

identify process indicators,
“empower”’ individuals

automatic collection of process

individuals

4. managed (quantitative) data, use process data to analyze
measured process .
and modify the process
(qualitative) process measurement, process
3. defined process defined, analysis, quantitative quality
institutionalized plans
(intuitive) process |establish process group, identify
2. repeatable |dependent on a process architecture, introduce

SE methods and tools

1. initial

ad hoc, chaotic, no
cost estimation,
planning,
management

project management, project
planning, configuration
management, change control,
software quality assurance

© 2001, Steve Easterbrook

CSC444 Lec21 6

.,,..m.ﬂm.f

o=

@ -
Tz E
ARBOR |

University of Toronto Department of Computer Science

Towards Zero Defect Software

Cannot test-in software quality

testing or inspection cannot improve the quality of a software product
(by that stage it is too late)

Defect removal

Two ways to remove defects:
fix the defects in each product (i.e patch the product)
fix the process that leads to defects (i.e. prevent them occurring)

The latter is cost effective as it affects all subsequent projects

Defect prevention (from Humphrey)

Programmers must evaluate their own errors

feedback is essential for defect prevention

there is no single cure-all for defects (must eliminate causes one by one)
process improvement must be an integral part of the process

process improvement takes time to learn

© 2001, Steve Easterbrook CSC444 Lec21 7

University of Toronto source: adapied from Bium, 1992, p434-486 Department of Computer Science

SEL Experience Factory
Z>m> Goddard’'s Software Engineering Lab (SEL)

20 years of measurement and evaluation of software processes
Large baseline of experience accumulated

Card'’s conclusions:

Software engineering without measurement is not engineering

A software enterprise can collect too much data
data collection is expensive (e.g. 5%-10% of development cost)
need to know why you're collecting data before you collect it

Software science models do not appear to have practical usefulness
Halstead's, McCabe's complexity models based on theory, not practical utility

Standards that arbitrarily limit module size seem to be ill-advised
Information hiding is more important than reducing 'bad’ forms of coupling

Productivity numbers are often crude and may be misleading
because they don't distinguish between necessary and unnecessary code

Delivered source lines of code is not a good measure of work output
Standards are often too comprehensive

Unique projects can still be measured against themselves
measurement is for controlling and improving, not for comparing projects

Test coverage is a vital but seldom used measure
Unreferenced variables are a good indicator of trouble
Measurement makes productivity and quality improvement meaningful

© 2001, Steve Easterbrook CSC444 Lec21 8

..:.
S
iy
S

= University of Toronto Department of Computer Science

References

van Vliet, H. "Software Engineering: Principles and Practice (2nd Edition)” Wiley,
1999.

van Vliet gives an overview of quality management practices in chapter 6. He covers ISO 9001 as well as CMM, and has a
brief comparison with other international standards including IEEE Std 730, BOOTSTRAP, and SPICE. He also does a nice
summary of quality, quoting appropriately from “"Zen and the Art of Motorcycle Maintenance” (see lecture 12!). van Vliet also
then segues into software measurement issues, including a cute analogy on the uses of measurement, in which we observe
that black cows produce more milk than white cows, and use this to conclude that we should paint all the cows black. This
summarizes very nicely what quality process management ends up doing when applied blindly!

Humphrey, W. S. "Managing the Software Process”. Addison-Wesley, 1989.

This book set out many of the central ideas of process management and process improvement. Humphrey describes the
capability maturity model (CMM) in detail. Chapter 1 of this book (in which the CMM is first introduced) is included in the
course readings. Of course, Humphrey was one of the main inventors of CMM, and hence he doesn't cover any of it's
weaknesses, but van Vliet gives a more balanced coverage.

Blum, B. "Software Engineering: A Holistic View"”. Oxford University Press, 1992.

Section 6.2.5 is a very sensible overview of process improvement. Since Blum's book was written, the CMM and its variants
have been widely adopted across the industry, promoted by the US DoD-sponsored Software Engineering Institute (SEI).
The CMM has been elaborated with detailed “key process areas” (KPAs), which have come to be seen as attainment targets
by companies, and the CMM has been used as a way of assessing a company's software quality. Unfortunately, along the way,
much of the important insights have been lost; very few authors understand what is important about process improvement as
well as Blum does.

© 2001, Steve Easterbrook CSC444 Lec21 9

