
University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec20 1

Lecture 20:
Software M

aintenance
Software Evolution

Software types

Laws of evolution

M
aintaining software

types of m
aintenance

challenges of m
aintenance

Reengineering and reverse engineering

Software Reuse

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec20 2

Program
 Types

S-type Program
s (“Specifiable”)

problem
 can be stated form

ally and com
pletely

acceptance: Is the program
 correct according to its specification?

This software does not evolve.
A
 change to the specification defines a new problem

, hence a new program

P-type Program
s (“Problem

-solving”)
im

precise statem
ent of a real-world problem

acceptance: Is the program
 an acceptable solution to the problem

?

This software is likely to evolve continuously
because the solution is never perfect, and can be im

proved
because the real-world changes and hence the problem

 changes

E-type Program
s (“Em

bedded”)
A
 system

 that becom
es part of the world that it m

odels

acceptance: depends entirely on opinion and judgem
ent

This software is inherently evolutionary
changes in the software and the world affect each other

Source: A
dapted from

 Lehm
an 1980, pp1061-1063

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec20 3

form
al

statem
ent

of problem

PRO
GRA

M

solution

real
world

controls the
production

of

provides
m
aybe of

interest to

m
ay

relate
to

real
world

requirem
ents

specification

PRO
GRA

M

abstract
view of world

solution

com
pare

change

change

real world

PRO
GRA

M

abstract
view of world

requirem
ents

specification

m
odel

change

S
-typ

e

P
-typ

e

E
-typ

e

Source: A
dapted from

 Lehm
an 1980, pp1061-1063

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec20 4

Laws of Program
 Evolution

Continuing Change
A
ny software that reflects som

e external reality undergoes continual
change or becom

es progressively less useful
The change process continues until it is judged m

ore cost effective to replace
the system

 entirely

Increasing Com
plexity

A
s software evolves, its com

plexity increases…
…unless steps are taken to control it.

Fundam
ental Law of Program

 Evolution
Software evolution is self-regulating with statistically determ

inable
trends and invariants

Conservation of O
rganizational Stability

D
uring the active life of a software system

, the work output of a
developm

ent project is roughly constant (regardless of resources!)

Conservation of Fam
iliarity

D
uring the active life of a program

 the am
ount of change in successive

releases is roughly constant

Source: A
dapted from

 Lehm
an 1980, pp1061-1063. See also, van V

liet, 1999, P
p59-62

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec20 5

Types of M
aintenance

Corrective M
aintenance

fixing latent errors
includes tem

porary patches and
workarounds

A
daptive M

aintenance
responding to external changes

changes in hardware platform
changes in support software

Perfective M
aintenance

im
proving the as-delivered software

user enhancem
ents

efficiency im
provem

ents

Preventative M
aintenance

Im
proves (future) m

aintainability
D
ocum

enting, com
m
enting, etc.

2
1

%

2
5

%

4
%

4
3

%

4
%

3
%

corrective

adaptive
user

enhancem
ents

perfective

efficiency otherpreventative

Source: A
dapted from

 van V
liet, 1999, p449.

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec20 6

Problem
s facing m

aintainers
Top five problem

s:
(Poor) quality of docum

entation
user dem

and for enhancem
ents and extensions

com
peting dem

ands for m
aintainers’ tim

e
difficulty in m

eeting scheduled com
m
itm

ents
turnover in user organizations

Lim
ited U

nderstanding
47%

 of software m
aintenance effort devoted to understanding the software

E.g. if a system
 has m

 com
ponents and we need to change k of them

…
…there are k*(m

-k) + k*(k-1)/2 interfaces to check for im
pact

also, >50%
 of effort can be attributed to lack of user understanding

I.e. incom
plete or m

istaken reports of errors & enhancem
ents

Low m
orale

software m
aintenance is regarded as less interesting than developm

ent

Source: A
dapted P

fleeger 1998, p423-424. See also, van V
liet, 1999, pp464-467

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec20 7

A
pproaches to m

aintenance
M

aintenance philosophies
“throw-it-over-the-wall” - som

eone else is responsible for m
aintenance

investm
ent in knowledge and experience is lost

m
aintenance becom

es a reverse engineering challenge

“m
ission orientation” - developm

ent team
 m

ake a long term
 com

m
itm

ent to
m
aintaining the software

Basili’s m
aintenance process m

odels:
Q

uick-fix m
odel

changes m
ade at the code level, as easily as possible

rapidly degrades the structure of the software

Iterative enhancem
ent m

odel
Changes m

ade based on an analysis of the existing system
attem

pts to control com
plexity and m

aintain good design

Full-reuse m
odel

Starts with requirem
ents for the new system

, reusing as m
uch as possible

N
eeds a m

ature reuse culture to be successful

Source: van V
liet,1999, pp473-475

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec20 8

Software Rejuvenation
Redocum

entation
Creation or revision of alternative representations of software

at the sam
e level of abstraction

Generates:
data interface tables, call graphs, com

ponent/variable cross references etc.

Restructuring
transform

ation of the system
’s code without changing its behavior

Reverse Engineering
analyzing a system

 to extract inform
ation about the behavior and/or structure

also D
esign Recovery - recreation of design abstractions from

 code, docum
entation,

and dom
ain knowledge

Generates:
structure charts, entity relationship diagram

s, D
FD

s, requirem
ents m

odels

Reengineering
Exam

ination and alteration of a system
 to reconstitute it in another form

A
lso known as renovation, reclam

ation

Source: van V
liet, 1999, P

p455-457

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec20 9

Reuse
Software reuse aim

s to cut costs
D
eveloping software is expensive, so aim

 to reuse for related system
s

Successful approaches focus on reusing knowledge and experience rather than just
software products

Econom
ics of reuse are com

plex as it costs m
ore to develop reusable software

Libraries of Reusable Com
ponents

dom
ain specific libraries (e.g. M

ath libraries)
program

 developm
ent libraries (e.g. Java A

W
T, C libraries)

D
om

ain Engineering
D
ivides software developm

ent into two parts:
dom

ain analysis - identifies generic reusable com
ponents for a problem

 dom
ain

application developm
ent - uses the dom

ain com
ponents for specific applications.

Software Fam
ilies

M
any com

panies offer a range of related software system
s

Choose a stable architecture for the software fam
ily

identify variations for different m
em

bers of the fam
ily

Represents a strategic business decision about what software to develop

Source: van V
liet, 1999, C

hapter 17

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec20 10

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd Edition)” W
iley,

1999.Chapter 14 is a very good introduction to the problem
s and approaches to software m

aintenance.
Chapter 17 covers software reuse in far m

ore detail than we’ll go into on this course.

Lehm
an, M

.M
. “Program

s, Life Cycles, and Laws of Software Evolution”.
Proceedings of the IEEE, vol 68, no 9, 1980.

Lehm
an was one of the first to recognise that software evolution is a fact of life. H

is experience with a
num

ber of large system
s led him

 to form
ulate his laws of evolution. This paper is included in the course

readings. It is widely cited.

Pfleeger, S. L. “Software Engineering: Theory and Practice” Prentice H
all, 1998.

Pfleeger’s chapter 10 provides som
e additional data on the costs of m

aintenance.

