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Lecture 20:
Software M

aintenance
Software Evolution

Software types

Laws of evolution

M
aintaining software

types of m
aintenance

challenges of m
aintenance

Reengineering and reverse engineering

Software Reuse
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Program
 Types

S-type Program
s (“Specifiable”)

problem
 can be stated form

ally and com
pletely

acceptance: Is the program
 correct according to its specification?

This software does not evolve.
A
 change to the specification defines a new problem

, hence a new program

P-type Program
s (“Problem

-solving”)
im

precise statem
ent of a real-world problem

acceptance: Is the program
 an acceptable solution to the problem

?

This software is likely to evolve continuously
because the solution is never perfect, and can be im

proved
because the real-world changes and hence the problem

 changes

E-type Program
s (“Em

bedded”)
A
 system

 that becom
es part of the world that it m

odels

acceptance: depends entirely on opinion and judgem
ent

This software is inherently evolutionary
changes in the software and the world affect each other

Source: A
dapted from

 Lehm
an 1980, pp1061-1063
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Source: A
dapted from

 Lehm
an 1980, pp1061-1063
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Laws of Program
 Evolution

Continuing Change
A
ny software that reflects som

e external reality undergoes continual
change or becom

es progressively less useful
The change process continues until it is judged m

ore cost effective to replace
the system

 entirely

Increasing Com
plexity

A
s software evolves, its com

plexity increases…
…unless steps are taken to control it.

Fundam
ental Law of Program

 Evolution
Software evolution is self-regulating with statistically determ

inable
trends and invariants

Conservation of O
rganizational Stability

D
uring the active life of a software system

, the work output of a
developm

ent project is roughly constant (regardless of resources!)

Conservation of Fam
iliarity

D
uring the active life of a program

 the am
ount of change in successive

releases is roughly constant

Source: A
dapted from

 Lehm
an 1980, pp1061-1063. See also, van V

liet, 1999, P
p59-62
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Types of M
aintenance

Corrective M
aintenance

fixing latent errors
includes tem

porary patches and
workarounds

A
daptive M

aintenance
responding to external changes

changes in hardware platform
changes in support software

Perfective M
aintenance

im
proving the as-delivered software

user enhancem
ents

efficiency im
provem

ents

Preventative M
aintenance

Im
proves (future) m

aintainability
D
ocum

enting, com
m
enting, etc.

2
1
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%

4
%

4
3

%

4
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3
%

corrective

adaptive
user

enhancem
ents

perfective

efficiency otherpreventative

Source: A
dapted from

 van V
liet, 1999, p449.
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Problem
s facing m

aintainers
Top five problem

s:
(Poor) quality of docum

entation
user dem

and for enhancem
ents and extensions

com
peting dem

ands for m
aintainers’ tim

e
difficulty in m

eeting scheduled com
m
itm

ents
turnover in user organizations

Lim
ited U

nderstanding
47%

 of software m
aintenance effort devoted to understanding the software

E.g. if a system
 has m

 com
ponents and we need to change k of them

…
…there are k*(m

-k) + k*(k-1)/2 interfaces to check for im
pact

also, >50%
 of effort can be attributed to lack of user understanding

I.e. incom
plete or m

istaken reports of errors & enhancem
ents

Low m
orale

software m
aintenance is regarded as less interesting than developm

ent

Source: A
dapted P

fleeger 1998, p423-424. See also, van V
liet, 1999, pp464-467
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A
pproaches to m

aintenance
M

aintenance philosophies
“throw-it-over-the-wall” - som

eone else is responsible for m
aintenance

investm
ent in knowledge and experience is lost

m
aintenance becom

es a reverse engineering challenge

“m
ission orientation” - developm

ent team
 m

ake a long term
 com

m
itm

ent to
m
aintaining the software

Basili’s m
aintenance process m

odels:
Q

uick-fix m
odel

changes m
ade at the code level, as easily as possible

rapidly degrades the structure of the software

Iterative enhancem
ent m

odel
Changes m

ade based on an analysis of the existing system
attem

pts to control com
plexity and m

aintain good design

Full-reuse m
odel

Starts with requirem
ents for the new system

, reusing as m
uch as possible

N
eeds a m

ature reuse culture to be successful

Source: van V
liet,1999,  pp473-475
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Software Rejuvenation
Redocum

entation
Creation or revision of alternative representations of software

at the sam
e level of abstraction

Generates:
data interface tables, call graphs, com

ponent/variable cross references etc.

Restructuring
transform

ation of the system
’s code without changing its behavior

Reverse Engineering
analyzing a system

 to extract inform
ation about the behavior and/or structure

also D
esign Recovery - recreation of design abstractions from

 code, docum
entation,

and dom
ain knowledge

Generates:
structure charts, entity relationship diagram

s, D
FD

s, requirem
ents m

odels

Reengineering
Exam

ination and alteration of a system
 to reconstitute it in another form

A
lso known as renovation, reclam

ation

Source: van V
liet, 1999, P

p455-457
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Reuse
Software reuse aim

s to cut costs
D
eveloping software is expensive, so aim

 to reuse for related system
s

Successful approaches focus on reusing knowledge and experience rather than just
software products

Econom
ics of reuse are com

plex as it costs m
ore to develop reusable software

Libraries of Reusable Com
ponents

dom
ain specific libraries (e.g. M

ath libraries)
program

 developm
ent libraries (e.g. Java A

W
T, C libraries)

D
om

ain Engineering
D
ivides software developm

ent into two parts:
dom

ain analysis - identifies generic reusable com
ponents for a problem

 dom
ain

application developm
ent - uses the dom

ain com
ponents for specific applications.

Software Fam
ilies

M
any com

panies offer a range of related software system
s

Choose a stable architecture for the software fam
ily

identify variations for different m
em

bers of the fam
ily

Represents a strategic business decision about what software to develop

Source: van V
liet, 1999, C

hapter 17
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