
University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 1

Lecture 18:
Specifications

W
hat is a Specification
Purpose

A
udience

D
ifferent specs for different project types

Criteria for good specifications
clarity, consistency, com

pleteness

m
easurable & traceable

operational vs. definitional specs

Standards for specifications
IEEE standard for SRS

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 2

p
ro

d
u

ce
r

co
n

su
m

e
r

R
eq

u
irem

en
t

S
p
ecificatio

n
d
evelo

p
m

en
t

co
n
tracto

r
p
u
rch

aser

D
esig

n

S
p
ecificatio

n
im

p
lem

en
to

r
system

 arch
itect

M
o
d
u
le

S
p
ecificatio

n
p
ro

g
ram

m
er w

ritin
g

th
e m

o
d
u
le

p
ro

g
ram

m
er u

sin
g
 th

e
m

o
d
u
le

 a
g

re
e
m

e
n

t b
e
tw

e
e
n

W
hat is a Specification?

A
 specification is an agreem

ent…
…between the producer of a service…
…and the consum

er of that service

Software m
ust be specified precisely…

…if there is a danger of m
isunderstanding (or forgetting) the consum

er’s needs
…if m

ore than one person’s needs are represented
…if m

ore than one person will be developing the software

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 3

Uses of specifications
Statem

ent of user needs
com

m
unicates understanding of those needs to everyone

involved
acts as a check that the real needs have been captured

m
ust be understandable by the owners of those needs!

Statem
ent of im

plem
entation constraints

a point of reference for the developers
can be used to justify developm

ent goals and resources

D
ocum

entation of a product
a point of reference for product m

aintainers
m
ust be updated when the product is updated

baseline for change requests

A
 legal contract

a point of reference for verification and certification
m
ust be possible to determ

ine whether the specification was m
et

m
ust be updated whenever changes are negotiated

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 4

Choosing appropriate Spec types
Consider two different projects:

A
) Sm

all project, 1 program
m
er, 6 m

onths
program

m
er talks to custom

er, then writes up a 5-page m
em

o

B) Large project, 50 program
m
ers, 2 years

team
 of analysts m

odel the requirem
ents, then docum

ent them
 in a 500-page SRS

Source: A
dapted from

 B
lum

 1992, p154-5

P
ro

je
ct A

P
ro

je
ct B

p
u

rp
o

se
 o

f
sp

e
c?

crystalizes p
ro

g
ram

m
er's

u
n
d
erstan

d
in

g
; feed

b
ack to

cu

sto
m

er

b
u
ild

-to
 d

o
cu

m
en

t: m
u
st co

n
tain

en

o
u
g
h
 d

etail fo
r all p

ro
g
ram

m
ers

m
a
n

a
g

e
m

e
n

t
v
ie

w
?

sp
ec is irrelevan

t; h
ave alread

y
allo

cated
 reso

u
rces

w
ill u

se sp
ecs to

 estim
ate reso

u
rce

n
eed

s an
d
 p

lan
 d

evelo
p
m

en
t

re
a
d

e
rs?

p
rim

ary =
 sp

ec au
th

o
r,

S
eco

n
d
ary =

 cu
sto

m
er

p
rim

ary =
 all p

ro
g
ram

m
ers an

d

V
&

V
 team

, seco
n
d
ary =

 m
an

ag
ers,

cu
sto

m
ers

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 5

D
esiderata for Specifications

Valid (or “correct”)
expresses actual requirem

ents

Com
plete
Specifies all the things the system

 m
ust

do
...and all the things it m

ust not do!
Responses to all classes of input
Structural com

pleteness, and no T
BD

s!!

Consistent
doesn’t contradict itself (i.e. is

satisfiable)
U
ses all term

s consistently
N
ote: tim

ing and logic are especially
prone to inconsistency

N
ecessary

doesn’t contain anything that isn’t
“required”

U
nam

biguous
every statem

ent can be read in exactly
one way

define confusing term
s in a glossary

Verifiable
a process exists to test satisfaction of

each requirem
ent

“every requirem
ent is specified

behaviorally”

U
nderstandable (Clear)

by non-com
puter specialists

M
odifiable

Carefully organized, with m
inim

al
redundancy

T
raceable!

Source: A
dapted from

 the IE
E

E
-STD

-830-1993. See also van V
liet 1999, pp225-226

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 6

Restrictiveness vs. Generality
Specificand Sets

A
 specification describes a set of acceptable behaviours

The set of all im
plem

entations that m
eet a specification are its specificand set

There are always an infinite num
ber of possible im

plem
entations

E.g.

Restrictiveness:
a specification should rule out any im

plem
entation that is unacceptable to its

users

Generality:
a specification should be general enough so that few of the acceptable

im
plem

entations are excluded.
In particular the m

ore desirable (e.g. elegant, efficient) im
plem

entations
 should not be excluded.
Exam

ine every condition in the spec and ask if it’s really needed

procedure foo(x
: int

) returns y:int
effects

: x = y

procedure foo(x
: int

) returns y:int
effects

: x = y

This specification is
trivial, but its

specificand set is
still infinite!

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 7

A
m
biguity

Is this am
biguous?

Can test by trying to translate it:

if you get different answers from
 different people, then it is am

biguous.

“The system
 shall report to the operator all faults that

originate in critical functions or that occur during execution of
a critical sequence and for which there is no fault recovery

response.”

“The system
 shall report to the operator all faults that

originate in critical functions or that occur during execution of
a critical sequence and for which there is no fault recovery

response.”

originate in critical function
T

T
T

T
F

F
F

F
occur during critical sequence3

T
T

F
F

T
T

F
F

no fault recovery response
T

F
T

F
T

F
T

F
report to operator?

?
?

?
?

?
?

?
?

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 8

Consistency and Com
pleteness

Consistency:
an inconsistent specification contradicts itself and therefore cannot be

satisfied
inconsistency m

ay depend on context:

In practice, inconsistency is hard to test for.

Com
pleteness

internally com
plete:

all term
s are defined

no TBD
s

Com
plete with respect to the requirem

ents
i.e. describes all services needed by the users

In practice, com
pleteness is nearly im

possible to achieve
aim

 for balance between generality and restrictiveness

The text should be kept in lines of equal length specified by the user.
Spaces should be inserted between words to keep the line lengths equal.
A
 line break should only occur at the end of a word

The text should be kept in lines of equal length specified by the user.
Spaces should be inserted between words to keep the line lengths equal.
A
 line break should only occur at the end of a word

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 9

O
perational vs. D

efinitional
A
n O

perational Specification…
describes an abstraction in term

s of its intended behaviour
by describing how it m

ight work
e.g.

A
 D

eclarative Specification…
describes an abstraction in term

s of the desired properties of the
im

plem
entation

by describing som
e properties it m

ust obey
e.g.

D
eclarative specifications are better

M
ore general (less im

plem
entation bias)

Easier to verify

procedure search(list a,
int

x) returns int
effects

: returns i such that a[i]=x;
signals: NOT_IN if there is no such i.

procedure search(list a,
int

x) returns int
effects

: returns i such that a[i]=x;
signals: NOT_IN if there is no such i.

procedure search(list a,
int

x) returns int
effects

: examines each element of a in turn and returns
the index of the first one that is equal to x.

signals: NOT_IN if it reaches the end of the list
without finding x.

procedure search(list a,
int

x) returns int
effects

: examines each element of a in turn and returns
the index of the first one that is equal to x.

signals: NOT_IN if it reaches the end of the list
without finding x.

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 10

M
odifiability and Traceability

M
odifiability

well-structured, indexed, cross-referenced, etc.
redundancy reduces m

odifiability
avoid or clearly m

ark as such

A
n SRS is not m

odifiable if it is not traceable...

Traceability
Backwards: each requirem

ent traces to a source
e.g. a requirem

ent in the system
 spec; a stakeholder; etc

Forwards: each requirem
ent traces to parts of the design that satisfy that

requirem
ent

N
ote: traceability links are two-way; hence other docum

ents m
ust trace into

the SRS
Every requirem

ent m
ust have a unique label.

U
seful A

nnotations
E.g. relative necessity and relative stability

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 11

IEEE Standard for SRS
1 Introduction

Purpose

Scope

D
efinitions, acronym

s, abbreviations

Reference docum
ents

O
verview

2 O
verall D

escription
Product perspective

Product functions

U
ser characteristics

Constraints

A
ssum

ptions and D
ependencies

3 Specific Requirem
ents

A
ppendices

Index

1 Introduction
Purpose

Scope

D
efinitions, acronym

s, abbreviations

Reference docum
ents

O
verview

2 O
verall D

escription
Product perspective

Product functions

U
ser characteristics

Constraints

A
ssum

ptions and D
ependencies

3 Specific Requirem
ents

A
ppendices

Index

Identifies the product, &
application dom

ain

D
escribes contents and structure
of the rem

ainder of the SRS

D
escribes all external interfaces:

system
, user, hardware, software;

also operations, site adaptation,
and hardware constraints

Sum
m
ary of m

ajor functions

A
nything that will lim

it the
developer’s options (e.g. regulations,

reliability, criticality, hardware
lim

itations, parallelism
, etc)

A
ll the requirem

ents go in here (I.e.
this is the body of the docum

ent).
IEEE STD

 provides 8 different
tem

plates for this section

Source: A
dapted from

 IE
E

E
-STD

-830-1993 See also, van V
liet 1999, pp226-231

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 12

IEEE STD
 Section 3 (exam

ple)
3.1 External Interface

Requirem
ents

3.1.1 U
ser Interfaces

3.1.2 H
ardware Interfaces

3.1.3 Software Interfaces
3.1.4 Com

m
unication Interfaces

3.2 Functional Requirem
ents

this section organized by m
ode, user

class, feature, etc. For exam
ple:

3.2.1 M
ode 1

3.2.1.1 Functional Requirem
ent 1.1

…

3.2.2 M
ode 2

3.2.1.1 Functional Requirem
ent 1.1

…

...
3.2.2 M

ode n
...

3.3 Perform
ance Requirem

ents
Rem

em
ber to state this in m

easurable
term

s!

3.4 D
esign Constraints

3.4.1 Standards com
pliance

3.4.2 H
ardware lim

itations
etc.

3.5 Software System
A
ttributes
3.5.1 Reliability
3.5.2 A

vailability
3.5.3 Security
3.5.4 M

aintainability
3.5.5 Portability

3.6 O
ther Requirem

ents

Source: A
dapted from

 IE
E

E
-STD

-830-1993. See also, B
lum

 1992, p160

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec18 13

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd Edition)”
W

iley, 1999.
Section 9.2 covers m

ost of the m
aterial in this lecture, and gives a good introduction to the IEEE

standards.

IEEE-STD
-830-1993

Is the current IEEE standard that covers software specifications. It is available electronically through
the IEEE electronic library (access via U

 of T library website for the cam
pus-wide subscription)

Blum
, B. “Software Engineering: A

 H
olistic View”. O

xford U
niversity

Press, 1992
Provides som

e additional insights into how to write good specifications.

