
University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 1

Lecture 14:
Requirem

ents A
nalysis

Basic Requirem
ents Process

requirem
ents in the software lifecycle

the essential requirem
ents process

W
hat is a requirem

ent?
W

hat vs. H
ow

M
achine D

om
ain vs. A

pplication D
om

ain
Im

plem
entation Bias

N
on-functional Requirem

ents

N
otations, Techniques and M

ethods
Elicitation techniques
M

odeling m
ethods

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 2

Refresher: Software Lifecycles
W

aterfall M
odel

W
aterfall M

odel

requirem
ents

design

code

integrate

test

Blum
’s Essential M

odel
Blum

’s Essential M
odel

Real W
orld

Problem
Statem

ent

Im
plem

entation
Statem

ent

System

Correspondence
Correctness

Validation

Verification

Source: A
dapted from

 Lecture 2!

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 3

Basics of Requirem
ents Engineering

The ‘essential’ requirem
ents process:

U
nderstand the problem

use data gathering techniques to elicit requirem
ents

Eg. Interviews, Q
uestionnaires, Focus Groups, Prototyping, O

bservation,…

M
odel and A

nalyze the problem
use som

e m
odeling m

ethod(s)
Eg. Structured A

nalysis, O
bject O

riented A
nalysis, Form

al A
nalysis,…

A
ttain agreem

ent on the nature of the problem
validation
conflict resolution, negotiation

Com
m
unicate the problem

specifications, docum
entation, review m

eetings,

M
anage change as the problem

 evolves
Requirem

ents continue to evolve throughout software developm
ent

(introducing new software changes the problem
!!!)

requirem
ents m

anagem
ent - m

aintain the agreem
ent!

Source: A
dapted from

 N
useibeh &

 E
asterbrook, 2000

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 4

RE is the weak link in m
ost projects

Requirem
ents Engineering is hard (“wicked”):

A
nalysis problem

s have ill-defined boundaries (open-ended)

Requirem
ents are found in organizational contexts (hence prone to conflict)

Solutions to analysis problem
s are artificial

A
nalysis problem

s are dynam
ic

Tackling analysis requires interdisciplinary knowledge and skill

Requirem
ents Engineering is im

portant:
Engineering is about developing solutions to problem

s
A
 good solution is only possible if the engineer fully understands the problem

Errors cost m
ore the longer they go undetected

Cost of correcting a requirem
ents error is 100 tim

es greater in the m
aintenance phase than in the

requirem
ents phase

Experience from
 failed software developm

ent projects:
Failure to understand and m

anage requirem
ents is the biggest single cause of cost and schedule

over-runs

A
nalysis of safety problem

s
Safety-related errors tend to be errors in specifying requirem

ents, while non-safety errors tend
to be errors in im

plem
enting requirem

ents

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 5

W
hat vs. H

ow
Requirem

ents should specify ‘what’ but not ‘how’
But this is not so easy to distinguish:

W
hat does a car do?

W
hat does a web browser do?

‘W
hat’ refers to a system

’s purpose
it is external to the system
it is a property of the application dom

ain
‘H

ow’ refers to a system
’s structure and behavior

it is internal to the system
it is a property of the m

achine dom
ain

Requirem
ents only exist in the application dom

ain
D
istinguishing between the m

achine and the application dom
ain is essential for

good requirem
ents engineering

N
eed to draw a boundary around the application dom

ain
I.e. which things are part of the problem

 you are analyzing and which are not?

Source: A
dapted from

 Jackson, 1995, p207 and van V
liet 1999, p204-210

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 6

Im
plem

entation Bias
Im

plem
entation bias is the inclusion of requirem

ents that have no
basis in the application dom

ain
i.e. m

ixing som
e ‘how’ into the requirem

ents

Exam
ples:

The dictionary shall be stored in a hash table
The patient records shall be stored in a relational database

But som
etim

es it’s not so clear:
The software shall be written in FO

RTRA
N
.

The software shall respond to all requests within 5 seconds.
The software shall be com

posed of the following 23 m
odules

The software shall use the following fifteen m
enu screens whenever it is com

m
unicating

with the user.…

Instead of ‘what’ and ‘how’, ask:
is this requirem

ent only a property of the m
achine dom

ain?
in which case it is im

plem
entation bias

O
r is there som

e application dom
ain phenom

ena that justifies it?

Source: A
dapted from

 Jackson, 1995, p98

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 7

Functional vs. N
on-functional

“Functional Requirem
ents”

fundam
ental functions of the system

E.g. m
apping of inputs to outputs

E.g. control sequencing
E.g. tim

ing of functions
E.g. handling of exceptional situations
E.g. form

ats of input and output data (and stored data?)
E.g. real world entities and relationships m

odeled by the system

“N
on-Functional Requirem

ents (N
FRs)”

constraints/obligations (non-negotiable)
E.g. com

patibility with (and reuse of) legacy system
s

E.g. com
pliance with interface standards, data form

ats, com
m
unications protocols

quality requirem
ents (soft goals)

E.g. security, safety, availability, usability, perform
ance, portability,…

m
ust be specified Source: A

dapted from
 van V

liet 1999, p241-2

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 8

Elicitation Techniques
Traditional A

pproaches
Introspection
Interview/survey
Group elicitation

O
bservational approaches

Protocol analysis
Participant O

bservation (ethnom
ethodology)

M
odel-based approaches

Goal-based: hierarchies of stakeholders’ goals
Scenarios: characterizations of the ways in which the system

 is used
U
se Cases: specific instances of interaction with the system

Exploratory approaches
Prototyping (“plan to throw one away”)

Source: A
dapted from

 N
useibeh &

 E
asterbrook, 2000 and van V

liet 1999, section 9.1.1

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 9

M
odeling: N

otations vs. M
ethods

D
efinitions:

N
otation: a system

atic way of
presenting som

ething
m
ay be linguistic (textual) or
graphical (diagram

s)

A
 M

ethod provides:
a set of notations (e.g. for

different viewpoints)
techniques for using those notations

(esp. analysis techniques)
heuristics to provide guidance

N
otation or m

ethod?
Som

e notations have been adopted
by a num

ber of different m
ethods

Som
e ‘m

ethods’ are really just
notations

Tools usually support a single
m
ethod (or a single notation!!)

Exam
ple M

ethods
Structured A

nalysis
SA

D
T

SA
SD

Inform
ation Engineering

JSD

Entity-Relationship A
pproach

O
bject O

riented A
nalysis

Coad-Yourdon

O
M

T

U
M

L (not a m
ethod ??)

Form
al M

ethods
SCR

RSM
L

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 10

There are lots of things we could (should) m
odel:

Key questions
W

here do we start?
Structured A

nalysis starts by m
odeling the existing system

O
bject O

riented A
nalysis starts by identifying candidate objects

H
ow do we structure our m

odeling approach?
W

e can partition the problem
, abstract away detail, and create projections

M
odeling: W

here to start?
Source: A

dapted from
 Loucopoulos &

 K
arakostas, 1995, p73

A
pplication
D
om

ain

D
evelopm

ent
D
om

ain

U
sage

D
om

ain
M

achine
D
om

ain
U

ser
Interfaces

D
esign

D
ecisions

H
ow the m

achine
represents info about
the application dom

ain

H
ow info about the

application dom
ain will

be used by the system

Justification of
developm

ent goals

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 11

Structuring Principle 1: Partitioning
Partitioning

captures aggregation/part-of relationship

Exam
ple:

goal is to develop a spacecraft
partition the problem

 into parts:
guidance and navigation;
data handling;
com

m
and and control;

environm
ental control;

instrum
entation;

etc

N
ote: this is not a design, it is a problem

 decom
position

actual design m
ight have any num

ber of com
ponents, with no relation to these sub-

problem
s

H
owever, the choice of problem

 decom
position will probably be reflected in

the design

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 12

Structuring Principle 2: A
bstraction

A
bstraction

A
 way of finding sim

ilarities between concepts by ignoring som
e details

Focuses on the general/specific relationship between phenom
ena

Classification groups entities with a sim
ilar role as m

em
bers of a single class

Generalization expresses sim
ilarities between different classes in an ‘is_a’

association

Exam
ple:

requirem
ent is to handle faults on the spacecraft

m
ight group different faults into fault classes

•Source: A
dapted from

 D
avis, 1990, p48 and Loucopoulos &

 K
arakostas, 1995, p78

E
.g. based on sym

ptom
s of fault:

no response from
 device;

incorrect response;
self-test failure;
etc...

E
.g. based on location of fault:

instrum
entation fault,

com
m

unication fault,
processor fault,
etc

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 13

Structuring Principle 3: Projection
Projection:

separates aspects of the m
odel into m

ultiple viewpoints
sim

ilar to projections used by architects for buildings

Exam
ple:

N
eed to m

odel the com
m
unication between spacecraft and ground system

M
odel separately:

sequencing of m
essages;

form
at of data packets;

error correction behavior;
etc.

N
ote:

Projection and Partitioning are sim
ilar:

Partitioning defines a ‘part of’ relationship
Projection defines a ‘view of’ relationship

Partitioning assum
es a the parts are relatively independent

Source: A
dapted from

 D
avis, 1990, p48-51

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec14 14

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd Edition)” W
iley,

1999.Chapter 9 is an excellent introduction to the basics of requirem
ents engineering.

B. A
. N

useibeh and S. M
. Easterbrook, "Requirem

ents Engineering: A
 Roadm

ap",
In A

. C. W
. Finkelstein (ed) "The Future of Software Engineering". IEEE Com

puter Society
Press, 2000.

A
vailable at http://www.cs.toronto.edu/~sm

e/papers/2000/ICSE2000.pdf

Jackson, M
. “Software Requirem

ents & Specifications: A
 Lexicon of Practice,

Principles and Prejudices”. A
ddison-W

esley, 1995.
This is m

y favourite requirem
ents engineering book. It m

akes a wonderful and thought provoking read. It consists of a series
of short essays (each typically only a couple of pages long) that together really get across the m

essage of what requirem
ents

engineering is all about.

D
avis, A

. M
. “Software Requirem

ents: A
nalysis and Specification”. Prentice-H

all,
1990.This is probably the best textbook around on requirem

ents analysis, although is a little dated now.

Loucopoulos, P. and Karakostas, V. “System
 Requirem

ents Engineering”. M
cGraw

H
ill, 1995.

This short book provides a good overview of requirem
ents engineering, especially in a system

s context.

