
University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  1

Lecture 13:
Representing software designs

Viewpoints

Structural representations
e.g. dependency graphs

Functional representations
e.g. dataflow diagram

s

Behavioral representations
e.g. statecharts

D
ata M

odeling representations
e.g. entity relationship diagram

s



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  2

Representing D
esigns

From
 abstractions to system

s
abstractions allow us to ignore im

plem
entation details of

procedures and data structures

for large system
s we need to abstract away even m

ore detail

we need to represent higher level abstractions

D
esign representations will:

help us to see the big picture

allow us to com
m
unicate our designs with others

custom
ers, m

anagers, other developers, …
people with varying technical expertise

allow us to m
easure various quality attributes

com
pleteness, consistency, com

plexity, …



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  3

A
 viewpoint

tells you which details you can ignore when form
ing an abstraction

defines which details are relevant and which are not
a viewpoint has:

an owner (the person interested in this abstraction)
a dom

ain (the area of interest)
a representation schem

e

Exam
ple: Building a house

U
seful viewpoints:

the architect’s viewpoint (plan views, elevations, etc)
the plum

ber’s viewpoint (routing diagram
s for pipework, fittings layouts, etc)

the electrician’s viewpoint (wiring diagram
s, etc)

the buyer’s viewpoint (artist’s im
pression, floorplans, etc)

etc…
These m

ust all be consistent eventually!

Viewpoints can overlap
Som

e aspects of a design are com
m
on to several viewpoints

Viewpoints (a.k.a. “projections”)
Source: A

dapted from
 E

asterbrook &
 N

useibeh, 1996



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  4

Structural viewpoints
dom

ain: static properties (structure) of the software
representations: structure charts, dependency graphs, etc.

Functional viewpoints
dom

ain: the tasks perform
ed by the software, inform

ation flow
representations: dataflow diagram

s, procedural abstractions, etc.

Behavioral viewpoints
dom

ain: cause and effect within the program
representations: state transition diagram

s, statecharts, petri nets, etc.

D
ata-m

odeling viewpoints
dom

ain: the data objects and the relationships between them
representations: entity relationship diagram

s, object hierarchies

O
wnership?

Each of these viewpoints will be of interest to different people
e.g. structural viewpoints are of interest to m

anagers for planning purposes
e.g. functional viewpoints are of interest to requirem

ents analysts and users

Key Software D
esign Viewpoints

Source: A
dapted from

 B
udgen, 1994



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  5

Textoften hard to see the big picture

natural language is am
biguous

best used in sm
all chunks (e.g. for executive sum

m
aries)

D
iagram

s
good for showing relationships and structure…

…if they’re kept sim
ple:

sm
all num

ber of sym
bols (e.g. 2 types of box, 2 types of arrow)

m
ust represent an abstraction (e.g. a flow chart contains nearly all the detail of
code, so is not an abstraction)

should be easy to sketch inform
ally!

M
athem

atical Expressions (form
al specifications)

very precise, very concise

but require m
uch training

cannot (yet?) express all viewpoints (e.g. tim
ing is difficult to express)

N
otational form

s



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  6

Exam
ple notations

Structure charts
hierarchical decom

position
of program

D
ependency graphs

show the (static) control
flow

Structural notations
O
bjects m

odeled
usually program

 com
ponents

com
pilation units,

m
odules,

procedures
…

Relationships m
odeled

structural relationships between
com

ponents
static relationships only

“calls/controls”
“uses”
…

N
ote: structural notations deal with
structure of the program

, not
structure of the data. See also: van V

liet 1999, section 11.1.5 and 11.2.2



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  7

The
D
ependency
Graph

N
otes:

all edges m
ust be directed

all nodes m
ust be labeled with the nam

e of the procedure

only one edge between any two nodes (no m
atter how m

any
tim

es the procedure is called)

recursive procedures (& data abstractions) use them
selves

U
seful for:

debugging, integration, m
easuring coupling

p

q
r

e
d

Keyprocedure

data abstraction

‘uses’

‘weakly uses’
(refers to but
does not use)

pe

See also: van V
liet 1999, pp311-314



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  8

Exam
ple notations

D
ataflow diagram

s
show processes that transform

data

Procedural abstractions
(although these com

bine structural
viewpoint info too!)

Pseudo-code

Functional notations
O
bjects m

odeled
Program

 com
ponents

m
odules,

procedures,

Processes
these do not necessarily

correspond to com
ponents of

the program

Relationships m
odeled

inform
ation flow

inputs and outputs
“com

m
unicates with”.

“sends data to”
“received data from

”

See also: van V
liet 1999, sections 11.2.1 and 11.2.2



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  9

The D
ataflow D

iagram
 (D

FD
)

N
otes:

every process, flow, and datastore m
ust be labeled

representation is hierarchical
each process will be represented separately as a lower level D

FD
processes are norm

ally num
bered for cross reference

processes transform
 data

can’t have the sam
e data flowing out of a process as flows into it

Keyprocess

dataflow (no
control im

plied)

data store

external entity

system
 boundary

1.
determ

ine
form

 of
travel

2.
check

schedule

3.
reserve
seats

4.
issue

tickets

Tim
etables

Fare tables

custom
er

booking
system

booking
system

custom
er

travel
request

custom
er

query

schedule

proposed
itinerary

proposed
itinerary

booked
itinerary

fares

tickets

booking
confirm

ation

booking
request

See also: van V
liet 1999, pp322-325



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  10

Statecharts
like an STD

 but with superstates
and conditional transitions

Petri nets
for m

odeling process synchronization

Behavioral notations
O
bjects m

odeled
D
ynam

ic properties
events, states, actions, conditions

Relationships m
odeled

cause and effect

sequencing / parallelism

Exam
ple notations

State Transition D
iagram

s
m
odel the program

 as a finite
state m

achine

See also: van V
liet 1999, sections 9.3.2 and 12.2.2



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  11

busy

Statecharts

N
otes:
all states and transitions m

ust be labeled

transitions m
ay be conditional (conditions shown in brackets)

states can be grouped into superstates:
transitions out of superstates m

ay be taken from
 any substate

transitions into superstates go to the default substate

Keystate

transition

superstate

default initial
state

idle
ringing
tone

dial
tone

connected
engaged

tone

replace
receiver

lift
receiver

dial
(callee
busy)

dial
(callee idle)

callee
replaces
receiver

callee
lifts
receiver

idle

dial
tone

Source: A
dapted from

 E
asterbrook &

 N
useibeh, 1996



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  12

D
ata m

odelling notations

O
bjects m

odeled
any kind of data

data types,
objects,
attributes of objects,
classes,

Relationships m
odeled

com
positional
“part of”
“consists of”

classification
“is a kind of”

Exam
ple notations

Entity Relationship D
iagram

s
used in requirem

ents m
odeling

Class diagram
s

shows data abstraction
hierarchy

     N
ote: in O

O
D
, is used as a

         structural notation for the
        program

!!!

See also: van V
liet 1999, sections 9.3.1 and 12.2.1



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  13

Entity Relationship D
iagram

N
otes:
relationships relate entities, not their attributes

there is no standard way to show the cardinality of relationships

Keyentity

attribute

relationship

1-to-1

1-to-m
any

m
any-to-m

any

star

film

cast

producerdirector
  title    year  

  nam
e  

   age   

nationality

cast

film

 age 

See also: van V
liet 1999, section 9.3.1



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  14

Sum
m
ary

Viewpoints help in creating abstractions
a viewpoint is an abstraction created for a particular purpose by a particular

person
the viewpoint tells you what inform

ation to ignore when creating the
abstraction

each viewpoint has a suitable representation schem
e

U
seful software design viewpoints:

structural
functional
behavioral
data m

odeling

But a notation is not enough…
you need a m

ethod to tell you how to use it.
W

e’ll see som
e sam

ple m
ethods later in the course.



University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec13  15

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd
Edition)” W

iley, 1999.
Chapter 11 covers various aspects of design, and introduces various design m

ethods that
com

bine these various viewpoints. Chapter 9 introduces som
e of the notations used in

requirem
ents engineering, while chapter 12 introduces notations used in object oriented

design.

Budgen, D
. “Software D

esign”. A
ddison-W

esley, 1994
chapters 5 and 6 give a good overview of the idea of design viewpoints and an
introduction to the m

ore com
m
on notations

Easterbrook, S. M
. and N

useibeh, B. A
. “U

sing ViewPoints for
Inconsistency M

anagem
ent”. Software Engineering Journal, Vol 11,

N
o 1, Jan 1996.

There is a growing body of research on how viewpoints can be used in software
developm

ent to provide a foundation for tool support. This paper briefly introduces a
fram

ework for m
anaging viewpoints, and then shows how they can be used to support

evolution and consistency m
anagem

ent in large specifications. The paper is available online
at http://www.cs.toronto.edu/~sm

e/papers/1996/N
A
SA

-IVV-95-002.pdf


