
University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 1

Lecture 12:
Software D

esign Q
uality

W
hat is software quality?

H
ow can it be m

easured?
H
ow can it be m

easured before the software is delivered?

Som
e key quality factors

Som
e m

easurable indicators of software quality

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 2

Q
uality

Think of an everyday object
e.g. a chair
H
ow would you m

easure it’s “quality”?
construction quality? (e.g. strength of the joints,…)
aesthetic value? (e.g. elegance,…)
fit for purpose? (e.g. com

fortable,…)

A
ll quality m

easures are relative
there is no absolute scale
we can say A

 is better than B but it is usually hard to say how m
uch better

For software:
construction quality?

software is not m
anufactured

aesthetic value?
but m

ost of the software is invisible
aesthetic value m

atters for the user interface, but is only a m
arginal concern

fit for purpose?
N
eed to understand the purpose

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 3

Fitness
D
esign quality is all about fitness to purpose

does it do what is needed?

does it do it in the way that its users need it to?

does it do it reliably enough? fast enough? safely enough? securely enough?

will it be affordable? will it be ready when its users need it?

can it be changed as the needs change?

But this m
eans quality is not a m

easure of software in
isolation
it is a m

easure of the relationship between software and its application
dom

ain
m
ight not be able to m

easure this until you place the software into its environm
ent…

…and the quality will be different in different environm
ents!

during design, we need to be able to predict how well the software will fit its
purpose

we need to understand that purpose (requirem
ents analysis)

we need to look for quality predictors

Source: B
udgen, 1994, pp58-9

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 4

Can you m
easure quality from

 the representation?

im
age courtesy of w

w
w

.jsbach.net

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 5

M
easuring Q

uality
W

e have to turn our vague ideas about quality into
m
easurables
The Q

uality Concepts
(abstract notions of
quality properties)

M
easurable Q

uantities
(define som

e m
etrics)

Counts taken from
D
esign Representations

(realization of the m
etrics)

usability
usability

m
inutes

taken for
som

e user
task???

m
inutes

taken for
som

e user
task???

tim
e taken

to learn
how to use?

tim
e taken

to learn
how to use?

com
plexity

com
plexity

count
procedure
calls???

count
procedure
calls???

inform
ation

flow between
m

odules?

inform
ation

flow between
m

odules?

reliability
reliability

run it and
count crashes
per hour???

run it and
count crashes
per hour???

m
ean tim

e
to failure?

m
ean tim

e
to failure? exam

ples...

Source: B
udgen, 1994, pp60-1

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 6

Four Key Q
uality Concepts

Reliability
designer m

ust be able to predict how the system
 will behave:

com
pleteness - does it do everything it is supposed to do? (e.g. handle all possible

inputs)
consistency - does it always behave as expected? (e.g. repeatability)
robustness - does it behave well under abnorm

al conditions? (e.g. resource failure)

Efficiency
U
se of resources such as processor tim

e, m
em

ory, network bandwidth
This is less im

portant than reliability in m
ost cases

M
aintainability

H
ow easy will it be to m

odify in the future?
perfective, adaptive, corrective

U
sability

H
ow easy is it to use?

Source: B
udgen, 1994, pp65-7

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 7

Boehm
’s N

FR list

G
en

eral
u

tility

p
o

rtab
ility

A
s-is u

tility

M
ain

tain
ab

ility

reliab
ility

efficien
cy

u
sab

ility

testab
ility

u
n

d
erstan

d
ab

ility

m
o

d
ifiab

ility

d
evice-in

d
ep

en
d

en
ce

self-co
n

tain
ed

n
ess

accu
racy

co
m

p
leten

ess

ro
b

u
stn

ess/in
teg

rity

co
n

sisten
cy

acco
u

n
tab

ility

d
evice efficien

cy

accessib
ility

co
m

m
u

n
icativen

ess

self-d
escrip

tiven
ess

stru
ctu

red
n

ess

co
n

cisen
ess

leg
ib

ility

au
g

m
en

tab
ility

Source: See B
lum

, 1992, p176

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 8

M
cCall’s N

FR list

P
ro

d
u

ct o
p

eratio
n

u
sab

ility

P
ro

d
u

ct revisio
n

P
ro

d
u

ct tran
sitio

n

in
teg

rity

m
ain

tain
ab

ility

testab
ility

reu
sab

ility

p
o

rtab
ility

in
tero

p
erab

ility

o
p

erab
ility

train
in

g

I/O
 vo

lu
m

e

A
ccess co

n
tro

l

A
ccess au

d
it

S
to

rag
e efficien

cy

co
n

sisten
cy

in
stru

m
en

tatio
n

exp
an

d
ab

ility

g
en

erality

S
elf-d

escrip
tiven

ess

m
o

d
u

larity

m
ach

in
e in

d
ep

en
d

en
ce

s/w
 system

 in
d

ep
en

d
en

ce

co
m

m
s. co

m
m

o
n

ality

efficien
cy

co
rrectn

ess

reliab
ility

flexib
ility

co
m

m
u

n
icatativen

ess

I/O
 rate

execu
tio

n
 efficien

cy

Source: See van V
liet 2000, pp111-3

traceab
ility

co
m

p
leten

ess

accu
racy

erro
r to

leran
ce

sim
p

licity

co
n

cisen
ess

d
ata co

m
m

o
n

ality

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 9

M
easurable Predictors of Q

uality

Sim
plicity

the design m
eets its objectives and has no extra em

bellishm
ents

can be m
easured by looking for its converse, com

plexity:
control flow com

plexity (num
ber of paths through the program

)
inform

ation flow com
plexity (num

ber of data item
s shared)

nam
e space com

plexity (num
ber of different identifiers and

operators)

M
odularity
different concerns within the design have been separated

can be m
easured by looking at:

cohesion (how well com
ponents of a m

odule go together)
coupling (how m

uch different m
odules have to com

m
unicate)

Source: B
udgen, 1994, pp68-74

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 10

Coupling
Given two units (e.g. m

ethods, classes, m
odules, …), A

 and B:
Source: See van V

liet 2000, pp301-2

 form
data coupling

stam
p coupling

control coupling
(activating)
control coupling
(switching)
com

m
on

environm
ent

coupling
content
coupling

 features
A
 & B com

m
unicate

by sim
ple data only

A
 & B use a com

m
on

type of data
A
 transfers control to

B by procedure call
A
 passes a flag to B to

tell it how to behave
A
 & B m

ake use of a
shared data area
(global variables)
A
 changes B’s data, or

passes control to the
m
iddle of B

 desirability
H
igh (uses param

eter passing,
only pass necessary info)
O
K (but should they be

grouped in a data abstraction?)
N
ecessary

U
ndesirable (why should A

interfere like this?)
U
ndesirable (if you change

the shared data, you have to
change both A

 and B)
Extrem

ely foolish (alm
ost

im
possible to debug!)

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 11

Cohesion
H
ow well do the contents of a procedure
(m

odule, package,…) go together?

Source: van Vliet 1999, pp299-300 (after Yourdon & Constantine)

 form
data cohesion

functional cohesion

sequential cohesion

com
m
unicational

cohesion
procedural cohesion

tem
poral cohesion

logical cohesion

coincidental cohesion

 features
all part of a well-defined
data abstraction
all part of a single
problem

-solving task
outputs of one part form

 inputs
to the next
operations that use the sam

e
input or output data
a set of operations that m

ust be
executed in a particular order
elem

ents m
ust be active around the

sam
e tim

e (e.g. start up)
elem

ents perform
 logically sim

ilar
operations (e.g. printing things)
elem

ents have no conceptual link
other than repeated code

desirability
very high

high

O
kay

m
oderate

low

low

no way!!

no way!!

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 12

Typical cohesion problem
s

Syntactic structure
cohesion is all about program

 sem
antics

if you use syntactic m
easures to decide how to design procedures…

e.g. length, no of loops, etc
…your design will lack coherence

H
and optim

ization
rem

oving repeated code is often counter-productive
it m

akes the program
 harder to m

odify
unless the repeated code represents an abstraction

Com
plicated explanations

if the only way to explain a procedure is to describe its internals…
…it is probably incoherent

look for sim
ple abstractions that can be described succinctly

N
am

ing problem
s

if it is hard to think of a sim
ple descriptive nam

e for a procedure…
…it is probably incoherent

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 13

H
ow to spot incoherent designs

A
n abstraction’s effects clause is full of ‘and’s

e.g.

U
nless there is a strong functional link, use separate procedures

tem
poral cohesion (bad)

logical cohesion (very bad)

A
n effects clause contains ‘or’s, ‘if…then…else’s, etc.

e.g.

These should be separate procedures
control coupling by switching (bad)
coincidental cohesion (very bad)
logical cohesion (very bad)

effects: initialize the data structures and initialize the screen display
and initialize the history stack and initialize the layout defaults and
display an introductory text

effects: initialize the data structures and initialize the screen display
and initialize the history stack and initialize the layout defaults and
display an introductory text

effects: if x=0 then returns size(a[]) else if x=1 then returns sum
(a[])

else if x=2 then returns m
ean(a[]) else if x=3 then returns m

edian(a[])

effects: if x=0 then returns size(a[]) else if x=1 then returns sum
(a[])

else if x=2 then returns m
ean(a[]) else if x=3 then returns m

edian(a[])

Source: Liskov &
 G

uttag 2000, chapter 14.

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 14

Sum
m
ary

Software quality generally m
eans fitness for purpose

need to know what that purpose is…
…what functions m

ust it perform
…what other properties m

ust it have (e.g. m
odifiability, reliability, usability…)

N
ot all quality attributes can be m

easured during
design
because quality is not an attribute of software in isolation
but we can look for predictors

Reliability, efficiency, m
aintainability, usability

are usually the four m
ost im

portant quality factors
…although different authors give different lists

M
odularity is often a good predictor of quality

m
easure it by looking at cohesion and coupling

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec12 15

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd Edition)”
W

iley, 1999.
Chjapter 6 introduces the key ideas about software quality. Section 11.1 covers design considerations
such as m

odularity, coupling and cohesion.

Budgen, D
. “Software D

esign”, 1994.
The neat book is one of the best introductions to the idea of “quality” software design that I’ve com

e
across. Chapters 4 and 6 give a good overview of software design quality

Liskov, B. and Guttag, J., “Program
 D

evelopm
ent in Java: A

bstraction,
Specification and O

bject-O
riented D

esign”, 2000, A
ddison-W

esley.
chapter 14 is a nice sum

m
ary of how to assess the quality of a piece of software.

Pirsig, R. M
., “Zen and the A

rt of M
otorcycle M

aintenance : A
n Inquiry

into Values”, 1974, W
illiam

 M
orrow & Com

pany.
This is a novel about one m

an’s quest to understand what “quality” is really all about. Great bedtim
e

reading!

