
University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 1

Lecture 11:
D
ebugging & D

efensive Program
m
ing

Term
inology

Bugs vs. D
efects

The scientific approach to debugging
hypothesis refutation
occam

’s razor

D
ebugging tips

D
esigning for fewer defects

firewalls
instrum

entation
exceptions

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 2

D
ebugging
basics

D
ebugging follows…

…“successful” testing
the input is a list of tests that failed

…an inspection m
eeting

the input is a list of issues raised
…failure to prove correctness (?)

The D
ebugging Process:

requires: a sym
ptom

 of a problem
effects: defect corrected; sym

ptom
 has disappeared; process has been

fixed so m
istake won’t be repeated

D
ifficulties:

The sym
ptom

 and the defect m
ay be geographically rem

ote
especially in a closely coupled program

The sym
ptom

 m
ight change if another defect is corrected

The defect m
ay be in the verification procedure

Som
e sym

ptom
s are hard to reproduce

especially tim
ing problem

s
The sym

ptom
 m

ight not be the result of an defect
But assum

e it is until you can prove otherwise

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 3

Bugs or D
efects?

Bugs

crawl around

breed

eat things

can be detected because of
chewed holes

crawl in when you are not looking

attack anyone
indiscrim

inately

Bugs

crawl around

breed

eat things

can be detected because of
chewed holes

crawl in when you are not looking

attack anyone
indiscrim

inately

D
efects

stay where they are

do not breed

do not eat things
(but m

ay corrupt your data!)

can be detected because of failed
tests

are inserted by people m
aking

m
istakes

happen to careless program
m
ers

D
efects

stay where they are

do not breed

do not eat things
(but m

ay corrupt your data!)

can be detected because of failed
tests

are inserted by people m
aking

m
istakes

happen to careless program
m
ers

you can’t learn m
uch

(about software) from
 bugs,

but you can learn from
 your M

ISTA
KES!

Source: A
dapted from

 Liskov &
G

uttag, 2000, section 10.9

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 4

D
ebugging A

pproaches
Strategies

Brute force and ignorance:
take m

em
ory dum

ps, do run-tim
e

tracing, put print statem
ents

everywhere
You will be swam

ped with data!!

Backtracking:
Begin at the point where the

sym
ptom

 occurs…
… trace backwards step by step, by

hand
O
nly feasible for sm

all program
s

Cause elim
ination:

U
se deduction to list all possible
causes

devise tests to elim
inate them

 one
by one

(try to find the sim
plest input that

shows the sym
ptom

)

The Scientific M
ethod

1) Study the available data
which tests worked?

which tests did not work?

2) Form
 a hypothesis

…that is consistent with (all) the data

3) D
esign an experim

ent to refute
the hypothesis

the experim
ent m

ust be repeatable

don’t try to prove your hypothesis,
try to disprove it

The Scientific M
ethod

1) Study the available data
which tests worked?

which tests did not work?

2) Form
 a hypothesis

…that is consistent with (all) the data

3) D
esign an experim

ent to refute
the hypothesis

the experim
ent m

ust be repeatable

don’t try to prove your hypothesis,
try to disprove it

O
ccam

’s Razor
The sim

plest hypothesis is
usually the correct one

O
ccam

’s Razor
The sim

plest hypothesis is
usually the correct one

Source: A
dapted from

 Liskov &
 G

uttag, 2000, section 10.9

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 5

Exam
ple

Test cases:
s=“able was I ere I saw elba” returns false
s=“deed” returns true

H
ypothesis 1:
m
aybe it fails on odd length strings?

sim
ple refutation case: s=“r” returns true

H
ypothesis 2:
m
aybe it fails on strings with spaces in them

?
sim

ple refutation case: s=“ ” returns true

H
ypothesis 3:
m
aybe it fails on odd length strings longer than 1?

sim
ple refutation case: s=“ere” returns false

The hypothesis was not refuted, but that doesn’t m
ean it it true!

boolean palindrome (char *s)
/* effects:

returns true if s reads the
same reversed as it does forward

 */

boolean palindrome (char *s)
/* effects:

returns true if s reads the
same reversed as it does forward

 */

N
ote:

A
t each step we

have m
ore data.

Each hypothesis
m

ust be consistent
with all the data

N
ote:

A
t each step we

have m
ore data.

Each hypothesis
m

ust be consistent
with all the data

Source: A
dapted from

 Liskov &
 G

uttag, 2000, section a10.9

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 6

D
ebugging Tips

Exam
ine interm

ediate results
add in diagnostic code if necessary

use binary chop to locate defects

The defect is probably not where
you think it is

keep an open m
ind

occasionally review your reasoning

A
sk yourself where the defect is
notsom

etim
e proving the things you think you know

will dem
onstrate that you were wrong

Check your input as well as your
code

test drivers, stubs, test cases, are just as
likely to contain defects

Think carefully about what you can
take for granted

a fully tested procedure can still contain
defects

Try sim
ple things first

reversed order of param
eters

failure to initialize a variable

failure to re-initialize a variable

failure to parenthesize an expression

m
issing close com

m
ent bracket

Get som
eone to help

Two heads are better than one

M
ake sure you have the right
source code

Take a break

Source: A
dapted from

 Liskov &
 G

uttag, 2000, section 10.9

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 7

Before you repair
D
on’t be in a hurry to fix it

It’s worthwhile finding as m
any defects as possible, and fixing them

 all
together (because regression testing is expensive)

Is the defect repeated elsewhere?
You m

ay be able to track down other instances of the sam
e problem

W
hat ‘next defect’ will be introduced by your fix?
Think about how the fix degrades your original design
especially look at its effect on coupling and cohesion

W
hat could you have done to avoid the defect in the
first place?
This is the first step towards process im

provem
ent

Correct the process as well as the product

Source: A
dapted from

 Liskov &
 G

uttag, 2000, section 10.9

LEA
RN

 FRO
M

 YO
U
R M

ISTA
KES!

TH
EY A

RE N
O
T ‘BU

GS
’, TH

EY A
RE D

EFECTS!!

LEA
RN

 FRO
M

 YO
U
R M

ISTA
KES!

TH
EY A

RE N
O
T ‘BU

GS
’, TH

EY A
RE D

EFECTS!!

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 8

Change
M

anagem
ent

Keep a record of all changes
Com

m
ent each procedure / m

odule with
author
date
list of tests perform

ed
list of m

odifications (date, person, reason for change)

D
esign a change process

Ensure all changes are agreed by the team
U
se a “request for change” form

D
istribute the com

pleted form
s to clients, subcontractors, etc.

D
on’t skip the regression testing!

Should run all tests again after m
aking any changes.

D
on’t just run the ones that failed…

U
se a configuration m

anagem
ent tool

…if you are m
odifying different parts of the software in parallel

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 9

Firewalls & instrum
entation

D
esign to m

ake debugging easy
Firewalls: these check preconditions for each piece of code

Instrum
entation: print statem

ents that provide diagnostic inform
ation

(on a separate output channel)

Q
: Should they be rem

oved before delivery?
A
: N

o!! N
ever!!! D

on’t even think about it!!!!

Rem
oving them

 m
ay introduce new defects

You have m
odified the code after it was tested!!!!!!!!!!!!!!

A
ccept som

e sm
all loss of perform

ance in return for:
A
bility to diagnose non-software failures (hardware, system

, etc)
A
bility to diagnose latent defects during operations

Protection from
 defects introduced by future enhancem

ent
Testing future changes is m

uch easier

Rem
oving firewalls and instrum

entation…
…is like disconnecting the warning lights on an plane!

…is like flying untested software!

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 10

Exception H
andling

If the program
m
ing language supports exceptions

use the full power of the language
e.g. in Java, m

aking all exceptions “checked” leads to safer program
s

but you’ll still need to docum
ent them

e.g. Java doesn’t force you to say why a m
ethod m

ight throw an exception

O
therwise:

1) declare an enum
erated type for exception nam

es
enum

 str_exceptions {okay, null_pointer, em
pty_string, not_null_term

inated};

2) have the procedure return an extra return value
either:

str_exceptions palindrom
e(char *s, boolean *result);

or:
boolean palindrom

e(char *s, str_exceptions *e);
(be consistent about which pattern you use)

3) test for exceptions each tim
e you call the procedure

e.g.
if (palindrom

e(m
y_string, &result)==okay) { … }

else /*handle exception*/

4) write exception handlers
procedures that can be called to patch things up when an error occurs.

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 11

W
riting Exception H

andlers
The calling procedure is responsible for:

checking that an exception did not occur
handling it if it did

Could handle the exception by:
reflecting it up to the next level

i.e. the caller also throws an exception (up to the next level of the
program

)
Can throw the sam

e exception (autom
atic propogation)…

…or a different exception (m
ore context info available!)

m
asking it

i.e. the caller fixes the problem
 and carries on (or repeats the procedure

call)

halt the program
 im

m
ediately

equivalent to passing it all the way up to the top level

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 12

W
hen to use exceptions

Partial procedures vs. Exceptions
In general it is better to elim

inate partial procedures
unless checking for the exception is very expensive
… or the exception can never occur (be careful!)

N
orm

al behavior vs. Exceptional Behaviour
In general, exceptions should be kept separate from

 norm
al return values

e.g. avoid using special values of the norm
al return value to signal exceptions

The exception result could get used as real data!
Exceptions can be used for “norm

al behaviours”
E.g. Can use Java exception m

echanism
 for alternative control flows

But this m
akes the program

 harder to understand, so don’t overuse them

Exceptions are for com
m
unication…

…between program
 units only (i.e. internally)

U
sers should never see exceptions, nor error codes!

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook
CSC444 Lec11- 13

References
Liskov, B. and Guttag, J., “Program

 D
evelopm

ent in Java: A
bstraction,

Specification and O
bject-O

riented D
esign”, 2000, A

ddison-W
esley.

Liskov and Guttag’s section 10.9 includes one of the best treatm
ents of debugging I have com

e across.
Chapter 4 is a thorough treatm

ent of Java exceptions, with lots of tips on how to use exceptions
sensibly

Blum
, B. “Software Engineering: A

 H
olistic View”. O

xford U
niversity

Press, 1992
p379 for the history of the term

 ‘bug’, and a picture of the first ‘bug’

