
1

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

Lecture 10: Form
al Verification

Form
al M

ethods

Basics of Logic
first order predicate logic

Program
 proofs:

input/output assertions

interm
ediate assertions

proof rules

Practical form
al m

ethods

2

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

M
otivation

H
ere is a specification

…and here is a program

does the program
 m

eet the specification?

void m
erge(int a[], a_len, b[], b_len, *c)

/*requires a and b are sorted arrays of integers of length a_len and b_len
respectively; c is an array that is at least as long as a_len+b_len.
effects: c is a sorted array containing all the elem

ents of a and b. */

void m
erge(int a[], a_len, b[], b_len, *c)

/*requires a and b are sorted arrays of integers of length a_len and b_len
respectively; c is an array that is at least as long as a_len+b_len.
effects: c is a sorted array containing all the elem

ents of a and b. */

int i = 0, j = 0, k = 0;
while (k < a_len+b_len) {
 if (a[i] < b[j]) {
 c[k] = a[i];
 i++; }
 else {
 c[k] = b[j];
 j++; };
 k++;
} int i = 0, j = 0, k = 0;
while (k < a_len+b_len) {
 if (a[i] < b[j]) {
 c[k] = a[i];
 i++; }
 else {
 c[k] = b[j];
 j++; };
 k++;
}

3

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

N
otes on
Logic

W
e will need a suitable logic

First O
rder Propositional Logic provides:

a set of prim
itives for building expressions:

variables, num
eric constants, brackets

a set of logical connectives:
and (Ÿ), or (⁄), not (ÿ

), im
plies (Æ

), logical equality (≡)

the quantifiers:
"
 - “for all”

$ - “there exists”

a set of deduction rules

Expressions in FO
PL

expressions can be true or false
(x>y Ÿ y>z) Æ

 x>z
x=y ≡ y=x
"
x,y,z ((x>y Ÿ y>z)) Æ

 x>z)

ÿ
x+1 < x-1

ÿ
"
x ($y (y=x+z))

ÿ
x>3 ⁄ x<-6

4

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

M
ore notes
on Logic

Free vs. bound variables
a variable that is not quantified is free

a variable that is quantified is bound
E.g. "

x ($y (y=x+z))
x and y are bound
z is free

Closed form
ulae

if all the variables in a form
ula are bound, the form

ula is closed

a closed form
ula is either true or false

the truth of a form
ula that is not closed cannot be determ

ined
(it depends on the environm

ent)

we can close any form
ula by quantifying all free variables with "

if a form
ula is true for all values of its free variables then its closure is

true.

5

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

Input/O
utput

A
ssertions

Pre-conditions and Post-conditions
we could form

alize:
a requires clause as a pre-condition
an effects clause as a post-condition

e.g. for a program
 with inputs i1 , i2 , i3 and return value r, we could specify

the program
 by:

where Pre(i1 , i2 , i3) is a logic statem
ent that refers to i1 , i2 , i3

The specification then says:
“if Pre(i1 , i2 , i3) is true before executing the program

 then Post(r, i1 , i2 , i3)
should be true after it term

inates”

 E.g.

{ Pre(i1 , i2 , i3) }
Program
{ Post(r, i1 , i2 , i3) }

{ Pre(i1 , i2 , i3) }
Program
{ Post(r, i1 , i2 , i3) }

{ true }
Program
{ (r=i1 ⁄ r=i2) Ÿ r >= i1 Ÿ r >= i2 }

{ true }
Program
{ (r=i1 ⁄ r=i2) Ÿ r >= i1 Ÿ r >= i2 }

6

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

Strength of Preconditions
Strong preconditions

a precondition lim
its the range of inputs for which the program

 m
ust work

a strong precondition places fewer constraints
the strongest possible precondition is {true} (sam

e as an em
pty “requires” clause)

it is harder for a program
 to m

eet a spec that has a stronger precondition
a weak precondition places m

ore constraints
the weakest possible precondition is {false}
…which m

eans that there are no conditions under which the program
 has to work

every program
 m

eets this spec!!!
precondition A

 is stronger than B if: B im
plies A

read im
plies as “is not as true as” or “is true in fewer cases than”

{ $z (a=z*b and z>0) }
x := divide(a, b);
{ x*b=a }

{ $z (a=z*b and z>0) }
x := divide(a, b);
{ x*b=a }

{ a>=b }
x := divide(a, b);
{ $c (x*b+c=a and c>=0 and c<b) }

{ a>=b }
x := divide(a, b);
{ $c (x*b+c=a and c>=0 and c<b) }

this precondition is stronger
it doesn’t require a to be a m

ultiple of b

($z (a=z*b and z>0)) im
plies (a>=b)

7

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

Correctness
Proofs

Program
 correctness

if we write form
al specifications we can prove that a program

 m
eets its

specification
“program

 correctness” only m
akes sense in relation to a specification

To prove a program
 is correct:

W
e need to prove the post-condition is true after executing the program

(assum
ing the pre-condition was true beforehand)

E.g.

Step 1: for z>0 to be true after the assignm
ent, x*y>0 m

ust have been true
before it

Step 2: for x*y>0 to be true before the assignm
ent, the precondition m

ust
im

ply it.
Step 3: show that (x>0 and y>0) im

plies x*y>0 (after closure)

{ x>0 and y>0 }
z := x*y;
{ z>0 }

{ x>0 and y>0 }
z := x*y;
{ z>0 }

8

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

The general strategy is:
1) start with the post-condition

2) work backwards through the program
 line-by-line

3) find the weakest pre-condition (W
P) that guarantees the post-condition

4) prove that the actual pre-condition im
plies W

P
i.e. the actual pre-condition is weaker than the “weakest pre-condition”, W

P

For exam
ple

1) for Post to be true after S
2 , then x<1 m

ust be true before S
2

2) for x<1 to be true after S
1 , then 0<1 m

ust be true before S
1

3) (0<1) is the weakest precondition for this program

4) So is (true im
plies 0<1) true?

W
eakest

Pre-conditions

PreS
1

S
2

Post

PreS
1

S
2

Post

{ true }
x := 0;
y := 1
{ x<y }

{ true }
x := 0;
y := 1
{ x<y }

9

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

Proof
rules

Proof rules
tell us how to find weakest preconditions for different program

s
we need a proof rule for each program

m
ing language construct

Proof rule for assignm
ent

e.g. for

the weakest precondition is Post with all free occurrences of x replaced by e

Proof rule for sequence
e.g. for

if W
P2 is the weakest precondition for S

2 , then the weakest precondition for
the whole program

 is the sam
e as the weakest precondition for

{ Pre } S
1 { W

P2 }

{ Pre }
x := e;
{ Post }

{ Pre }
x := e;
{ Post }

{ Pre }
S
1 ; S

2
{ Post }

{ Pre }
S
1 ; S

2
{ Post }

10

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

H
oare

N
otation

W
e can express proof rules m

ore concisely
e.g. using H

oare notation:

this m
eans “if claim

1 and claim
2 have both been proved, then conclusion m

ust
be true”

E.g. for sequence:

E.g. for if statem
ents:

find the weakest precondition for S
1 and the weakest precondition for S

2 .
Then show ((Pre and c) im

plies W
P S

1) and ((Pre and not(c)) im
plies W

P S
2)

claim
1 , claim

2 , ...
co

n
clu

sio
n

{P
re}S

1 {Q
}, {Q

}S
2 {P

o
st}

{P
re}S

1 ; S
2 {P

o
st}

{P
re an

d
 c}S

1 {P
o

st}, {P
re an

d
 n

o
t(c)}S

2 {P
o

st}
{P

re}if (c) th
en

 S
1 else S

2 {P
o

st}

11

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

 E.g.

1) the first branch:

to find the weakest precondition,
substitute x for m

ax:
W

P1
= {(x=x or x=y) and (x>=x) and (x>=y)}
= {(true or x=y) and true and (x>=y)}
= {(true) and (x>=y)}
= {x>=y}

which is okay because
(Pre and c) im

plies W
P
1 ,

{true and x>y} im
plies {x>=y}

{ true }
if (x>y) then
 m

ax := x;
else
 m

ax := y;
{ (m

ax=x or m
ax=y) and m

ax>=x and m
ax>=y) }

{ true }
if (x>y) then
 m

ax := x;
else
 m

ax := y;
{ (m

ax=x or m
ax=y) and m

ax>=x and m
ax>=y) }

2) the second branch:

to find the weakest precondition,
substitute y for m

ax:
W

P2
= {(y=x or y=y) and (y>=x) and (y>=y)}
= {(y=x or true) and (y>=x) and true}
= {(true) and (y>=x)}
= {y>=x}

which is okay because
(Pre and not(c)) im

plies W
P2,

{true and not(x>y)} im
plies {y>=x}

{ true and x>y }
m
ax := x;

{ Post }

{ true and x>y }
m
ax := x;

{ Post }

{ true and not(x>y) }
m
ax := y;

{ Post }

{ true and not(x>y) }
m
ax := y;

{ Post }

Proving an
IF statem

ent

12

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

Program
 proofs are not (currently) widely used:

they can be tedious to construct
they tend to be longer than the program

s they refer to
they could contain m

istakes too!
they require m

athem
atical expertise

they do not ensure against hardware errors, com
piler errors, etc.

they only prove functional correctness (i.e. not term
ination,

efficiency,…)

Practical form
al m

ethods:
Just use for sm

all parts of the program
e.g. isolate the safety-critical parts

U
se to reason about changes to a program

e.g. prove that changing a statem
ent preserves correctness

A
utom

ate som
e of the proof

use proof checkers and theorem
 provers

U
se form

al reasoning for other things
test properties of the specification to see if we got the spec right
ie. use for validation, rather than verification

Practicalities

13

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

O
ther

approaches
M

odel-checking
A
 m

odel checker takes a state-m
achine m

odel and a tem
poral logic property

and tells you whether the property holds in the m
odel

tem
poral logic adds m

odal operators to propositional logic:
e.g. §x - x is true now and always (in the future)
e.g. ß

x - x is true eventually (in the future)

The m
odel m

ay be:
of the program

 itself (each statem
ent is a ‘state’)

an abstraction of the program
a m

odel of the specification
a m

odel of the dom
ain

M
odel checking works by searching all the paths through the state space

…with lots of techniques for reducing the size of the search

M
odel checking does not guarantee correctness…

it only tells you about the properties you ask about
it m

ay not be able to search the entire state space (too big!)

…but is (generally) m
ore practical than proofs of correctness.

14

University of Toronto
D
epartm

ent of Com
puter Science

©
 2001, Steve E

asterbrook

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd Edition)” W
iley,

1999.Section 15.4 gives a very brief introduction to program
 proofs, and includes som

e pointers to m
ore

readings. The rest of chapter 15 covers som
e other uses of form

al analysis for specifications. In
particular, section 15.5 is a nice sum

m
ary of the argum

ents in favour of form
al m

ethods.

Easterbrook, S. M
., Lutz, R., Covington, R., Kelly, J., A

m
po, Y. & H

am
ilton, D

.
“Experiences U

sing Lightweight Form
al M

ethods for Requirem
ents M

odeling”. IEEE
Transactions on Software Engineering, vol 24, no 1, pp1-11, 1998

Provides an overview of experience with practical form
al m

ethods for requirem
ents validation. Is

available from
 m

y web page (http://www.cs.toronto.edu/~sm
e/papers/)

F. Schneider, S. M
. Easterbrook, J. R. Callahan and G. J. H

olzm
ann, "Validating

Requirem
ents for Fault Tolerant System

s using M
odel Checking" Third IEEE

Conference on Requirem
ents Engineering, Colorado Springs, CO

, A
pril 6-10, 1998.

Presents a case study of the use of m
odel checking for validating requirem

ents. Is available from
 m

y
web page (http://www.cs.toronto.edu/~sm

e/papers/)

