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Lecture 10:   Form
al Verification

Form
al M

ethods

Basics of Logic
first order predicate logic

Program
 proofs:

input/output assertions

interm
ediate assertions

proof rules

Practical form
al m

ethods
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M
otivation

H
ere is a specification

…and here is a program

does the program
 m

eet the specification?

void m
erge(int a[ ], a_len, b[ ], b_len, *c)

/*requires a and b are sorted arrays of integers of length a_len and b_len
respectively; c is an array that is at least as long as a_len+b_len.
effects: c is a sorted array containing all the elem

ents of a and b.  */

void m
erge(int a[ ], a_len, b[ ], b_len, *c)

/*requires a and b are sorted arrays of integers of length a_len and b_len
respectively; c is an array that is at least as long as a_len+b_len.
effects: c is a sorted array containing all the elem

ents of a and b.  */

int i = 0, j = 0, k = 0;
while (k < a_len+b_len) {
  if (a[i] < b[j]) {
    c[k] = a[i];
    i++; }
  else {
    c[k] = b[j];
    j++; };
  k++;
} int i = 0, j = 0, k = 0;
while (k < a_len+b_len) {
  if (a[i] < b[j]) {
    c[k] = a[i];
    i++; }
  else {
    c[k] = b[j];
    j++; };
  k++;
}
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N
otes on
Logic

W
e will need a suitable logic

First O
rder Propositional Logic provides:

a set of prim
itives for building expressions:

variables, num
eric constants, brackets

a set of logical connectives:
and (Ÿ), or (⁄), not (ÿ

), im
plies (Æ

), logical equality (≡)

the quantifiers:
"
 - “for all”

$ - “there exists”

a set of deduction rules

Expressions in FO
PL

expressions can be true or false
(x>y Ÿ y>z) Æ

 x>z
x=y ≡ y=x
"
x,y,z ((x>y Ÿ y>z)) Æ

 x>z)

ÿ
x+1 < x-1

ÿ
"
x ($y (y=x+z))

ÿ
x>3 ⁄ x<-6
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M
ore notes
on Logic

Free vs. bound variables
a variable that is not quantified is free

a variable that is quantified is bound
E.g. "

x ($y (y=x+z))
x and y are bound
z is free

Closed form
ulae

if all the variables in a form
ula are bound, the form

ula is closed

a closed form
ula is either true or false

the truth of a form
ula that is not closed cannot be determ

ined
(it depends on the environm

ent)

we can close any form
ula by quantifying all free variables with "

if a form
ula is true for all values of its free variables then its closure is

true.
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Input/O
utput

A
ssertions

Pre-conditions and Post-conditions
we could form

alize:
a requires clause as a pre-condition
an effects clause as a post-condition

e.g. for a program
 with inputs i1 , i2 , i3  and return value r, we could specify

the program
 by:

where Pre(i1 , i2 , i3 ) is a logic statem
ent that refers to i1 , i2 , i3

The specification then says:
“if Pre(i1 , i2 , i3 ) is true before executing the program

 then Post(r, i1 , i2 , i3 )
should be true after it term

inates”

         E.g.

{ Pre(i1 , i2 , i3 ) }
Program
{ Post(r, i1 , i2 , i3 ) } 

{ Pre(i1 , i2 , i3 ) }
Program
{ Post(r, i1 , i2 , i3 ) } 

{ true }
Program
{ (r=i1  ⁄ r=i2 ) Ÿ r >= i1  Ÿ r >= i2  }

{ true }
Program
{ (r=i1  ⁄ r=i2 ) Ÿ r >= i1  Ÿ r >= i2  }
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Strength of Preconditions
Strong preconditions

a precondition lim
its the range of inputs for which the program

 m
ust work

a strong precondition places fewer constraints
the strongest possible precondition is {true}  (sam

e as an em
pty “requires” clause)

it is harder for a program
 to m

eet a spec that has a stronger precondition
a weak precondition places m

ore constraints
the weakest possible precondition is {false}
…which m

eans that there are no conditions under which the program
 has to work

every program
 m

eets this spec!!!
precondition A

 is stronger than B if:  B im
plies A

read im
plies as “is not as true as” or “is true in fewer cases than”

{ $z (a=z*b and z>0) }
x := divide(a, b);
{ x*b=a }

{ $z (a=z*b and z>0) }
x := divide(a, b);
{ x*b=a }

{ a>=b }
x := divide(a, b);
{ $c (x*b+c=a and c>=0 and c<b) }

{ a>=b }
x := divide(a, b);
{ $c (x*b+c=a and c>=0 and c<b) }

this precondition is stronger
it doesn’t require a to be a m

ultiple of b

($z (a=z*b and z>0)) im
plies (a>=b)
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Correctness
Proofs

Program
 correctness

if we write form
al specifications we can prove that a program

 m
eets its

specification
“program

 correctness” only m
akes sense in relation to a specification

To prove a program
 is correct:

W
e need to prove the post-condition is true after executing the program

(assum
ing the pre-condition was true beforehand)

E.g.

Step 1: for z>0 to be true after the assignm
ent, x*y>0 m

ust have been true
before it

Step 2: for x*y>0 to be true before the assignm
ent, the precondition m

ust
im

ply it.
Step 3: show that (x>0 and y>0) im

plies x*y>0  (after closure)

{ x>0 and y>0 }
z := x*y;
{ z>0 }

{ x>0 and y>0 }
z := x*y;
{ z>0 }
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The general strategy is:
1) start with the post-condition

2) work backwards through the program
 line-by-line

3) find the weakest pre-condition (W
P) that guarantees the post-condition

4) prove that the actual pre-condition im
plies W

P
i.e. the actual pre-condition is weaker than the “weakest pre-condition”, W

P

For exam
ple

1) for Post to be true after S
2 , then x<1 m

ust be true before S
2

2) for x<1 to be true after S
1 , then 0<1 m

ust be true before S
1

3) (0<1) is the weakest precondition for this program

4) So is (true im
plies 0<1) true?

W
eakest

Pre-conditions

PreS
1

S
2

Post

PreS
1

S
2

Post

{ true }
x := 0;
y := 1
{ x<y }

{ true }
x := 0;
y := 1
{ x<y }
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Proof
rules

Proof rules
tell us how to find weakest preconditions for different program

s
we need a proof rule for each program

m
ing language construct

Proof rule for assignm
ent

e.g. for

the weakest precondition is Post with all free occurrences of x replaced by e

Proof rule for sequence
e.g. for

if W
P2  is the weakest precondition for S

2 , then the weakest precondition for
the whole program

 is the sam
e as the weakest precondition for

{ Pre } S
1  { W

P2 }

{ Pre }
x := e;
{ Post }

{ Pre }
x := e;
{ Post }

{ Pre }
S
1 ; S

2
{ Post }

{ Pre }
S
1 ; S

2
{ Post }
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H
oare

N
otation

W
e can express proof rules m

ore concisely
e.g. using H

oare notation:

this m
eans “if claim

1  and claim
2  have both been proved, then conclusion m

ust
be true”

E.g. for sequence:

E.g. for if statem
ents:

find the weakest precondition for S
1  and the weakest precondition for S

2 .
Then show ((Pre and c) im

plies W
P S

1 ) and ((Pre and not(c)) im
plies W

P S
2 )

claim
1 , claim

2 , ...
co

n
clu

sio
n

{P
re}S

1 {Q
},  {Q

}S
2 {P

o
st}

{P
re}S

1 ; S
2 {P

o
st}

{P
re an

d
 c}S

1 {P
o

st},  {P
re an

d
 n

o
t(c)}S

2 {P
o

st}
{P

re}if (c) th
en

 S
1  else S

2 {P
o

st}
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 E.g.

1) the first branch:

to find the weakest precondition,
substitute x for m

ax:
W

P1
= {(x=x or x=y) and (x>=x) and (x>=y)}
= {(true or x=y) and true and (x>=y)}
= {(true) and (x>=y)}
= {x>=y}

which is okay because
(Pre and c) im

plies W
P
1 ,

{true and x>y} im
plies {x>=y}

{ true }
if (x>y) then
  m

ax := x;
else
  m

ax := y;
{ (m

ax=x or m
ax=y) and m

ax>=x and m
ax>=y) }

{ true }
if (x>y) then
  m

ax := x;
else
  m

ax := y;
{ (m

ax=x or m
ax=y) and m

ax>=x and m
ax>=y) }

2) the second branch:

to find the weakest precondition,
substitute y for m

ax:
W

P2
= {(y=x or y=y) and (y>=x) and (y>=y)}
= {(y=x or true) and (y>=x) and true}
= {(true) and (y>=x)}
= {y>=x}

which is okay because
(Pre and not(c)) im

plies W
P2,

{true and not(x>y)} im
plies {y>=x}

{ true and x>y }
m
ax := x;

{ Post }

{ true and x>y }
m
ax := x;

{ Post }

{ true and not(x>y) }
m
ax := y;

{ Post }

{ true and not(x>y) }
m
ax := y;

{ Post }

Proving an
IF statem

ent
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Program
 proofs are not (currently) widely used:

they can be tedious to construct
they tend to be longer than the program

s they refer to
they could contain m

istakes too!
they require m

athem
atical expertise

they do not ensure against hardware errors, com
piler errors, etc.

they only prove functional correctness (i.e. not term
ination,

efficiency,…)

Practical form
al m

ethods:
Just use for sm

all parts of the program
e.g. isolate the safety-critical parts

U
se to reason about changes to a program

e.g. prove that changing a statem
ent preserves correctness

A
utom

ate som
e of the proof

use proof checkers and theorem
 provers

U
se form

al reasoning for other things
test properties of the specification to see if we got the spec right
ie. use for validation, rather than verification

Practicalities
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O
ther

approaches
M

odel-checking
A
 m

odel checker takes a state-m
achine m

odel and a tem
poral logic property

and tells you whether the property holds in the m
odel

tem
poral logic adds m

odal operators to propositional logic:
e.g. §x - x is true now and always (in the future)
e.g. ß

x - x is true eventually (in the future)

The m
odel m

ay be:
of the program

 itself (each statem
ent is a ‘state’)

an abstraction of the program
a m

odel of the specification
a m

odel of the dom
ain

M
odel checking works by searching all the paths through the state space

…with lots of techniques for reducing the size of the search

M
odel checking does not guarantee correctness…

it only tells you about the properties you ask about
it m

ay not be able to search the entire state space (too big!)

…but is (generally) m
ore practical than proofs of correctness.
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