
University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 1

Lecture 7: D
ata A

bstractions

A
bstract D

ata Types

D
ata A

bstractions
H
ow to define them

Im
plem

entation issues

A
bstraction functions and invariants

A
dequacy (and som

e requirem
ents analysis)

Towards O
bject O

rientation
differences between object oriented program

m
ing

and data abstraction

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 2

Exam
ple

Im
agine we want to hold

inform
ation about dates

E.g. year, m
onth, day, hours, m

inutes,
seconds, day of week, etc.

Could use an integer arrays: int date [3];
and write som

e support functions for com
puting

day of week, com
paring dates,…

But suppose we then decide years need 4 digits
rather than 2 (i.e. 2001 instead of 01)

we have to change every part of the program
that uses dates

int today[3];
int lecture1_tim

e[3];
…today[0] = 01;
today[1] = 10;
today[2] = 01;
lecture1_tim

e[0] = 9;
lecture1_tim

e[1] = 0;
lecture1_tim

e[2] = 0;

int today[3];
int lecture1_tim

e[3];
…today[0] = 01;
today[1] = 10;
today[2] = 01;
lecture1_tim

e[0] = 9;
lecture1_tim

e[1] = 0;
lecture1_tim

e[2] = 0;
 Encapsulation

distinguish the abstract notion of a ‘date’ from
 it’s concrete representation

hide all the details about how dates are represented

Benefits:

m
odifiability, testability, readability, reduced com

plexity, [Y2K com
pliance(!?)]

e.g. if we used arrays
of int for date & tim

e:

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 3

A
bstract

D
ata Types

(A
D
Ts)

Program
m
ing languages provide:

Som
e concrete data types
integers, characters, arrays,…

Som
e abstract data types
floating point, lists, tables, two dim

ensional arrays, records,…

A
bstract data types are im

plem
ented using concrete data types

(but you don’t need to know this to use them
)

O
perations are provided for each datatype

e.g. creation, assignm
ent, etc.

… but you cannot m
uck around with the internal representations

e.g. float is represented in two parts, but you cannot access these directly

But: som
e languages do allow you access to the internal representations

e.g. in C, you can use pointers to access the internals of arrays
this rem

oves the distinction between the abstraction and the im
plem

entation
it destroys m

ost of the benefits of abstraction
it causes confusion and error

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 4

Encapsulation is im
proved if you create your own data

abstractions
choice of what abstractions to create depends on the application

choice of operations depends on how you want to m
anipulate the data

e.g. bank accounts: open, close, m
ake a deposit, m

ake a withdrawal, check the
balance, …

e.g. graphs: initialize, add nodes, rem
ove nodes, check whether there is an edge

between two nodes, get the label for a node,…

M
ost languages support creation of new datatypes

… but they m
ight not force you to specify the data abstraction

… and they m
ight not enforce inform

ation hiding

H
om

e-m
ade abstract data types

A
pplication

U
seful data abstractions

Com

piler writing

tables, stacks, …

Banking

accounts, custom
ers, …

M

athem
atical com

puting

m
atrices, sets, polynom

ials, …

Graph Editing

graphs, nodes, edges, positions …

Source:
Liskov &

 G
uttag

2000, p77-78

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 5

O
perations on D

ata A
bstractions

Four groups of operators:
Creators

create new objects of the datatype

Producers
take existing objects of the datatype and build new

ones

M
utators

m
odify existing objects of the datatype

O
bservers

tell you inform
ation about existing objects of the

datatype (without changing them
)

Im
m
utable datatypes…

…don’t have m
utators

they can be created and destroyed, but not
m
odified

once you’ve created an object you cannot change it

Exam
ple: sets

Creators:
create a new em

pty set,…
Producers:

set union,
set intersection,…

m
utators:
add an elem

ent,
rem

ove an elem
ent,…

observers:
set size,
set m

em
bership,

set equality,
test for em

pty set,…

Exam
ple: sets

Creators:
create a new em

pty set,…
Producers:

set union,
set intersection,…

m
utators:
add an elem

ent,
rem

ove an elem
ent,…

observers:
set size,
set m

em
bership,

set equality,
test for em

pty set,…

Source:
Liskov &

 G
uttag

2000, p117-118

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 6

D
efining D

ata A
bstractions

The abstraction
should:
nam

e the data type

list its operations

describe the data
abstraction in English
say whether it’s

m
utable or not

give a procedural
abstraction for each
operation
the abstraction only

lists the “public”
operations

there m
ay be other

“private” procedures
hidden inside…

/*datatype set has operators create, insert, delete,
m
em

ber, size, union, intersection.
overview:

sets are unbounded m
athem

atical sets of integers.
They are m

utable: insert and delete are the
m
utation operations.

operations:
procedure create () returns set
effects: x is a new em

pty set

procedure insert (set s, int x) returns null
effects: adds x to the set s such that s’ = s »

 {x}

procedure delete (set s, int x) returns null
requires: x Œ

 s
effects: s’ = s - {x}

… (etc) … */

/*datatype set has operators create, insert, delete,
m
em

ber, size, union, intersection.
overview:

sets are unbounded m
athem

atical sets of integers.
They are m

utable: insert and delete are the
m
utation operations.

operations:
procedure create () returns set
effects: x is a new em

pty set

procedure insert (set s, int x) returns null
effects: adds x to the set s such that s’ = s »

 {x}

procedure delete (set s, int x) returns null
requires: x Œ

 s
effects: s’ = s - {x}

… (etc) … */

Source:
Liskov &

 G
uttag

2000, section 5.1

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 7

Java Exam
ple

public class IntSet
 {

 //Overview: IntSets
are mutable, unbounded sets of integers. A

typical
IntSet

is {x
1 , …x

n }

 //Creators
public IntSet ()
 //effects: Initializes this

 to be the empty set

 //Mutators
public void insert (

int x)
 //effects: adds x to the set this such that this

’ = this

»
 {x}

public void delete (
int x)

 //requires: x
Œ
 this

 //effects: this’ =
this - {x}

 //Observers
 public boolean member (

int x)
 //effects: returns true if x

Œ
 this, false otherwise

 //Producers
 public

IntSet
 intersection (IntSet

a)
 //effects: returns a new set representing a

«
 this

} public class IntSet
 {

 //Overview: IntSets
are mutable, unbounded sets of integers. A

typical
IntSet

is {x
1 , …x

n }

 //Creators
public IntSet

()
 //effects: Initializes this

 to be the empty set

 //Mutators
public void insert (

int x)
 //effects: adds x to the set this such that this

’ = this

»
 {x}

public void delete (
int x)

 //requires: x
Œ
 this

 //effects: this’ =
this - {x}

 //Observers
 public boolean member (

int x)
 //effects: returns true if x

Œ
 this, false otherwise

 //Producers
 public

IntSet
 intersection (IntSet

a)
 //effects: returns a new set representing a

«
 this

}

Source: adapted from
 Liskov &

 G
uttag 2000, p81

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 8

Im
plem

enting D
ata A

bstractions
Choose a representation that:

perm
its all operations to be im

plem
ented easily (and reasonably efficiently)

perm
its frequent operations to run faster

Exam
ple: sets

an unsorted array with repeated elem
ents

insert is very fast, union is fast, intersection and m
em

ber are slow, delete is very slow
a sorted array

insert is very slow, m
em

ber is very fast, intersection is fast, union is slow
a linked list

insert is fast, delete is fast, union is slow, takes m
ore m

em
ory

Choose a program
m
ing m

echanism
Package

hides ‘private’ code, package has to be ‘im
ported’ (e.g. A

da, C, M
odula)

O
bjectprovides inheritance, operations called by m

essage passing (e.g. C++, Java)
A
bstract datatype

provides strong type checking, object becom
es part of the language (e.g. C, M

L)

Source:
Liskov &

 G
uttag

2000, section 5.3

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 9

A
bstraction vs. Im

plem
entation

There is a m
apping between abstract objects and their

representations
several rep objects m

ight m
ap to the sam

e abstraction object

som
e rep objects m

ight be invalid

every abstract object m
ust have a rep object

{ }
{ 1, 2, 3 }

{ 7 }

1

2

3

1

3

2

7
7

7

invalid

rep objects

abstract objects

Source:
Liskov &

 G
uttag

2000, p99-100

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 10

A
dequacy

A
 data abstraction is adequate if…

…it provides all the operations the ‘users’ (e.g. other program
m
ers!) will need

Choices, choices, choices…
e.g. for sets, m

em
ber(s,x) isn’t strictly necessary:

…could do intersection(s,create_set(x)) and test if the result is em
pty

…could do delete(s,x) and see if we get an error m
essage

but m
em

ber(s,x) is m
uch m

ore convenient.
Such choices affect functionality, convenience & efficiency

functionality: m
ake sure all required operations are possible

convenience: m
ake sure that typical/frequent operations are sim

ple to use
efficiency: m

ake frequent operations cheaper (usually by choosing an appropriate rep
type - this should not affect the choice of abstraction)

Som
e requirem

ents analysis is needed
W

hat data objects will be needed?
W

hat operations will need to be perform
ed on them

?
W

hat usage patterns are typical?
“use cases” / “scenarios” are helpful here

Source: Liskov &
 G

uttag 2000, p118-9

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 11

O
bject O

rientation
O
bject O

rientation extends data abstraction
D
ata abstraction becom

es the m
ain structuring m

echanism
 for program

s
N
o fixed control structure

O
bject O

riented program
m
ing languages have:

A
bstraction

Encapsulation - m
ethods and objects are bundled together

Polym
orphism

 - sam
e nam

e can be used for different objects’ m
ethods

D
ynam

ic binding - don’t know which m
ethod/object is referred to until runtim

e
Inheritance - can extend existing data abstractions to create new ones

U
se O

O
 design principles in any program

m
ing language

W
rite data abstractions for all com

plex data structures
H
ide the im

plem
entations using A

D
Ts or packages

O
nly access the data abstractions through their defined operations (ª’m

ethods’)

Som
e O

O
P m

echanism
s are less im

portant
Polym

orphism
 & dynam

ic binding are not relevant at the design level (these are
program

m
ing tricks that m

ake program
s m

ore com
plex)

Inheritance can be done m
anually

Source: van der Linden, 1996, chp2, and B
lum

, 1992, pp313-329

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 12

Sum
m
ary

D
ata A

bstractions lead to good program
 design

They help with encapsulation (inform
ation hiding)

They help reduce the com
plexity of software interfaces

They m
ake program

s m
ore m

odifiable

N
eed som

e analysis to choose good data abstractions
A
dequacy: have you included all the operations that users need

can switch between im
plem

entations to im
prove efficiency

D
ata abstraction ≠ abstract data types

A
D
Ts are one way to im

plem
ent data abstraction

can also use packages, objects,…

D
ata abstraction ≠ object-oriented program

m
ing

data abstraction is really a design technique (the basis of O
O
D
)

can use it in any program
m
ing language

som
e program

m
ing languages provide m

ore support than others
©

 2001, Steve E
asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec07 13

References
Liskov, B. and Guttag, J., “Program

 D
evelopm

ent in Java: A
bstraction,

Specification and O
bject-O

riented D
esign”, 2000, A

ddison-W
esley.

ƒ
Chapter 5 provides a thorough coverage of data abstractions.

Blum
, B. “Software Engineering: A

 H
olistic View”. O

xford U
niversity

Press, 1992
ƒ

see especially section 4.2 for com
m
ents on data abstraction and object oriented design. (historical

note: Java is conspicuously absent from
 Blum

’s list of object oriented languages. The technology has
changed dram

atically in eight years! H
owever, the principles are the sam

e)

van der Linden, P. “Just Java”. 1996, Sunsoft Press
ƒ

A
 rare book on object oriented program

m
ing in Java written by som

eone that can explain it properly.

van Vliet, H
. “Software Engineering: Principles and Practice (2nd Edition)”

W
iley, 1999.
ƒ

m
entions data abstraction only in passing in section 11.1. Chapter 15 gives a m

uch m
ore form

al
coverage of specifying data abstractions via algebraic specs (15.3), and via form

al pre- and post-
conditions (15.4). This is m

ore form
al than I expect to use on this course, but worth a read to see

where som
e of the ideas cam

e from
.

©
 2001, Steve E

asterbrook

