
University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 1

Lecture 6: Procedural A
bstractions

D
efining procedural abstractions

the parts of a procedural abstraction

total vs. partial procedures

side effects

Im
plem

enting procedural abstractions
defensive program

m
ing

optim
ization

som
e com

m
ents on program

 style

N
ote: procedural abstraction applies to any language, no m

atter
what the units are called:

procedures (e.g. A
da, M

odula,…)
functions (e.g. C, M

L,…)
m
ethods (e.g. java,…)

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 2

A
 procedure m

aps from
 input to output param

eters
it m

ay m
odify its param

eters
it m

ay have side effects
it m

ay return a result

aim
 for “Referential Transparency”
ƒ

procedure does the sam
e thing, no m

atter where it is used
ƒ

basis of the Cleanroom
 approach

A
 procedural abstraction (“specification”):
ƒ

describes what a procedure does, ignores how it does it
ƒ

different im
plem

entations of the abstraction can differ over details
ƒ

one im
plem

entation can be substituted for another

A
dvantages

Locality: program
m
ers don’t need to know im

plem
entation details

M
odifiability: replacing an im

plem
entation does not affect the rest of the

system
Language Independence: im

plem
entation could be any program

m
ing language

Procedural
A
bstractions

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 3

can w
e ship

this m
any

in 42 days?

how
 m

any
do w

e have
right now

?

how
 m

any
are com

ing
in?

how
 m

any
are leaving?

how
 m

any
in each

w
arehouse?

all w
arehouses

how
 m

any are
in transit?

how
 m

any w
ill

be produced?

how
 m

any
already sold?

how
 m

any
 w

ill be lost to
shrinkage?

all trucksall custom
ers all plantsall w

arehouses

problem
 decom

position
procedural abstraction

param
eters:

 item
 id

 quantity needed
 ship date

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 4

A
bstractions need to be precisely defined

form
ally (m

athem
atically): very precise; can be autom

atically checked
inform

ally (e.g. natural language description):
 less precise, easier to read and write

N
eed to define five things:

1.
The way in which the procedure com

m
unicates (input/output param

eters)
2.

The conditions under which the procedure will work
3.

W
hat the procedure achieves

4.
A
ny side effects (changes to global variables or system

 state)
5.

A
ny exceptions raised

D
efining abstractions

procedure
 sort(a:array of int, len:

int) returns array of int
requires

: a is an array that is at least len integers long
effects

: returns a copy of the array a with its elements sorted into
ascending order

modifies
: reduces available heap space by n * sizeof(

int)
raises

: arraybounderror if a is not a valid pointer to an array of
length len; memerror

if there is insufficent heap space for a new
array of length len

procedure
 sort(a:array of int, len:

int) returns
 array of int

requires
: a is an array that is at least len integers long

effects
: returns a copy of the array a with its elements sorted into

ascending order
modifies

: reduces available heap space by n * sizeof(
int)

raises
: arraybounderror if a is not a valid pointer to an array of

length len; memerror
if there is insufficent heap space for a new

array of length len
©

 2001, Steve E
asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 5

Total vs. Partial Procedures
A
 total procedure

works for any input
(within the type checking restrictions of the language)

hence has no requires clause
 e.g.

A
 partial procedure

works for som
e of the possible inputs

 e.g.

(square root only works for non-negative integers)
The requires clause places restrictions on the operation of the procedure
The procedure is only guaranteed to work if the requires clause is m

et

procedure
 length(a: stack of int)

returns b:int
effects

: b is the number of elements in a

procedure
 length(a: stack of int)

returns b:
int

effects
: b is the number of elements in a

procedure
 sqrt

(a:int) returns b: real
requires

: a
≥ 0

effects
: b is an approximation of the square root of

a to within ±10
-4

procedure
 sqrt

(a:int) returns
 b: real

requires
: a

≥ 0
effects

: b is an approximation of the square root of
a to within ±10

-4

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 6

Specifying Side Effects
Side effects

If a procedure m
odifies its environm

ent in any way, this is a side effect
e.g. m

odifying global variables
e.g. allocating or de-allocating m

em
ory

e.g. printing text on the screen (actually: writing to the output stream
)

e.g. reading characters from
 the keyboard (actually: consum

ing the input stream
)

A
 pure function has no side effects

all com
m
unication is through its param

eters and return result

A
ll program

m
ing languages allow procedures/functions to have side effects

input/output is im
possible otherwise(!)

but side effects m
ake a program

 harder to understand and m
ore prone to error

U
se of ‘m

odifies’
procedure

 readlines
(n:int

)
 returns

 s:list of strings
requires

n>=0

modifies
: advances the input stream by

up to n lines
effects

: s is a list of up to n strings,
containing characters on the next n
lines of input.

Newline characters are
not included in the strings

procedure
 readlines

(n:int
)

 returns
 s:list of strings

requires

n>=0

modifies
: advances the input stream by

up to n lines
effects

: s is a list of up to n strings,
containing characters on the next n
lines of input.

Newline characters are
not included in the strings

procedure
 initialize_counter()

 returns
 old:int

modifies
: the global variable

count
 is set to zero

effects
: old is set to the value

of count before initialization

procedure
 initialize_counter()

 returns
 old:int

modifies
: the global variable

count
 is set to zero

effects
: old is set to the value

of count before initialization

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 7

D
ifferent Im

plem
entations

M
any possible im

plem
entations:

linear search - slow but easy to im
plem

ent

binary search - fast for large lists

…

These satisfy the abstraction, but:
W

hat if x occurs m
ore than once?

W
hat if a is not sorted?

If we care about any of these details, they should be described in the
abstraction.

procedure
 search (a: list of int, x:

int) returns i:int
requires

: a is sorted in ascending order
effects

: If x is in a, i is the index of an occurrence
of x in a, so that a[i]=x otherwise i is -1

procedure
 search (a: list of int, x:

int) returns
 i:int

requires
: a is sorted in ascending order

effects
: If x is in a, i is the index of an occurrence

of x in a, so that a[i]=x otherwise i is -1

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 8

Procedure D
esign

Procedural abstractions:
…have users and an im

plem
entor

the abstraction defines the service offered to the users
the im

plem
entor is free to provide the service in whatever way seem

s best
(A

s long as it m
eets the specification)

The abstraction should:
constrain things that m

atter to the user
e.g. whether sort creates a new list or m

odifies the old one…

not constrain things that don’t m
atter to the user

e.g. speed, efficiency, algorithm
 used…

U
nder-determ

ination
“som

e aspects of behavior are not defined”
e.g. search was underdeterm

ined as we didn’t say what to do if the elem
ent occurs

m
ore than once in the list.

an under-determ
ined specification m

ay have im
plem

entations that behave
differently

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 9

M
inim

ally specified
only constrained to extent required by the users

General
able to work on a range of inputs (or input types)

e.g. search could be generalized to work on any array types
...we m

ight need to pass it a com
parison function

BU
T: generalizing a procedure is only worthwhile if it becom

es m
ore useful

c.f. m
oving a m

ethod up the class hierarchy

Sim
ple
a well-defined and easily explained purpose

tip: if you can’t think of a sim
ple nam

e for your procedure, it’s probably overly
com

plex (= not cohesive)

N
on-trivial

should achieve som
ething significant

don’t decom
pose a program

 down into too m
any tiny pieces

D
esirable

properties
of procedures

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 10

D
efensive Program

m
ing

M
urphy’s law:

anything that can go wrong will go wrong

e.g. if you rely on precedence order for expressions, you’ll m
ake a m

istake,
so put brackets everywhere

x * y + a * b
(x * y) + (a * b)

e.g. people will call your procedure with the wrong inputs, will forget to
initialise data, etc, so always check!

Partial Procedures are Problem
atic

sooner or later som
eone will violate the ‘requires’ clause

either: try to m
ake them

 total

or: add code at the beginning that checks the requires clause is m
et

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 11

Further advantages of abstraction
Encapsulation

all the im
portant inform

ation about the procedure is stated explicitly in one
place

the detail is hidden

Testing
without an abstraction defined, how will you know if your procedure is

correct?
the abstraction will suggest unusual (“off nom

inal”) test cases

O
ptim

ization
It is often hard to predict where bottlenecks will occur
use abstractions to im

plem
ent the whole program

, then just optim
ize those

procedures that need optim
izing

Error tracing
abstractions help you build firewalls that stop errors propagating

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 12

Elem
ents of Program

 Style
Program

 code is an expression of
a design that will change:
write clearly, avoid cleverness
use library functions
avoid tem

porary variables
clarity is m

ore im
portant than efficiency

parenthesize to avoid am
biguity

avoid confusing variable nam
es

don’t patch bad code - rewrite it
don’t over-com

m
ent

don’t com
m
ent bad code - rewrite it

form
at the code for readability

A
s a design, program

 code should
convey intellectual clarity
clarity is better than sm

all gains in efficiency
m
ake it right before you m

ake it faster
m
ake it robust before you m

ake it faster
m
ake it clear before you m

ake it faster
choose a data representation that m

akes the
program

 sim
ple

Program
 code represents the

result of problem
 solving

write first in a sim
ple pseudo-code then

refine
m
odularize

write and test a big program
 in sm

all
pieces

instrum
ent your program

s
m
easure for bottlenecks before you
optim

ize
watch for “off-by-one” errors
test the “boundary conditions”
checks som

e answers by hand

A
ssum

ptions are dangerous
test inputs for validity and plausibility
identify bad input, recover if possible
use self-identifying input
m
ake input easy to prepare

m
ake output self-explanatory

m
ake sure the code “does nothing”
gracefully

Source: A
dapted from

 B
lum

, 1992, p278-9

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 13

Sum
m
ary

Procedural abstractions are useful
they express the contract between user and im

plem
entor

they are helpful for testing

they facilitate m
odification

Procedural abstractions m
ust be defined precisely

“abstract” does not m
ean the sam

e as “vague”!

strive for referential transparency

This process works at all levels
The principles shown here for procedures apply to all design levels:

specify the abstraction precisely
the specification should tell you everything you need to know to use the com

ponent
the specification should not include unnecessary design inform

ation

Try it for:
system

s, CSCIs, m
odules, packages, procedures, loops, ...

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec06 14

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd Edition)”
W

iley, 1999.
ƒ

deals with procedural abstraction briefly in section 11.1. But you’ll also need to refer to:

Liskov, B. and Guttag, J., “Program
 D

evelopm
ent in Java: A

bstraction,
Specification and O

bject-O
riented D

esign”, 2000, A
ddison-W

esley.
ƒ

Chapter 3. I draw on Liskov’s ideas extensively for advice on program
 design in this course. The

com
m
enting style I use (“requires”, “effects”, etc) is Liskov’s. If you plan to do any extensive

program
m
ing in Java, you should buy this book. If you don’t buy it, borrow it and read the first few

chapters.

Blum
, B. “Software Engineering: A

 H
olistic View”. O

xford U
niversity

Press, 1992
ƒ

Blum
 does an nice treatm

ent on program
 design and abstractions (see especially section 4.2)

Prowell, S. J, Tram
m
ell, C. J, Linger, R., and Poore, J. H

. “Cleanroom
Software Engineering”, 1999, A

ddison-W
esley

ƒ
The cleanroom

 approach relies heavily on encapsulation and referential transparency. It dem
onstrates

how abstraction and specification can be used in the sam
e way at each level of design.

©
 2001, Steve E

asterbrook

