
University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 1

Lecture 5:
D
ecom

position and A
bstraction

D
ecom

position
W

hen to decom
pose

Identifying com
ponents

M
odelling com

ponents

A
bstraction
A
bstraction by param

eterization

A
bstraction by specification

Pre-conditions and Post-conditions

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 2

D
ecom

position
Tackle large problem

s with “divide and conquer”

D
ecom

pose the problem
 so that:

Each subproblem
 is at (roughly) the sam

e level of detail
Each subproblem

 can be solved independently
The solutions to the subproblem

s can be com
bined to solve the original problem

A
dvantages

D
ifferent people can work on different subproblem

s
Parallelization m

ay be possible
M

aintenance is easier

D
isadvantages

Solutions to the subproblem
s m

ight not com
bine to solve the original problem

Poorly understood problem
s are hard to decom

pose

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 3

D
ecom

position can work well:
E.g. designing a restaurant m

enu

D
ecom

position doesn’t always work
E.g. writing a play:

D
ecom

position isn’t always possible
for very com

plex problem
s (e.g. M

anaging the econom
y)

for im
possible problem

s (e.g. Turning water into wine)
for atom

ic problem
s (e.g. A

dding 1 and 1)

D
ecom

position Exam
ples

Choose a set of
character parts

write character 1’s part
write character 2’s part
write character 3’s part

 …etc…

m
erge

Choose style
and them

e

D
esign appetizers m

enu
D
esign entrees m

enu
D
esign desserts m

enu
D
esign drinks m

enu

A
ssem

ble
and edit

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 4

H
ow to

decom
pose

Step 1: Identify com
ponents

a good decom
position m

inim
izes dependencies between com

ponents
coupling - a m

easure of inter-com
ponent connectivity

cohesion - a m
easure of how well the contents of a com

ponent go together

inform
ation hiding

having m
odules keep their data private

provide lim
ited access procedures

this reduces coupling

Private
data

Private
data

.x=?

“42!”

m
odule a

m
odule b

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 5

H
ow to decom

pose (cont.)

Step 2: M
odel the com

ponents
A
t the design level

A
t the coding level

dataflow diagram
s

structure charts
object diagram

sprocedure specifications

procedure declarations
float

sqrt(int);

float
sqrt(int

x){
/* requires

: x is a positive integer
 effects

: returns an approximation
 of the square root of x to within
 ±10

-4 */

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 6

A
bstraction

A
bstraction is the m

ain tool used in
reasoning about software

W
hy? It allows you to:
ignore inconvenient detail

treat different entities as though they are the sam
e

sim
plify m

any types of analysis

Exam
ple abstractions

graph

directed graph
undirected

graph

tree
D
A
G

...
...

A
 file

A
 sequence of

bits on a disk

set
m
em

bership

A
 program

 that takes an
integer and a list returns
the index of the first

occurrence of the
elem

ent or null if the
elem

ent does not occur in
the list

...

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 7

exam
ple

Can I replace A
 with B?

if we could abstract away all the detail…

found =
false;

i
=

lowbound(a);
while

(i
<

highbound(a)+1){

if (a[i] == e) {

z = i;

found = TRUE;
 }

i = i + 1;
} found =

false;
i

=
lowbound(a);

while
(i

<
highbound(a)+1){

if (a[i] == e) {

z = i;

found = TRUE;

 }

i = i + 1;
}

found =
false;

i
=

highbound(a);
while

(i
>

lowbound(a)-1){

if (a[i] == e) {

z = i;

found = TRUE;
 }

i = i - 1;
} found =

false;
i

=
highbound(a);

while
(i

>
lowbound(a)-1){

if (a[i] == e) {

z = i;

found = TRUE;

 }

i = i - 1;
}

A
B

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 8

U
sing A

bstraction

A
bstraction can help with D

ecom
position

e.g. To m
anage the econom

y, try focussing on som
e abstracted

features such as inflation, growth, GD
P, etc.

A
bstraction allows us to ignore inconvenient details

In program
m
ing:

A
bstraction is the process of nam

ing com
pound objects and dealing

with them
 as single entities

(i.e. ignoring their details)

A
bstraction doesn’t solve problem

s…
…but it allows us to sim

plify them

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 9

A
bstraction by Param

eterization
The program

 fragm
ent:

x * x - y * y
com

putes the difference of the squares of two specific variables, x and y.

The abstraction:
int squares (int x, int y) {

return(x * x - y * y);
}describes a set of com

putations which act on any two (integer) variables to
com

pute the difference of their squares
N
ote: locally the variables are called x and y for convenience

The specific com
putation:

result
=

squares(big, small);
uses the abstraction ‘squares’ on two specific variables (‘big’ and ‘sm

all’)

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 10

A
bstraction by param

eterization…
…allows us to express infinitely m

any com
putations

…but does not tell us about the intention of those com
putations

W
e need to capture the intention
e.g. consider what is true before and after a com

putation

we can abstract away from
 a com

putation (or a plan, program
, function, etc)

by talking about what it achieves

A
bstraction by
Specification

before
unsorted
array

after
sorted
array

function for
sorting arrays

specification
this function can be used whenever we have an array. A

fter it
is applied, the array will be sorted into ascending order

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 11

Pre-conditions and Post-conditions
The two form

s of abstraction are com
plem

entary
param

eterization allows us to perform
 a com

putation on any arbitrary variables
(values)

specification allows us to ignore how it is done

U
nfortunately…

only abstraction by param
eterization is built into our program

m
ing languages

as function (procedure) definitions

W
e can overcom

e this using com
m
ents:

int strlen (char s[]) {
 /*

precondition: s must contain a character array,
 delimited by the null character;

postcondition: returns the length of s as an integer;
 */
 int

length = 0;
 while (s[length])
 length++;
 return(length); }

int strlen (char s[]) {
 /*

precondition: s must contain a character array,
 delimited by the null character;

postcondition: returns the length of s as an integer;
 */
 int

length = 0;
 while (s[length])
 length++;
 return(length); }

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 12

Sum
m
ary

D
ecom

position allows us to sim
plify difficult design

tasks

A
 good decom

position
m
inim

izes coupling between com
ponents

m
axim

izes cohesion within com
ponents

perm
its inform

ation hiding

M
ethods provide…
… techniques for decom

posing problem
s

… notations for describing the com
ponents

A
bstraction allows us to ignore detail
by param

eterization: allows us to describe and nam
e sets of com

putations
by specification: allows us to ignore how the com

putation is done

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec05- 13

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd Edition)”
W

iley, 1999.
ƒ

Chapter 11 provides an introduction to the concepts in this lecture, especially section 11.1. H
owever,

van Vliet does not go into m
uch detail about docum

enting procedural and data abstractions in the
style I use in this and the next two lectures. For this you’ll need:

Liskov, B. and Guttag, J., “Program
 D

evelopm
ent in Java: A

bstraction,
Specification and O

bject-O
riented D

esign”, 2000, A
ddison-W

esley.
ƒ

See especially chapters 1 and 3. I draw on Liskov’s ideas extensively for advice on program
 design in

this course. The com
m
enting style I use (“requires”, “effects”, etc) is Liskov’s. If you plan to do any

extensive program
m
ing in Java, you should buy this book. If you don’t buy it, borrow it and read the

first few chapters.

©
 2001, Steve E

asterbrook

