
University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 1

Lecture 4:
Software Lifecycles

The Software Process
W

aterfall m
odel

Rapid Prototyping Cycle

Phased M
odels:

Increm
ental D

evelopm
ent

Evolutionary D
evelopm

ent
Spiral M

odel

V-m
odel and System

s Engineering

The ‘essential’ software process

Verification and Validation

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 2

 wild west approach
 waterfall m

odel
 prototyping (increm

ental, throwaway)
 increm

ental developm
ent

 rapid application developm
ent

 spiral m
odel

 agile/lightweight m
ethods

system
s

developm
ent

-com
m
on steps

planning analysisdesign
developm

ent
im

plem
entation
m
aintenance

system
s

developm
ent

m
ethodologies

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 3

W
aterfall M

odel

requirem
ents

design

code

integrate

test

Source: A
dapted from

 D
orfm

an, 1997, p7
see also: van V

liet 1999, p50

m
aintain

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 4

W
hy not

a waterfall?

W
aterfall m

odel describes a process of
stepwise refinem

ent
Based on hardware engineering m

odels

W
idely used in defense and aerospace industries

But software is different:
N
o fabrication step

Program
 code is just another design level

H
ence, no ‘com

m
it’ step - software can always be changed…!

N
o body of experience for design analysis (yet)

M
ost analysis (testing) is done on program

 code
H
ence, problem

s not detected until late in the process

W
aterfall m

odel takes a static view of requirem
ents

ignores changing needs
Lack of user involvem

ent once specification is written

U
nrealistic separation of specification from

 design

D
oesn’t accom

m
odate prototyping, reuse, etc.

Source: A
dapted from

 B
lum

 1992, pp28-31
see also: van V

liet 1999, p50-1

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 5

Prototyping is used for:
understanding the requirem

ents for the user interface

exam
ining feasibility of a proposed design approach

exploring system
 perform

ance issues

Problem
s:

users treat the prototype as the solution

a prototype is only a partial specification
Source: A

dapted from
van V

liet 1999, p53

docum
ent

require-
m
ents

design
code

test
integrate

require-
m
ents

design
prototype

build
prototype

test
prototype

©
 2001, Steve E

asterbrook

Prototyping
lifecycle

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 6

Y
E

S

N
O

build prototype
system

develop
abstract

specification

use prototype
system

deliver system
system

adequate?

evolutionary
prototyping

throw
-aw

ay
prototyping

reusable com
ponents

develop
prototype

outline
requirem

ents
evaluate
prototype

specify
system

develop
softw

are
validate
system

deliver
system

Som
m

erville fig 8.3 and 8.5

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 7

Phased Lifecycle M
odels

Source: A
dapted from

 D
orfm

an, 1997, p10

Increm
ental developm

ent
(each release adds m

ore functionality)

Requirements

design
code

test
integrate

O
&M

design
code

test
integrate

O
&M

design
code

test
integrate

O
&M

design
code

test
integrate

O
&M

Release 1release 2

release 3release 4

Source: A
dapted from

D
orfm

an, 1997, p10
see also: van V

liet 1999, p56

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 8

design
code

test
integrate

O
&M

reqts

design
code

test
integrate

O
&M

reqts

design
code

test
integrate

reqts

version 1

version 2

version 3

lessons learnt

lessons learnt

Evolutionary developm
ent

(each version incorporates new requirem
ents)

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 9

The Spiral M
odel

D
eterm

ine goals,
alternatives,
constraints

Evaluate
alternatives

and risks

Plan
D

evelop
and
test

budget
1

budget
2

budget
3

budget
4

prototype
1

prototype
2

prototype
3

prototype
4

alternatives4
alternatives3

Altern-atives
2

constraints
4

constraints
3

Constr-

aints
2

alternatives

constraints

risk analysis4
risk analysis3

risk
analysis2

risk
analysis1

concept of
operation

software

requirements

validated

requirem
ents

software
design

validated,

verified design

detaileddesign

code

unittest

system

test
acceptance

test

requirem
ents,

lifecycle plan
developm

ent plan
integration and test plan

im
plem

entation plan

Source: A
dapted from

P
fleeger, 1998, p57

see also: van V
liet 1999, p63

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 10

Com
m
ents on

phased m
odels

Increm
ental developm

ent
avoids ‘big bang’ im

plem
entation

but:
 assum

es all requirem
ents known up-front

Evolutionary developm
ent

allows for lessons from
 each version to be incorporated into the next

but…
hard to plan for versions beyond the first;
lessons m

ay be learnt too late

Spiral m
odel

incorporates prototyping and risk analysis

but…
cannot cope with unforeseen changes (e.g. new business objectives)
not clear how to analyze risk

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 11

V-M
odel

system
requirem

ents

software
requirem

ents

prelim
inary

designdetailed
design

code and
debug

unit
test com

ponent
test software

integration

acceptance
test system

integration

“analyse
and

design”

“test
and

integrate”

tim
e

Level of abstraction
Source: A

dapted from
F

orsberg &
 M

ooz 1997

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 12

The “essential” software process
Source: A

dapted from
 B

lum
, 1992, p32

see also: van V
liet p11

Problem
Statem

ent

Im
plem

entation
Statem

ent

System

Correspondence

Correctness

Validation

Verification

Real W
orld

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 13

Verification and Validation

For V&V, we need to worry about:
The properties of the com

puter hardware (C)
The properties of the program

 (P)
The properties of the m

achine in the application dom
ain (the specification, S)

The properties of the dom
ain, independent of the m

achine (D
)

The requirem
ents for the m

achine (R)

D
em

onstrating that P satisfies R is then a two step
process:
D
o C and P im

ply S? (Verification)
D
o S and D

 im
ply R? (Validation)

A
pplication D

om
ain

M
achine D

om
ain

Source: A
dapted from

 Jackson,
1995, p170-171

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 14

Validation Exam
ple

Requirem
ent R:

“Reverse thrust shall only be enabled when the aircraft is m
oving on

the runway”

D
om

ain Properties D
:

W
heel pulses on if and only if wheels turning

W
heels turning if and only if m

oving on runway

Specification S:
Reverse thrust enabled if and only if wheel pulses on

S + D
 im

ply R
But what if the dom

ain m
odel is wrong?

Source: A
dapted from

 Jackson, 1995, p172

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 15

Sum
m
ary

Software is different
m
any assum

ptions from
 other engineering m

odels don’t apply
there is no fabrication step
the underlying science of software behaviour is not well developed
(software engineering is still an im

m
ature discipline)

M
any different views of the software process

waterfall m
odel is too rigid (doesn’t allow for change)

other m
odels incorporate prototyping, evolution, risk, etc.

no lifecycle m
odel is perfect

Essential process:
describe the problem
describe the solution
verify (does the solution solve the stated problem

?)
validate (did we solve the right problem

?)

©
 2001, Steve E

asterbrook

University of Toronto
D
epartm

ent of Com
puter Science

CSC444 Lec04- 16

References
van Vliet, H

. “Software Engineering: Principles and Practice (2nd Edition)” W
iley,

1999.
Chapter 3 provides a very good overview of lifecycle m

odels.

Blum
, B. “Software Engineering: A

 H
olistic View”. O

xford U
niversity Press, 1992.

D
orfm

an, M
. “Requirem

ents Engineering”. In Thayer, R. H
 and D

orfm
an, M

. (eds.)
“Software Requirem

ents Engineering, Second Edition”. IEEE Com
puter Society

Press, 1997, p7-22

Forsberg, K and M
ooz, H

. “System
 Engineering O

verview”. In Thayer, R. H
 and

D
orfm

an, M
. (eds.) “Software Requirem

ents Engineering, Second Edition”. IEEE
Com

puter Society Press, 1997, p44-72

Jackson, M
. “Software Requirem

ents & Specifications: A
 Lexicon of Practice,

Principles and Prejudices”. A
ddison-W

esley, 1995.

Pfleeger, S. “Software Engineering: Theory and Practice”. Prentice H
all, 1997.

©
 2001, Steve E

asterbrook

