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W
aterfall M

odel

requirem
ents

design

code

integrate

test

Source: A
dapted from

 D
orfm

an, 1997, p7
see also: van V

liet 1999, p50
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W
hy not

a waterfall?

W
aterfall m

odel describes a process of
stepwise refinem

ent
Based on hardware engineering m

odels

W
idely used in defense and aerospace industries

But software is different:
N
o fabrication step

Program
 code is just another design level

H
ence, no ‘com

m
it’ step - software can always be changed…!

N
o body of experience for design analysis (yet)

M
ost analysis (testing) is done on program

 code
H
ence, problem

s not detected until late in the process

W
aterfall m

odel takes a static view of requirem
ents

ignores changing needs
Lack of user involvem

ent once specification is written

U
nrealistic separation of specification from

 design

D
oesn’t accom

m
odate prototyping, reuse, etc.

Source: A
dapted from

 B
lum

 1992, pp28-31
see also: van V

liet 1999, p50-1
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Prototyping is used for:
understanding the requirem

ents for the user interface

exam
ining feasibility of a proposed design approach

exploring system
 perform

ance issues

Problem
s:

users treat the prototype as the solution

a prototype is only a partial specification
Source: A

dapted from
van V

liet 1999, p53
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Phased Lifecycle M
odels

Source: A
dapted from

 D
orfm

an, 1997, p10
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Source: A
dapted from

D
orfm

an, 1997, p10
see also: van V

liet 1999, p56

©
 2001, Steve E

asterbrook



University of Toronto
D
epartm

ent of Com
puter Science

CSC444  Lec04- 8

design
code

test
integrate

O
&M

reqts

design
code

test
integrate

O
&M

reqts

design
code

test
integrate

reqts

version 1

version 2

version 3

lessons learnt

lessons learnt

Evolutionary developm
ent

(each version incorporates new requirem
ents)



University of Toronto
D
epartm

ent of Com
puter Science

CSC444  Lec04- 9

The Spiral M
odel
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Source: A
dapted from

P
fleeger, 1998, p57

see also: van V
liet 1999, p63
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Com
m
ents on

phased m
odels

Increm
ental developm

ent
avoids ‘big bang’ im

plem
entation

but:
 assum

es all requirem
ents known up-front

Evolutionary developm
ent

allows for lessons from
 each version to be incorporated into the next

but…
hard to plan for versions beyond the first;
lessons m

ay be learnt too late

Spiral m
odel

incorporates prototyping and risk analysis

but…
cannot cope with unforeseen changes (e.g. new business objectives)
not clear how to analyze risk
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V-M
odel

system
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Source: A

dapted from
F

orsberg &
 M

ooz 1997
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The “essential” software process
Source: A

dapted from
 B

lum
, 1992, p32

see also: van V
liet p11
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Verification and Validation

For V&V, we need to worry about:
The properties of the com

puter hardware (C)
The properties of the program

 (P)
The properties of the m

achine in the application dom
ain (the specification, S)

The properties of the dom
ain, independent of the m

achine (D
)

The requirem
ents for the m

achine (R)

D
em

onstrating that P satisfies R is then a two step
process:
D
o C and P im

ply S? (Verification)
D
o S and D

 im
ply R? (Validation)

A
pplication D

om
ain

M
achine D

om
ain

Source: A
dapted from

 Jackson,
1995, p170-171
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Validation Exam
ple

Requirem
ent R:

“Reverse thrust shall only be enabled when the aircraft is m
oving on

the runway”

D
om

ain Properties D
:

W
heel pulses on if and only if wheels turning

W
heels turning if and only if m

oving on runway

Specification S:
Reverse thrust enabled if and only if wheel pulses on

S + D
 im

ply R
But what if the dom

ain m
odel is wrong?

Source: A
dapted from

 Jackson, 1995, p172
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Sum
m
ary

Software is different
m
any assum

ptions from
 other engineering m

odels don’t apply
there is no fabrication step
the underlying science of software behaviour is not well developed
(software engineering is still an im

m
ature discipline)

M
any different views of the software process

waterfall m
odel is too rigid (doesn’t allow for change)

other m
odels incorporate prototyping, evolution, risk, etc.

no lifecycle m
odel is perfect

Essential process:
describe the problem
describe the solution
verify (does the solution solve the stated problem

?)
validate (did we solve the right problem

?)
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