&

Bl
na

University of Toronto Department of Computer Science

4.@4

Lecture 4:
Software Lifecycles

The Software Process

Waterfall model
Rapid Prototyping Cycle
Phased Models:

Incremental Development
Evolutionary Development
Spiral Model

V-model and Systems Engineering

The ‘essential’ software process

Verification and Validation

© 2001, Steve Easterbrook CSC444 Lec04-1

% University of Toronto Department of Computer Science

systems
planning development

analysis -common steps
design

development
implementation

wild west approach .
maintenance

waterfall model

prototyping (incremental, throwaway)
incremental development

rapid application development

spiral model

m<m+®3m agile/lightweight methods

development
methodologies

CSC444 Lec04-2

University of Toronto Department of Computer Science

Waterfall Model

Source: Adapted from Dorfman, 1997, p7
see also: van Viiet 1999, p50

requirements

"1 integrate

"1 maintain

© 2001, Steve Easterbrook CSC444 Lec04-3

&

University of Toronto Department of Computer Science

an
4-@

"~ Waterfall model describes a process of
stepwise refinement

Based on hardware engineering models S\—J< 30.—-
Widely used in defense and aerospace industries 5
a waterfall:

But software is different:

No fabrication step
Program code is just another design level
Hence, no ‘commit’ step - software can always be changed..!

No body of experience for design analysis (yet)
Most analysis (testing) is done on program code
Hence, problems not detected until late in the process

Waterfall model takes a static view of requirements
ignores changing needs
Lack of user involvement once specification is written

Unrealistic separation of specification from design

' . Source: Adapted from Blum 1992, pp28-31
Doesn't accommodate prototyping, reuse, etc. see also: van Vet 1999, p50-1

© 2001, Steve Easterbrook CSC444 Lec04-4

University of Toronto Department of Computer Science

v Prototyping
require- design build test .
ments prototype | prototype | prototype _ | *N n<n _ e
document
require- design code test integrate
ments

Prototyping is used for:
understanding the requirements for the user interface
examining feasibility of a proposed design approach

exploring system performance issues

Problems:

users treat the prototype as the solution

a prototype is only a partial specification Source: Adapted from

van Vliet 1999, p53

© 2001, Steve Easterbrook CSC444 Lec04-5

University of Toronto

Department of Computer Science

4.@4

. develo :
m<©~=a~c=m-.v~ mcm:m% build prototype use prototype
. specification system system
prototyping
deliver system YES
outline develop evaluate specify
requirements prototype prototype system
reusable components
v
H—:.ﬁﬁfﬁiﬁ% deliver validate develop
ﬁﬁﬁﬂca%ﬂmﬁm system system software

%

Sommerville fig 8.3 and 8.5

CSC444 Lec04-6

C n m<mﬂm m._”< o._“ |—|° ro —.d._“o Source: Adapted from Dorfman, 1997, p10

Department of Computer Science

Source: Adapted from
Dorfman, 1997, p10
see also: van Vliet 1999, p56

Phased Lifecycle Models

Release
+amm_m= code | ftest mimmwo*m_ O&M
g I
e [design | code | test mimmwo*m_ O&M
W release 3
m.. > design | code | test _=+mm3+m_ O&M
release 4
> design | code | test mimmwo*m_ O&M

Incremental development
(each release adds more functionality)

© 2001, Steve Easterbrook

CSC444 Lec04-7

University of Toronto Department of Computer Science

ion1
ﬁmnﬁ design | code | ftest Tamm_‘.n.qm_ O&M

lessons |learnt

ion 2
gﬁuwmﬂm design | code est ngm_‘.ﬁm O&M

lessons ,\m&.: ﬁ

n3 \ \ A
4 reqts | design | code | test |[ntegrat

el

Evolutionary development
(each version incorporates new requirements)

CSC444 Lec04-8

._,.., University of Toronto Department of Computer Science
; Source: Adapted from

[]
The Spiral Model e

Evaluate
alternatives
and risks

Determine goals,
alternatives,
constraints

budget, budget, budget, udget,

lconcept of
operation

Develop
and
test

© 2001, Steve Easterbrook CSC444 Lec04-9

University of Toronto Department of Computer Science

Comments on

avoids 'big bang’ implementation “VTQMNQ -‘_JOQN_M
but:

assumes all requirements known up-front

Evolutionary development

allows for lessons from each version to be incorporated into the next
but...

hard to plan for versions beyond the first;

lessons may be learnt too late

Spiral model

incorporates prototyping and risk analysis
but...

cannot cope with unforeseen changes (e.g. new business objectives)

not clear how to analyze risk

© 2001, Steve Easterbrook CSC444 Lec04-10

T _University of Toronto Department of Computer Science
Source: Adapted from

Forsberg & Mooz 1997
V-Model

A

=
= SYSTEM | Nerrerererserereseeeeseesessasssssssssssnsanfoneas system
S requirements integration
£ / \ﬂ

0
Ne]

(o}
5 software |\ e o] acceptance

S requirements test

Y -

preliminary | N oo software
V design integration L

“analyse /w ,\ﬂ “test
and Q@.E.m led | 7 component and
QNmm©3= Qﬂmﬂ MM# _.3._.N©1D._.N=
m noam and unit N
Qm_ucm - test
>
time

© 2001, Steve Easterbrook CSC444 Lec04- 11

University of Toronto Department of Computer Science

The “essential” software process

Source: Adapted from Blum, 1992, p32
see also: van Viiet p11

Real <<O1_Q .
y
Y _ Problem
.m i Statement 5 5
< = +- -
o| + o o
& o H 2 |3
o| & = G
C < <
[Q . Q >
S| VL | Implementation >
Statement
H
System _v_

© 2001, Steve Easterbrook CSC444 Lec04-12

University of Toronto Department of Computer Science

Verification and Validation

Application Domain Machine Domain

For V&V, we need to worry about:
The properties of the computer hardware (C)
The properties of the program (P)
The properties of the machine in the application domain (the specification, S)
The properties of the domain, independent of the machine (D)
The requirements for the machine (R)

Demonstrating that P satisfies R is then a two step
process:

Do C and P imply S? (Verification)
Source: Adapted from Jackson,
Do S and D imply R? (Validation) 005 p170-171

© 2001, Steve Easterbrook CSC444 Lec04- 13

University of Toronto Department of Computer Science

Validation Example

Source: Adapted from Jackson, 1995, p172

Requirement R:

"Reverse thrust shall only be enabled when the aircraft is moving on
the runway”

Domain Properties D:

Wheel pulses on if and only if wheels turning

Wheels turning if and only if moving on runway

Specification S:

Reverse thrust enabled if and only if wheel pulses on

S + D imply R

But what if the domain model is wrong?

© 2001, Steve Easterbrook CSC444 Lec04- 14

University of Toronto Department of Computer Science

Summary

Software is different

many assumptions from other engineering models don't apply

there is no fabrication step

the underlying science of software behaviour is not well developed
(software engineering is still an immature discipline)

Many different views of the software process

waterfall model is too rigid (doesn't allow for change)
other models incorporate prototyping, evolution, risk, etc.
no lifecycle model is perfect

Essential process:

describe the problem

describe the solution

verify (does the solution solve the stated problem?)
validate (did we solve the right problem?)

© 2001, Steve Easterbrook CSC444 Lec04- 15

University of Toronto Department of Computer Science

References

van Vliet, H. "Software Engineering: Principles and Practice (2nd Edition)" Wiley,
1999.

Chapter 3 provides a very good overview of lifecycle models.

Blum, B. "Software Engineering: A Holistic View"”. Oxford University Press, 1992.

Dorfman, M. "Requirements Engineering”. In Thayer, R. H and Dorfman, M. (eds.)
"Software Requirements Engineering, Second Edition”. TEEE Computer Society
Press, 1997, p7-22

Forsberg, K and Mooz, H. "System Engineering Overview”. In Thayer, R. H and
Dorfman, M. (eds.) "Software Requirements Engineering, Second Edition". IEEE
Computer Society Press, 1997, p44-72

Jackson, M. "Software Requirements & Specifications: A Lexicon of Practice,
Principles and Prejudices”. Addison-Wesley, 1995.

Pfleeger, S. "Software Engineering: Theory and Practice”. Prentice Hall, 1997.

© 2001, Steve Easterbrook CSC444 Lec04- 16

