
CSC444 review 12/4/02 7:55 AM pg 1/2

PART I

#3 project management
• problems related to control of: resources, time, product

and risk
• what to keep in mind when planning or controlling

projects
• general understanding of what information you would

find in PERT charts, Gantt charts and work breakdown
structure charts

• how to run good meetings and why these steps are
necessary

• risk management calculations and their meaning
• how to identify and respond to risks
• metrics related to project management
• responsibilities of a project manager

#22 software measurement
• measurement and concept of control and prediction
• project control measurements:
• estimating – factors that influence man-months
• software control measurements:
• reliability
• complexity

#4 software lifecycles
• for waterfall, prototype, spiral, incremental:
• differences between them
• benefits and drawbacks
• meaning of the V-model

#20 software maintenance and reuse
• types of programs and why we need to distinguish

between them (for testing and for maintenance)
• types of maintenance and their handling/history
• general understanding of what happens to software as it’s

maintained
• difficulties in maintaining systems
• what needs to be in place for maintenance to be

effective/efficient
• reuse and why it’s important in maintenance as well as in

development
• how to keep software healthy

#21 process modeling and improvement
• what is process modeling and why it needs to be

documented
• how to improve the process over time
• general issues in process improvement
• capability maturity model and its classifications

PART II

#8 testing
• difference between verification and validation – and the

tests done for each
• timing of tests during the project
• characteristics of good testing practices
• relationship between partitioning and testing
• blackbox and whitebox testing –differences and reasons

for
• integration testing and system testing –what are we trying

to achieve
• large system testing and automation
• making sure your testing practices are effective

#9 reviews and inspections
• types of reviews, inspections and walkthroughs
• reviewing specifications, code, design, plans, etc.
• benefits and constraints of formal inspections
• structure and control of inspections

#10 formal verification
• purpose and definition of first order propositional logic
• pre- and post-conditions – how are they used?
• what is a correctness proof?
• Hoare’s notation and what it generally means
• when and how to use formal program proofs

#11 debugging and exceptions
• difficulties in debugging, and general wisdom
• scientific method of debugging
• instrumentation of testing tools and firewalls –general

understanding
• exception handling options and their meanings
• change management – control and documentation

methods

CSC444 review 12/4/02 7:55 AM pg 2/2

PART III

#14 requirements analysis
• the requirements engineering process and why it is

difficult
• the need to focus on the “what” before we address the

“how”
• differences between functional and non-functional

requirements?
• techniques for eliciting requirements: differences,

reasons?
• requirements engineering methods
• modeling and modeling methods

#18 specifications
• reasons/uses for software specifications
• characteristics of good specifications, with examples
• traceability and its importance

#5 decomposition and abstraction
• reasons for decomposition and abstraction – esp. related

to analysis and design
• the three methods of abstraction and their limits and

options
• characteristics of good decomposition

#6 procedural abstractions
• benefits of procedural abstractions
• what needs to be known about a procedure?
• total vs partial procedures – why do we care?
• desirable properties of procedural abstractions

#7 data abstraction
• benefits of data abstraction and information hiding
• how to document data abstractions
• some capabilities of O-O programming languages

#13 software design representation
• for each view point:

o what they represent
o their uses
o an example of two

#15 structured modeling
• components of DFD’s
• DFD hierarchies (context, level 1, etc.) and how they

break down
• ability to modify diagrams
• general methodology (but not the subtle differences

between DFD variants)
• uses , advantages and disadvantages

#16 object-oriented modeling
• modeling primitives
• criteria for selecting objects
• key principles
• ability to read diagrams
• general understanding, but not details of variants

17 formal modeling
• general uses of formal methods/ analysis

#19 software architectures
• for the six architectural styles:
• general description of diagram
• uses and disadvantages
• not KWIC nor description languages

#12 software quality
• definition of software quality – by IT professional and by

users
• relationship of measurement to concepts of quality
• coupling and cohesion as measure of potential quality

WHAT’S NOT ON THE EXAM?
• history (names, dates...)
• details from assignments

WHERE IS THE EMPHASIS?
PART I and PART II

