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CSC384: Lecture 9
�Last time

• STRIPS and Regression planning

�Today
• Reasoning under uncertainty (intro)

�Readings:
• Today:  10.1 – 10.3 (reasoning under uncertainty)
• Next week: 10.3 (belief networks)
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Reasoning Under Uncertainty

�So far our planning problems have assumed:
• start state is known with certainty
• actions are deterministic
• Both assumptions unrealistic (e.g., in robot domain)

�Knowledge:
• What if Craig can be in office or lab?
• Can robot know a priori if coffee made? mail waits?

�Actions:
• Robbie grabs coffee: could fail (try again); could spill 

(make more)
• Robbie does move(l,o): could end up elsewhere
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Classical Plans are Inadequate

�Classical plans (sequences of actions) fail to 
handle either of these

• similarly for “deterministic domain” search procedures

�If actions have nondeterministic (uncertain) 
effects, suitable plan should branch on outcome

• Pour coffee; If successful, go to office, else make 
more

�If uncertain knowledge, uncertain effects, there 
may be no plan guaranteed to achieve goal

• Pour coffee; If spilled, there is no more and plan fails
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Some Decision Making Scenarios

�Suppose Craig wants coffee (as quickly as 
possible). Robbie, with coffee ready to deliver, 
knows Craig is in lab or office, but not which. 
Robbie is much closer to the lab than the office. 
What should it do?

• What if Craig is almost always in his office?

• What if peeking into the lab takes just a couple 
seconds? a couple minutes?

• What if Craig is equally likely to be lab or office?
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More Decision Making Scenarios

�Suppose Craig wants coffee or his mail (doesn't 
need both). Robbie only as enough battery 
power to do one or the other. What goal should it 
(attempt) to achieve?

• What if Craig likes coffee much more than mail? mail 
more than coffee?

• What if possibility no coffee made?

• What if Robbie usually spills coffee a couple of times 
before succeeding?

�Aside: consider the lottery. What would have to 
change for you to start (or stop) playing?
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Degrees of Belief and Preference

�The right decision/plan above requires that 
Robbie consider how important various 
objectives are, how likely he is to achieve them, 
and make tradeoffs among them.
�This generally requires that we quantify our 
preferences and our degrees of belief.
�We're going to start with degrees of belief and 
talk about preferences and decision making later.
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Reasoning under Uncertainty

�Logical representations (as seen so far) capture 
a weak form of uncertainty:

• if query  q not proved, could be true or false

�Too weak to allow (reasonable) tradeoffs
• want to know how likely q is

�We'll quantify our beliefs using probabilities
• Pr(q) denotes probability that you believe  q is true
• We take subjectivist viewpoint (cf. frequentist)

�Note: statistics/data influence degrees of belief
�Let’s formalize things…
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Random Variables

�Assume set V of random variables: X, Y, etc.
• Each RV X has a domain of values Dom(X)
• X can take on any value from Dom(X)
• Assume V and Dom(X) finite

�Examples
• Dom(X) = {x1, x2, x3}
• Dom(Weather)  = {sunny, cloudy, rainy}
• Dom(StudentInCraigsOffice) = 

{pascal, georgios, veronica, tianhan…} 
• Dom(CraigHasCoffee) = {T,F}   (boolean var)
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Random Variables/Possible Worlds

�A formula is a logical combination of variable 
assignments:

• X = x1;   (X = x2 � X = x3) � Y = y2 ;    (x2 � x3) � y2

• chc � ~cm,  etc…

• let L denote the set of formulae (our language)

�A possible world is an assignment of values to 
each RV

• these are analogous to truth assts (interpretations)
• Let W be the set of worlds
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Probability Distributions

�A probability distribution Pr: L � [0,1] s.t.
• 0 � Pr(� � � � �

• Pr(� ) = Pr(� )  if � is logically equivalent to �
• Pr(� ) = 1  if � is a tautology
• Pr(� � � ) = Pr(� )  + Pr(� ) - Pr(� �� ) 

�Pr( � ) denotes our degree of belief in � ; e.g.
• Pr(X = x1) = Pr(x1) = 0.9
• Pr((x2 � x3) � y2) = 0.9
• Pr(loc(craig) = off) = 0.6
• Pr( loc(craig) = off  � loc(craig) = lab ) = 1.0
• Pr(loc(craig) = lounge) = 0.0
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Semantics of Prob. Distributions

�A probability measure : W � � � � � � � 	 
 � 


•

�Intuitively, (w) measures the probability that the 
actual world is w (your belief in w). Thus, the 
relative likelihood of any world you consider 
possible is specified. If w has measure 0, you 
consider it to be impossible!

�
∈

=
Ww

w 1)(µ
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Semantics of Distributions

�Given measure , we determine degree of belief 
in formula Pr( � ) 

• simply sum the measures of all worlds satisfying the 
formula of interest

}|:)({)Pr( αµα == �
∈

ww
Ww



CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example Distribution
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Relationship

�For any measure the induced mapping Pr is a 
distribution.

�For any distribution Pr there is a corresponding 
measure that induces Pr.

�Thus, the syntactic and semantic restrictions 
correspond (soundness and completeness)
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Some Important Properties
� Pr(�) = 1 – Pr(-�), where � can be “generalized”

�

• e.g., Pr(sunny) + Pr(cloudy) + Pr(rainy) = 1
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Conditional Probability

�Conditional probability critical in inference

• if Pr(a) = 0, we often treat Pr(b|a)=1 by convention

)Pr(

)Pr(
)|Pr(

a

ab
ab
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Semantics of Conditional Prob.

�Semantics of Pr(b|a):
• denotes relative weight of b-worlds among a-worlds
• ~a-worlds play no role

�
�
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Intuitive Meaning of Cond. Prob.

�Intuitively, if you learned a, you would change 
your degree of belief in b from Pr(b) to Pr(b|a)
�In our example:

• Pr(m|c) = 0.9
• Pr(m| ~c) = 0.9
• Pr(a) = 0.618
• Pr(a|~m) = 0.27
• Pr(a|~m & c) = 0.8

�Notice the nonmonotonicity in the last three 
cases when additional evidence is added

• contrast this with logical inference
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Some Important Properties

�Product Rule: Pr(ab) = Pr(a|b)Pr(b)

�Summing Out Rule:

�Chain Rule:

Pr(abcd)  = Pr(a|bcd)Pr(b|cd)Pr(c|d)Pr(d)
• holds for any number of variables

)Pr()|Pr()Pr(
)(

bbaa
BDomb

�
∈

=



CSC 384 Lecture Slides (c) 2002, C. Boutilier

Bayes Rule

�Bayes Rule: 

�Bayes rule follows by simple algebraic 
manipulation of the defn of condition probability

• why is it so important? why significant?

• usually, one “direction” easier to assess than other

)Pr(

)Pr()|Pr(
)|Pr(

b

aab
ba =
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Example of Use of Bayes Rule

�Disease � {malaria, cold, flu}; Symptom = fever
• Must compute Pr(D|fever) to prescribe treatment

�Why not assess this quantity directly?
• Pr(mal | fever) is not natural to assess; Pr(fever | mal) 

reflects the underlying “causal” mechanism
• Pr(mal | fever) is not “stable”: a malaria epidemic 

changes this quantity (for example)

�So we use Bayes rule:
• Pr(mal | fever) = Pr(fever | mal) Pr(mal) / Pr(fever)
• note that Pr(fev) = Pr(m | fev) + Pr(c|fev) + Pr(fl | fev)
• so if we compute Pr of each disease given fever 

using Bayes rule, normalizing constant is “free”
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Probabilistic Inference

�By probabilistic inference, we mean
• given a prior distribution Pr over variables of interest, 

representing degrees of belief
• and given new evidence E=e for some var E
• Revise your degrees of belief: posterior Pre

�How do your degrees of belief change as a result 
of learning E=e (or more generally E=e, for set E)
�Contrast with “logical” reasoning over 
probabilistic assertions



CSC 384 Lecture Slides (c) 2002, C. Boutilier

Conditioning

�We define Pre(�) = Pr(� � � � )

�That is, we produce Pre by conditioning the prior 
distribution on the observed evidence e
�Semantically, we take original measure 

• we set (w) = 0 for any world falsifying e
• we set (w) = (w) / Pr(e) for any e-world
• last step known as normalization (ensures that the 

new measure sums to 1)
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Semantics of Conditioning
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Inference: Computational Bottleneck

�Semantically/conceptually, picture is clear; but 
several issues must be addressed
�Issue 1: How do we specify the full joint 
distribution over X1, X2,…, Xn ?

• exponential number of possible worlds
• e.g., if the Xi are boolean, then 2n numbers (or 2n -1 

parameters/degrees of freedom, since they sum to 1)
• these numbers are not robust/stable
• these numbers are not natural to assess (what is 

probability that “Craig wants coffee; it’s raining in 
Coquitlam; robot charge level is low; …”?)
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Inference: Computational Bottleneck

�Issue 2: Inference in this rep’n frightfully slow
• Must sum over exponential number of worlds to 

answer query Pr(�) or to condition on evidence e to 
determine Pre(�) 

�How do we avoid these two problems?
• no solution in general
• but in practice there is structure we can exploit

�We’ll use conditional independence
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Independence

�Recall that x and y are independent iff:
• Pr(x) = Pr(x|y) iff Pr(y) = Pr(y|x) iff Pr(xy) = Pr(x)Pr(y)
• intuitively, learning y doesn’t influence beliefs about x

�x and y are conditionally independent given z iff:
• Pr(x|z) = Pr(x|yz) iff Pr(y|z) = Pr(y|xz) iff

Pr(xy|z) = Pr(x|z)Pr(y|z) iff … 
• intuitively, learning y doesn’t influence your beliefs 

about x if you already know z
• e.g., learning someone’s mark on 384 exam can 

influence the probability you assign to a specific GPA; 
but if you already knew final 384 grade, learning the 
exam mark would not influence your GPA assessmnt
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Variable Independence

�Two variables X and Y are conditionally 
independent given variable Z iff x, y are 
conditionally independent given z for all  
x�Dom(X), y�Dom(Y), z�Dom(Z)

• Also applies to sets of variables X, Y, Z
• Also to unconditional case (X,Y independent)

�If you know the value of Z (whatever it is), 
nothing you learn about Y will influence your 
beliefs about X

• these defns differ from earlier ones (which talk about 
events, not variables)
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What does independence buys us?

�Suppose (say, boolean) variables X1, X2,…, Xn
are mutually independent

• we can specify full joint distribution using only n 
parameters (linear) instead of 2n -1 (exponential)

�How? Simply specify Pr(x1), … Pr(xn)
• from this I can recover probability of any world or any 

(conjunctive) query easily
• e.g. Pr(x1~x2x3x4) = Pr(x1) (1-Pr(x2)) Pr(x3) Pr(x4) 
• we can condition on observed value Xk = xk trivially by 

changing Pr(xk) to 1, leaving Pr(xi) untouched for i� �
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The Value of Independence

�Complete independence reduces both 
representation of joint and inference from O(2n) 
to O(n): pretty significant!
�Unfortunately, such complete mutual 
independence is very rare. Most realistic 
domains do not exhibit this property.
�Fortunately, most domains do exhibit a fair 
amount of conditional independence. And we can 
exploit conditional independence for 
representation and inference as well.
�Bayesian networks do just this
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Exploiting Conditional Independence

�Let’s see what conditional independence buys us
�Consider a story:

• If Craig woke up too early E, Craig probably needs 
coffee C; if C, Craig needs coffee, he's likely angry A. 
If A, there is an increased chance of an aneurysm 
(burst blood vessel) B. If B, Craig is quite likely to be 
hospitalized H.

� % & '(
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An Aside on Notation

�Pr(X) for variable X (or set of variables) refers to the 
(marginal) distribution over X. Pr(X|Y) refers to family of 
conditional distributions over X, one for each y�Dom(Y).

�Distinguish between Pr(X) -- which is a distribution – and 
Pr(x) or Pr(~x) (or Pr(xi) for nonboolean vars) -- which are 
numbers. Think of Pr(X) as a function that accepts any   
xi �Dom(X) as an argument and returns Pr(xi).

�Similarly, think of Pr(X|Y) as a function that accepts any xi
and yk and returns Pr(xi | yk). Note that Pr(X|Y) is not a 
single distribution; rather it denotes the family of 
distributions (over X) induced by the different yk �Dom(Y)
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Cond’l Independence in our Story

�If you learned any of E, C, A, or B, your assessment of 
Pr(H) would change. 

• E.g., if any of these are seen to be true, you would increase 
Pr(h) and decrease Pr(~h). 

• So H is not independent of E, or C, or A, or B.

�But if you knew value of B (true or false), learning value 
of E, C, or A, would not influence Pr(H). Influence these 
factors have on H is mediated by their influence on B.

• Craig doesn't get sent to the hospital because he's angry, he 
gets sent because he's had an aneurysm.

• So H is independent of E, and C, and A, given B

� % & '(
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Cond’l Independence in our Story

�So H is independent of E, and C, and A, given B
�Similarly:

• B is independent of E, and C, given A
• A is independent of E, given C

�This means that:
• Pr(H | B, {A,C,E} )  =  Pr(H|B)

� i.e., for any subset of {A,C,E}, this relation holds
• Pr(B | A, {C,E} ) = Pr(B | A)
• Pr(A | C, {E} ) = Pr(A | C)
• Pr(C | E)    and    Pr(E)   don’t “simplify”

� % & '(
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Cond’l Independence in our Story

�By the chain rule (for any instantiation of H…E):
• Pr(H,B,A,C,E) = 

Pr(H|B,A,C,E) Pr(B|A,C,E) Pr(A|C,E) Pr(C|E) Pr(E)

�By our independence assumptions:
• Pr(H,B,A,C,E) = 

Pr(H|B) Pr(B|A) Pr(A|C) Pr(C|E) Pr(E)

�We can specify the full joint by specifying five 
local conditional distributions: Pr(H|B); Pr(B|A); 
Pr(A|C); Pr(C|E); and Pr(E) 

� % & '(
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Example Quantification

�Specifying the joint requires only 9 parameters (if 
we note that half of these are “1 minus” the 
others), instead of 31 for explicit representation

• linear in number of vars instead of exponential!
• linear generally if dependence has a chain structure
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Inference is Easy

�Want to know P(a)? Use summing out rule:

� % & '(

)Pr()|Pr()|Pr(

)Pr()|Pr()(

)()(

)(

i
EDom

ii
CDomc

i

i
CDomc

i

eecca

ccaaP

iei

i

��

�

∈∈

∈

=

=

4 , � $ � ��� � ��  ��� � �$ �$ � � �! . ! � - �! � �� 0 � � � �� �- ! $ �� ! / 0 �! � � $ 5



CSC 384 Lecture Slides (c) 2002, C. Boutilier

Inference is Easy

�Computing P(a) in more concrete terms:
• P(c) = P(c|e)P(e) + P(c|~e)P(~e) 

= 0.8 * 0.7 + 0.5 * 0.3  = 0.78
• P(~c) = P(~c|e)P(e) + P(~c|~e)P(~e) = 0.22

�P(~c) = 1 – P(c), as well
• P(a) = P(a|c)P(c) + P(a|~c)P(~c) 

= 0.7 * 0.78 + 0.0 * 0.22 = 0.546
• P(~a) = 1 – P(a) = 0.454 

� % & '(
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Bayesian Networks

�The structure above is a Bayesian network. A BN 
is a graphical representation of the direct 
dependencies over a set of variables, together 
with a set of conditional probability tables
quantifying the strength of those influences.
�Bayes nets generalize the above ideas in very 
interesting ways, leading to effective means of 
representation and inference under uncertainty.
�We’ll get into the details and formal definitions 
next time!


