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CSC384: Lecture 8
�Last time

• Action Representation; planning as search

�Today
• STRIPS Planning, Regression planning

�Readings:
• Today: 8.3 (STRIPS planning in depth, regression 

planning, briefly resolution-based planning) 
• Next week: uncertainty 10.1, 10.2, start on 10.3

�
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STRIPS Planner

�Last time, discussed intuitive sketch of STRIPS
• a divide-and-conquer approach
• tries to find independent plans for individual subgoals

and then pieces these plans together
• recursively tries to achieve necessary preconditions

�We’ll sketch a version of the algorithm designed 
to work with the CWR-D representation

• contrast with algorithm in text, which is designed to 
work with the situation calculus representation

�
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STRIPS with CWR-D

�achieve_all(GList,S0,S1,Plan)
• action sequence Plan applied at state S0 results in 

state S1, satisfying all goals in GList
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STRIPS w/ CWR-D: Goal Selection

�remove(G, GList,RestG)
• selects a goal G from goal list for achievement
• implementation #1 below always selects first goal
• note: we’ll see that allowing different orderings is 

important---it should really be a “choose” not “select”
• implementation #2 allows backtracking
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STRIPS w/ CWR-D: Goal Achievem’t

�achieve(G, S0, S1, Plan)
• action sequence Plan applied at state S0 results in 

state S1, satisfying all goal G (single goal)
• all predicates used defined earlier except effect_of
• effect_of(A,G): action A has G as an effect (exercise)
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STRIPS: Handling Derived Relations

�If we have derived relations, STRIPS can’t 
directly achieve such a fact (not mentioned as 
effects of any actions)

• so simply set Body as subgoals to achieve
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Issues with STRIPS (1)

�Order of goal selection can 
impact quality/length of plan

• e.g., we picked mov(l,o) to achieve 
loc(o) in final plan step; but what if 
we had picked mov(m,o)?

• might have picked mov(h,m), then 
mov(c,h), etc. and taken long way 
around

• might have gotten in a cycle

�In general, goal selection 
ordering can benefit from 
heuristics; and can even require 
systematic search/backtracking

Start State: loc(o), lck(l), 
neg(rhk), neg(labtidy) …

Goal: loc(o), labtidy
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Issues with STRIPS (2)

�STRIPS can return incorrect plans!
• suppose we chose goal loc(o) before labtidy
• plan for loc(o) is []   (it’s true in initial state s0)
• plan for labtidy is [getkeys, mov(o,l), tidy]
• the second plan destroys or clobbers the subgoal

achieved by the first plan!
• so returned plan [ ] + [gk,m(o,l),t] is incorrect

�Subgoal protection:
• circumvents this problem by protecting achieved 

subgoals when producing plans for the next subgoals

�
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Subgoal Protection
� Given k goals [g1, …, gk] in this order

• produce a subplan that achieves g1 (say p1)
• produce a subplan p2 that produces that achieves g2

without affecting g1
• in general, produce a plan pi for gi that does not 

affect any gh ordered before gi
• Solution p1; p2;… pk guaranteed to achieve all goals
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Subgoal Protection (con’t)

�Key to above algorithm:
• achieve(G, S0, S1, Plan, Protected) is not allowed to 

construct a subplan that “touches” any literal in the 
protected list

• exercise: try it (tricky to do this with derived rel’ns)
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Example of Protection (1)

�If we choose loc(o) first:
• we get plan p1 = [ ] (loc(o) true in S0)
• we protect loc(o) --- it’s already achieved
• attempt to find plan to achieve labtidy

without altering loc(o)
• impossible because of protection

�Once it fails, we retry with labtidy as 
first goal

• this will succeed as in original example
• notice that it’s critical to allow algorithm to 

backtrack over goal choices so it can try a 
different ordering

Start State: loc(o), lck(l), 
Goal: loc(o), labtidy
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Example of Protection (2)
�Same example, but suppose action 

mov(l,o) magically makes labtidy false!
�Choose labtidy as first goal

• we get plan p1 = [ getkys, mov(o,l), tidy]
• we protect labtidy
• attempt to find plan to achieve loc(o) 

without altering labtidy
• try to achieve loc(o) using mov(l,o); but this 

undoes labtidy, so fails due to protection
• try to achieve loc(o) using mov(m,o); this 

works; sets up subgoal of loc(m); etc.
• soln: tidy the lab then go back to office the 

long way around

�Subgoal protecttion has desired effect

Start State: loc(o), lck(l), 
Goal: loc(o), labtidy
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Is STRIPS with SGP “ Complete” ?

�STRIPS with subgoal protection is sound
• if it returns a plan, the plan is correct (achieves goals)

�But STRIPS with SGP is not complete
• it may not find a plan even if it exists
• this is true even if it searches over all goal orderings
• this is due to its notion of achievement

�Why? Let’s consider an example…

� ;
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Problems with STRIPS (3)

�Example using only two locations -- loc(o), loc(c)
• but if robot in office and Craig has coffee, if robot 

leaves office, C throws coffee against wall in 
megalomaniacal fit of rage (robot must watch C drink)

• so action  mov(o,c)  has effect  neg(chc)
• Start: neg(cm), neg(chc), neg(rhc), loc(c)
• Goal: chc, cm

�To solve, STRIPS must solve with 
• ordering #1: cm then chc; or 
• ordering #2: chc then cm

� [
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Problems with STRIPS (3)
�Ordering #1: cm then chc is not suitable

• you could achieve cm by simply making coffee
• If you did that, any way of achieving chc would clobber cm. 

Robot must grabcoffee – neg(cm) – to give it to Craig
• Note: you could [makecof, grabcof, makecof] and then take 

coffee to Craig; but STRIPS won’t consider this, since once you 
achieve cm you can’t clobber it. The only reason to consider it is 
if STRIPS looks ahead to next goal

�Ordering #2: chc then cm is not suitable
• once you make chc true by the usual plan (make, grab, move, 

give) , can’t leave office to make more
• Note: you could [makecf, grabcf, makecf,mov,givecf]; but unless 

it looks ahead to next goal, STRIPS has no reason to consider 
this

�$c
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Serializability
�A set of goals G is serializable (wrt s0) if there is 
some ordering of the goals [g1, …, gk] s.t.

• you can achieve g1 from s0
• you can achieve g2 without clobbering g1 no matter 

what plan you used to achieve g1

• you can achieve g3 without clobbering g1, g2 no 
matter what plan you used to achieve g1, g2 , etc…

�STRIPS-SGP can solve any serializable goal set
• backtracking over goal orderings must be allowed

�Note: earlier example is not serializable
• success depends on the plan chosen
• but we can’t allow STRIPS to consider arbitrary plans 

or we lose the benefits of divide and conquer
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STRIPS Summary

�STRIPS biggest problem:
• forced to completely solve one subgoal before 

considering how it affects other goals
• with subgoal protection we get correct plans, but only 

if subgoal set is serializable
• but this prevents you from finding plans where goals 

interact strongly

�A different view: regression planning
• when you insert an action into a plan, you consider

how it influences all current subgoals
• but you still focus on achieving one subgoal
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Regression Planning: Intuitions
�Basic idea behind regression is quite simple:

• given a goal list G, the regression of G through action 
A is the weakest set of preconditions WC that ensure 
G is true after A is performed

• In other words:
� if WC holds at state S, then G holds at result(A,S)
�no logically weaker set of conditions satisfies this 

property

�This leads to an obvious subgoaling strategy
• given G, find an action A “that makes progress” on G
• find a plan P’ that achieves WC
• then return the plan   P = [P’,  A]
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Regression Example

�Let’s look at intuitions before getting into details
• consider nonserializable example with G = [chc,cm]
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Regression Planning

�We first need to define the notion of regression 
formally (and basic idea behind implementation)
�We then need to define a planner that relies on 
the notion of regression

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Planning
� Basic structure of the algorithm:

• start with subgoal (SG) list equal to goal list
• Loop:

� choose an action A that:
a. achieves at least one subgoal on SG list 
b. doesn’t destroy any other subgoals on list
c. preconds are consistent with other subgoals

� regress SG list through action A to obtain 
SGNew

� set SG list to SGNew
• until all elements in SG list are true in S0

� Conditions b, c necessary, otherwise A cannot 
make SG list true (more to come) �$�
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Why Conditions (b) and (c)
�Why we need condition (b)

• action a: precond x; effects y, neg(z)
• subgoals SG = [y, z]
• impossible to do action a and (immediately) result in a 

state where SG is true: a achieves y, but makes z false

�Why we need condition (c)
• action a: precond x, neg(z); effects y
• subgoals SG = [y, z]
• impossible to do action a and (immediately) result in a 

state where SG is true: a achieves y, but requires z to 
be false when executed; since a doesn’t affect z, z 
must be false immediately after doing a

�Note: (b) and (c) ensure regression is “possible”
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Defining Regression for CWR (1)

�regress(A,GL,WP)
• true if: WP is the weakest precondition such that 

executing A when WP holds results in goal list GL 
becoming true; WP is consistent

• fails if no such consistent WP exists
• assumes GL is consistent already
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Defining Regression for CWR (2)
�removeeffects(A,GL,WGL)

• true if WGL obtained by removing effects of A from 
goallist GL (fails if any goal contradicts effect of A)

• version for “nonboolean” predicates posted online
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Defining Regression for CWR (3)

�Simple auxilliary predicate “achieves”
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Defining Regression for CWR (4)

�regress(A,GL,WP)
• true if: WP is the weakest precondition such that 

executing A when WP holds results in goal list GL 
becoming true; WP is consistent

• fails if no such consistent WP exists
• assumes GL is consistent already
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Defining Regression for CWR (4)

� addpreconds(PC,WGL,WP)
• true if: WP results from adding preconditions PC to 

(weakened) goal list WGL, and result is consistent
• fails if preconditions conflict with WGL. 
• WGL is assumed consistent.
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Defining Regression for CWR (5)

�To add precondition consistently (fails if 
precondition contradicts subgoal list)
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Regression Planner

�rplan(GoalList,State,Plan)
• true if Plan achieves GoalList starting at State

�Basic intuition: see slide 4
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Some Notes on rplan
�We assume that initial goal list is consistent

• we ensure subgoal lists remain consistent in “regress”

�Search occurs with goal and action choices
• member(Goal,GList) chooses a goal to achieve
• achieves(A,Goal) chooses action to achieve it
• backtracking taken care of by Prolog

�This implementation will never work in practice!
• by allowing Prolog to do the search, we’re committing 

to DFS without cycle checking!

�Exercise (asst?): fix this by controlling search 
yourself (don’t hand it off to Prolog)

• e.g., use BrFS or iterative deepening
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Wrap up of Regression Planning

�Main idea: we are 
reasoning backward from 
the goal conditions to S0

• choose a goal and an 
action that achieves it

• search space is not the set 
of states, but the set of 
subgoal lists (nbrs are 
subgoal lists we can reach 
by regressing consistently 
through some “useful” 
action)
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Planning
�Most modern planners more sophisticated than 
STRIPS/regression

• but most rely on basic ideas of decomposition and the 
idea of “regressing” (reasoning backward) from goal

�Partial-order planning (see 8.3 of text)
• exploits “least commitment” idea by choosing actions 

without commiting to their order right away
• nice ideas, but computationally expensive in practice

�Planning as search quite common (fast)
• use backchaining ideas to guide search/generate 

heuristics
• sophisticated search used (e.g., stochastic search)
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Situation Calculus

�SC an alternative representation for actions
�A logical language in which

• situations are terms (e.g., init, s27, S0)
� init a special constant referring to initial state

• actions are terms (e.g., mov(X,Y), mov(o,l), getkeys)
• do(A,S) refers to situation that results from doing A in 

situation S (do a special function symbol)
• domain predicate all have a situation argument (e.g., 

rhc(s27), or loc(m,init)

� ;
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SitCalc: Example expressions

�Situations (states of world, but w/ action history)
• init
• do(grabcof, init)
• do(grabcof, S)
• do(givecof, do(mov(c,o), do(grabcof, init)))

�corresponds to sequence: grab, move, give at init

�Statements about what’s true
• loc(c, init)
• cm(init)
• rhc(do(grabcof, init))
• chc(do(givecof, do(mov(c,o), do(grabcof, init))))

�$[
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Actions in the SitCalc

�We specify actions by specifying preconditions 
and effects
�Preconditions specified using the poss predicate

� ����������� ��� � �� �!�"$#&%(')� � � ��"�#*! � � � � ��! "$#,+

� ������� � �����,-.! /0#*!1"$#2%('0��3�4��*-5! /0! "�#*!�� � � ��/0! "�#*! � � � ��-5! "�#*+
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Effect Axioms

�Action effects specified using effect axioms

�Sadly, specifying effects alone logically insufficient
• how do we know if labtidy is true after doing givecof?
• must explicitly specify frame axioms stating that 

unaffected things remain unchanged after an action

� � � ��3 ���*��� ��� � �� �! "$#�#6%�'0� �������,��� ��� � �� �! "$#�+
� � � ��/0! 3 ��� � �����,-5! /0#�! "$#,#&%(')� ������� � �����*-.! /7#�!�"�#,+

� �8	�3��7�*3 ������� ��� � �� �! "$#�#6%�'0� �������,��� ��� � �� �! "$#�! � ���8	�3��7��"$#,+
� �19���3 ���*��� ��� � �� �! "�#*#&%2'0� ����������� ��� � �� �! "$#�! � ���8	�3��7��"$#,+
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Reasoning in the SitCalc

�You can use these axioms to prove that certain 
things are true or false after performing a 
sequence of actions

• provide action specifications (incl. frame axioms)
• state what is true at init (e.g., loc(c,init), cm(init),…)
• ask query, e.g.,

�?- chc(do(givecof, do(mov(c,o), do(grabcof, init)))).

�If axioms allow proof, then you know chc is true 
after this sequence from init

• but must rely on negation as failure for false things
• no way to prove “neg(cm)” after grabcof otherwise

� �
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Planning as Theorem Proving

�You can now use SLD to construct a plan
• given init specification, poss and effect axioms
• given a goal G such as [chc, cm]
• ask the query:  ?- chc(S), cm(S).

�SLD will return an answer in which variable S is 
bound to a situation term from which plan can be 
extracted; e.g.

• S= do(givecf, do(mov(c,o), do(makecf, do(grabcf, do(makecf,init)))))

�Computationally: this relies on SLD/Prolog doing 
usual DFS (so may not work very well)


