
1

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

CSC384: Lecture 8
�Last time

• Action Representation; planning as search

�Today
• STRIPS Planning, Regression planning

�Readings:
• Today: 8.3 (STRIPS planning in depth, regression

planning, briefly resolution-based planning)
• Next week: uncertainty 10.1, 10.2, start on 10.3

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS Planner

�Last time, discussed intuitive sketch of STRIPS
• a divide-and-conquer approach
• tries to find independent plans for individual subgoals

and then pieces these plans together
• recursively tries to achieve necessary preconditions

�We’ll sketch a version of the algorithm designed
to work with the CWR-D representation

• contrast with algorithm in text, which is designed to
work with the situation calculus representation

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS with CWR-D

�achieve_all(GList,S0,S1,Plan)
• action sequence Plan applied at state S0 results in

state S1, satisfying all goals in GList

�����	�
���
�
���� � ���������	���	���������
�����	�
���
�
���� � � ��!�� "$#%���	&����	'���(� �*)+��, -
.
*/10���
���� 0��*� ����!�� "$#%��2�
�"$#%� ���
���	�	�
���
���� 0��3� ���	&����546��(� �3)	46���
���	�	�
���
�
���� � �72�
�"$#%� �	�546���	'���(� ��)8'����
�39�98
3)6:	�7(� �3)	46��(�� ��)8'���(� ��)8���

;
CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS w/ CWR-D: Goal Selection

�remove(G, GList,RestG)
• selects a goal G from goal list for achievement
• implementation #1 below always selects first goal
• note: we’ll see that allowing different orderings is

important---it should really be a “choose” not “select”
• implementation #2 allows backtracking

.
3/10���
�� � �1� �=< 2>
�"$#%� ����2�
�"?#%�@���
.
3/10���
�� � ����!�� "?#%��2�
�"?#%�@�=, -
/1
*/BA8
 . � � ����!�� "$#C�D�
:�
3�
�#%
�� � ����!�� "?#%��2�
�"?#%�@���

EBF
EBG H I>J?KMLDION�P7H�Q?R S7H P>H TI>U I>J8I�V S	WYX7H K>JU R N�S	W�Z>R N�S

[
CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS w/ CWR-D: Goal Achievem’t

�achieve(G, S0, S1, Plan)
• action sequence Plan applied at state S0 results in

state S1, satisfying all goal G (single goal)
• all predicates used defined earlier except effect_of
• effect_of(A,G): action A has G as an effect (exercise)

�������
���
�� �@���	���	����� �\, -]�803� :	"$�D� ���	�7�
�������
���
�� � ���	&����	'��1(�� �*)+��, -

�^%^%
��8#%
�0�^%� _����@�D�`9 .
��80�)8:	"$��_���(8a�!8� "$#%�D������	�
���
�
���� � ��(8a�!8� "$#%����&����546��(� ��)	46�D�
�*9	98
*)$:	�7(� �3)�4$��� _�����(� ��)8���
.
�"�b	� #%��_����54$���	'��7�

c
CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS: Handling Derived Relations

�If we have derived relations, STRIPS can’t
directly achieve such a fact (not mentioned as
effects of any actions)

• so simply set Body as subgoals to achieve

�������
���
�� �@���	&����546��(� �3)d�=, -
:	
 . � �7
�:32>
3� �D� �5e�0�:	f����
�����	�
��8
�
��3� � ��e�0�:	f����	&����546�5(� ��)8�7�

2

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Issues with STRIPS (1)

�Order of goal selection can
impact quality/length of plan

• e.g., we picked mov(l,o) to achieve
loc(o) in final plan step; but what if
we had picked mov(m,o)?

• might have picked mov(h,m), then
mov(c,h), etc. and taken long way
around

• might have gotten in a cycle

�In general, goal selection
ordering can benefit from
heuristics; and can even require
systematic search/backtracking

Start State: loc(o), lck(l),
neg(rhk), neg(labtidy) …

Goal: loc(o), labtidy

� �

�

�

�

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Issues with STRIPS (2)

�STRIPS can return incorrect plans!
• suppose we chose goal loc(o) before labtidy
• plan for loc(o) is [] (it’s true in initial state s0)
• plan for labtidy is [getkeys, mov(o,l), tidy]
• the second plan destroys or clobbers the subgoal

achieved by the first plan!
• so returned plan [] + [gk,m(o,l),t] is incorrect

�Subgoal protection:
• circumvents this problem by protecting achieved

subgoals when producing plans for the next subgoals

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Subgoal Protection
� Given k goals [g1, …, gk] in this order

• produce a subplan that achieves g1 (say p1)
• produce a subplan p2 that produces that achieves g2

without affecting g1
• in general, produce a plan pi for gi that does not

affect any gh ordered before gi
• Solution p1; p2;… pk guaranteed to achieve all goals

�����	�
���
�
���� � � ��!�� "$#%���	&�����'���(� �3)?� (. 0�#%
��$#%
�: ��, -
.
*/10���
���� 0��*� ����!�� "$#%��2�
�"$#%� ���
���	�	�
���
���� 0��*� ����&����546��(� �*)	46� (. 0�#%
��7#
�: �D����	�	�
���
�
���� � �72�
�"$#%� �	�546����'���(� ��)?'�� � � 0��*��< (. 0�#%
��7#%
�:	� ���
�39	9?
3)6:	�7(� �*)	46��(�� ��)?'���(� ��)?���

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Subgoal Protection (con’t)

�Key to above algorithm:
• achieve(G, S0, S1, Plan, Protected) is not allowed to

construct a subplan that “touches” any literal in the
protected list

• exercise: try it (tricky to do this with derived rel’ns)

�$�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example of Protection (1)

�If we choose loc(o) first:
• we get plan p1 = [] (loc(o) true in S0)
• we protect loc(o) --- it’s already achieved
• attempt to find plan to achieve labtidy

without altering loc(o)
• impossible because of protection

�Once it fails, we retry with labtidy as
first goal

• this will succeed as in original example
• notice that it’s critical to allow algorithm to

backtrack over goal choices so it can try a
different ordering

Start State: loc(o), lck(l),
Goal: loc(o), labtidy

� �

�

�

�

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example of Protection (2)
�Same example, but suppose action

mov(l,o) magically makes labtidy false!
�Choose labtidy as first goal

• we get plan p1 = [getkys, mov(o,l), tidy]
• we protect labtidy
• attempt to find plan to achieve loc(o)

without altering labtidy
• try to achieve loc(o) using mov(l,o); but this

undoes labtidy, so fails due to protection
• try to achieve loc(o) using mov(m,o); this

works; sets up subgoal of loc(m); etc.
• soln: tidy the lab then go back to office the

long way around

�Subgoal protecttion has desired effect

Start State: loc(o), lck(l),
Goal: loc(o), labtidy

� �

�

�

�

3

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Is STRIPS with SGP “ Complete” ?

�STRIPS with subgoal protection is sound
• if it returns a plan, the plan is correct (achieves goals)

�But STRIPS with SGP is not complete
• it may not find a plan even if it exists
• this is true even if it searches over all goal orderings
• this is due to its notion of achievement

�Why? Let’s consider an example…

� ;
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Problems with STRIPS (3)

�Example using only two locations -- loc(o), loc(c)
• but if robot in office and Craig has coffee, if robot

leaves office, C throws coffee against wall in
megalomaniacal fit of rage (robot must watch C drink)

• so action mov(o,c) has effect neg(chc)
• Start: neg(cm), neg(chc), neg(rhc), loc(c)
• Goal: chc, cm

�To solve, STRIPS must solve with
• ordering #1: cm then chc; or
• ordering #2: chc then cm

� [
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Problems with STRIPS (3)
�Ordering #1: cm then chc is not suitable

• you could achieve cm by simply making coffee
• If you did that, any way of achieving chc would clobber cm.

Robot must grabcoffee – neg(cm) – to give it to Craig
• Note: you could [makecof, grabcof, makecof] and then take

coffee to Craig; but STRIPS won’t consider this, since once you
achieve cm you can’t clobber it. The only reason to consider it is
if STRIPS looks ahead to next goal

�Ordering #2: chc then cm is not suitable
• once you make chc true by the usual plan (make, grab, move,

give) , can’t leave office to make more
• Note: you could [makecf, grabcf, makecf,mov,givecf]; but unless

it looks ahead to next goal, STRIPS has no reason to consider
this

�$c
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Serializability
�A set of goals G is serializable (wrt s0) if there is
some ordering of the goals [g1, …, gk] s.t.

• you can achieve g1 from s0
• you can achieve g2 without clobbering g1 no matter

what plan you used to achieve g1

• you can achieve g3 without clobbering g1, g2 no
matter what plan you used to achieve g1, g2 , etc…

�STRIPS-SGP can solve any serializable goal set
• backtracking over goal orderings must be allowed

�Note: earlier example is not serializable
• success depends on the plan chosen
• but we can’t allow STRIPS to consider arbitrary plans

or we lose the benefits of divide and conquer

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS Summary

�STRIPS biggest problem:
• forced to completely solve one subgoal before

considering how it affects other goals
• with subgoal protection we get correct plans, but only

if subgoal set is serializable
• but this prevents you from finding plans where goals

interact strongly

�A different view: regression planning
• when you insert an action into a plan, you consider

how it influences all current subgoals
• but you still focus on achieving one subgoal

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Planning: Intuitions
�Basic idea behind regression is quite simple:

• given a goal list G, the regression of G through action
A is the weakest set of preconditions WC that ensure
G is true after A is performed

• In other words:
� if WC holds at state S, then G holds at result(A,S)
�no logically weaker set of conditions satisfies this

property

�This leads to an obvious subgoaling strategy
• given G, find an action A “that makes progress” on G
• find a plan P’ that achieves WC
• then return the plan P = [P’, A]

4

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Example

�Let’s look at intuitions before getting into details
• consider nonserializable example with G = [chc,cm]

����� �����
	 ����

������� ���
� ��� � � ����� � ��� ��� � ��� � �����

 ��"!#�$� � ���
	&% � ��' ��()����

������� ���
� � � � ����� �*� ��� ' ��	 ��(��

 ��,+-�$� � ���
	&% � ��' � ()����

������� ���
� � � � ����� �*�#.�/ � � ��� � ���0�

 ��,1-�$� � ���
	&% � ��' � (

������� ���
� � � � ����� � ��� .�2�� ��� � �����

 ��,3-�$� ����	4% � ��' � (

������� ���
� � � � ����� �*�#.�/ � � ��� � ���0�

 ��,5 � 6)� ��� .�� � 7�� � � .8% � � .�� �

 ���!9�:� � ���
	4% � ��' ��()����

 ��8+;�:� � ���
	4% � ��' � ()����

 ��81;�:� � ���
	4% � ��' � (

 ��83;�:� ����	&% � ��' � (

 ��85;�:� % � ��' � (

<�=�>#?�@�A0B ?0=�B CD?

E F�G�H�I�J K�H�L K�M I�H�NPO
A G C�Q F C
?)R J A L STI > M
?�@�A0B ?0=�B C
? E H�G�H�I H�N&O

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Planning

�We first need to define the notion of regression
formally (and basic idea behind implementation)
�We then need to define a planner that relies on
the notion of regression

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Planning
� Basic structure of the algorithm:

• start with subgoal (SG) list equal to goal list
• Loop:

� choose an action A that:
a. achieves at least one subgoal on SG list
b. doesn’t destroy any other subgoals on list
c. preconds are consistent with other subgoals

� regress SG list through action A to obtain
SGNew

� set SG list to SGNew
• until all elements in SG list are true in S0

� Conditions b, c necessary, otherwise A cannot
make SG list true (more to come) �$�

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Why Conditions (b) and (c)
�Why we need condition (b)

• action a: precond x; effects y, neg(z)
• subgoals SG = [y, z]
• impossible to do action a and (immediately) result in a

state where SG is true: a achieves y, but makes z false

�Why we need condition (c)
• action a: precond x, neg(z); effects y
• subgoals SG = [y, z]
• impossible to do action a and (immediately) result in a

state where SG is true: a achieves y, but requires z to
be false when executed; since a doesn’t affect z, z
must be false immediately after doing a

�Note: (b) and (c) ensure regression is “possible”

�$�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (1)

�regress(A,GL,WP)
• true if: WP is the weakest precondition such that

executing A when WP holds results in goal list GL
becoming true; WP is consistent

• fails if no such consistent WP exists
• assumes GL is consistent already

.
VU .
�"?"$��_�� ��!O� W (8��, -
.
*/10���
�
�^%^%
��8#%"?��_�� ��!O� W ��!O�D�
9 .
��803)6:	"$�D_��M(8a��D�
��:�:59 .
��70�)8:	"$�7($a�� W ��!O� W (8�7�

� ;
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (2)
�removeeffects(A,GL,WGL)

• true if WGL obtained by removing effects of A from
goallist GL (fails if any goal contradicts effect of A)

• version for “nonboolean” predicates posted online
X Y�ZT[�\
Y�Y�]] Y�^`_ a`b c0d e f d e f g h
X Y�ZT[�\
Y�Y�]] Y�^`_ a`b i�d e j)k l�Y�a`_ j)f d m�j)nog)p q

r ^`s�t Y�\
Y�a`b i8d j)g d
X Y�ZT[�\
Y�Y�]] Y�^`_ a`b i�d l�Y�a`_ j)d m�j)n
g h

X Y�ZT[�\
Y�Y�]] Y�^`_ a`b i�d e j)k l�Y�a`_ j)f d e j�k l�Y�a`_ m�j)nof g)p q
jvu wyx�Y�z�b c8g d
x�[�_ b r ^`s�t Y�\
Y�a`b i8d j)g g d
x�[�_ b r ^`s�t Y�\
Y�a`b i8d x�Y�z�b jVg g g d
X Y�ZT[�\
Y�Y�]] Y�^`_ a`b i�d l�Y�a`_ j)d l�Y�a`_ m�j)nog h

X Y�ZT[�\
Y�Y�]] Y�^`_ a`b i�d e x�Y�z�b j)g k l�Y�a`_ j�f d e x�Y�z�b j)g k l�Y�a`_ m�j)n
f g)p q
x�[�_ b r ^`s�t Y�\
Y�a`b i8d j)g g d
x�[�_ b r ^`s�t Y�\
Y�a`b i8d x�Y�z�b jVg g g d
X Y�ZT[�\
Y�Y�]] Y�^`_ a`b i�d l�Y�a`_ j)d l�Y�a`_ m�j)nog h

5

�$[
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (3)

�Simple auxilliary predicate “achieves”

� ���8#?� 0*)+_ �����	�
���
�"*U	0����$�
�����	�
���
�"$�D_�� � ��, - ��:	:*� � "$#%��_�� _�!�� "$#%�D�

/1
3/BA8
 . �D� � _1!�� "?#%�7�
�����	�
���
�"$�D_��M)$
VU	��� �D��, - :	
��
�#%
�� � "$#%��_���� !�� "$#%�D�

/1
3/BA8
 . �D� ��� !�� "$#%���

� c
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (4)

�regress(A,GL,WP)
• true if: WP is the weakest precondition such that

executing A when WP holds results in goal list GL
becoming true; WP is consistent

• fails if no such consistent WP exists
• assumes GL is consistent already

.
VU .
�"?"$��_�� ��!O� W (8��, -
.
*/10���
�
�^%^%
��8#%"?��_�� ��!O� W ��!O�D�
9 .
��803)6:	"$�D_��M(8a��D�
��:�:59 .
��70�)8:	"$�7($a�� W ��!O� W (8�7�

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (4)

� addpreconds(PC,WGL,WP)
• true if: WP results from adding preconditions PC to

(weakened) goal list WGL, and result is consistent
• fails if preconditions conflict with WGL.
• WGL is assumed consistent.

��:�:59 .
��70�)8:	"$�7� ��� W (8� W (8�7�
��:�:59 .
��70�)8:	"$�7�D(�<D2>
�"$#6(?�D�M!O� W (8��, -��:	:��70*)8"�� "$#
*)8#%��(?�O!O�M!�4$���
��:	: 9 .
��80�)8:	"$�72�
�"$#?(8�6!�46� W (8�7�

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (5)

�To add precondition consistently (fails if
precondition contradicts subgoal list)

��:�:��70*)8"�� "$#%
�)8#%��(?�6!O�D!O��, -]/1
3/BA6
 . �7(8�6!O�7�
��:�:��70*)8"�� "$#%
�)8#%��(?�6!O�6�%(�<D!O����, -
(����)8
VU	�D
����
)80�#%��/1
*/BA8
 . ��(?�6!O���D�)80�#%��/1
*/BA8
 . ��)?
)U	��(?�D�M!O�D�7�

��:�:��70*)8"�� "$#%
�)8#%��)?
)U	��(?�D�M!O�6��)8
)U	�7(8��<�!O����, -
)80�#%��/1
*/BA8
 . ��(?�6!O���D�
)80�#%��/1
*/BA8
 . ��)?
)U	��(?�D�M!O�D�7�

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Planner

�rplan(GoalList,State,Plan)
• true if Plan achieves GoalList starting at State

�Basic intuition: see slide 4

. 9	� �3)?�D��!�� "$#%� �	#%��#
��6� �D��, -
�803� :	"$�3� � �D��!�� "$#%� ��#%��#%
��7�

. 9	� �3)?�D��!�� "$#%� �	#%��#
��6(� �*)8��, -
/1
*/BA8
 . ��� 0��3� � ��!�� "$#%���
�����	�
��8
�"$��_�� � 0��*� ���
.
�U .
�"$"$�D_�� ��!�� "$#%����

	Y��!�� "$#%�D�
. 9	� �*)8����

	Y��!�� "$#%� ��#%��#%
��M(� �3)	46���
�*9	98
�)6:	�7(� ��)	46�6� _��D�M(� ��)8�7�

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Some Notes on rplan
�We assume that initial goal list is consistent

• we ensure subgoal lists remain consistent in “regress”

�Search occurs with goal and action choices
• member(Goal,GList) chooses a goal to achieve
• achieves(A,Goal) chooses action to achieve it
• backtracking taken care of by Prolog

�This implementation will never work in practice!
• by allowing Prolog to do the search, we’re committing

to DFS without cycle checking!

�Exercise (asst?): fix this by controlling search
yourself (don’t hand it off to Prolog)

• e.g., use BrFS or iterative deepening

6

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Wrap up of Regression Planning

�Main idea: we are
reasoning backward from
the goal conditions to S0

• choose a goal and an
action that achieves it

• search space is not the set
of states, but the set of
subgoal lists (nbrs are
subgoal lists we can reach
by regressing consistently
through some “useful”
action)

����� �����
	 ����

� � ���
	 % � ��' ��()����
 � �����
	4% � �o'`� (

��� ��� � ��� � ��� �#.�/ � � ��� � ���

��� ��� � ��� �
	 ��� �
������� � �
����� � �
� �
������������� ��� �
� � ��	�	 ����	�� �
	������
� �
	 ���
� ��� 	�� � ����	���	��

�$�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Planning
�Most modern planners more sophisticated than
STRIPS/regression

• but most rely on basic ideas of decomposition and the
idea of “regressing” (reasoning backward) from goal

�Partial-order planning (see 8.3 of text)
• exploits “least commitment” idea by choosing actions

without commiting to their order right away
• nice ideas, but computationally expensive in practice

�Planning as search quite common (fast)
• use backchaining ideas to guide search/generate

heuristics
• sophisticated search used (e.g., stochastic search)

�$�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Situation Calculus

�SC an alternative representation for actions
�A logical language in which

• situations are terms (e.g., init, s27, S0)
� init a special constant referring to initial state

• actions are terms (e.g., mov(X,Y), mov(o,l), getkeys)
• do(A,S) refers to situation that results from doing A in

situation S (do a special function symbol)
• domain predicate all have a situation argument (e.g.,

rhc(s27), or loc(m,init)

� ;
CSC 384 Lecture Slides (c) 2002, C. Boutilier

SitCalc: Example expressions

�Situations (states of world, but w/ action history)
• init
• do(grabcof, init)
• do(grabcof, S)
• do(givecof, do(mov(c,o), do(grabcof, init)))

�corresponds to sequence: grab, move, give at init

�Statements about what’s true
• loc(c, init)
• cm(init)
• rhc(do(grabcof, init))
• chc(do(givecof, do(mov(c,o), do(grabcof, init))))

�$[
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Actions in the SitCalc

�We specify actions by specifying preconditions
and effects
�Preconditions specified using the poss predicate

� ����������� ��� � �� �!�"$#&%(')� � � ��"�#*! � � � � ��! "$#,+

� ������� � �����,-.! /0#*!1"$#2%('0��3�4��*-5! /0! "�#*!�� � � ��/0! "�#*! � � � ��-5! "�#*+

� c
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Effect Axioms

�Action effects specified using effect axioms

�Sadly, specifying effects alone logically insufficient
• how do we know if labtidy is true after doing givecof?
• must explicitly specify frame axioms stating that

unaffected things remain unchanged after an action

� � � ��3 ���*��� ��� � �� �! "$#�#6%�'0� �������,��� ��� � �� �! "$#�+
� � � ��/0! 3 ��� � �����,-5! /0#�! "$#,#&%(')� ������� � �����*-.! /7#�!�"�#,+

� �8	�3��7�*3 ������� ��� � �� �! "$#�#6%�'0� �������,��� ��� � �� �! "$#�! � ���8	�3��7��"$#,+
� �19���3 ���*��� ��� � �� �! "�#*#&%2'0� ����������� ��� � �� �! "$#�! � ���8	�3��7��"$#,+

7

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Reasoning in the SitCalc

�You can use these axioms to prove that certain
things are true or false after performing a
sequence of actions

• provide action specifications (incl. frame axioms)
• state what is true at init (e.g., loc(c,init), cm(init),…)
• ask query, e.g.,

�?- chc(do(givecof, do(mov(c,o), do(grabcof, init)))).

�If axioms allow proof, then you know chc is true
after this sequence from init

• but must rely on negation as failure for false things
• no way to prove “neg(cm)” after grabcof otherwise

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Planning as Theorem Proving

�You can now use SLD to construct a plan
• given init specification, poss and effect axioms
• given a goal G such as [chc, cm]
• ask the query: ?- chc(S), cm(S).

�SLD will return an answer in which variable S is
bound to a situation term from which plan can be
extracted; e.g.

• S= do(givecf, do(mov(c,o), do(makecf, do(grabcf, do(makecf,init)))))

�Computationally: this relies on SLD/Prolog doing
usual DFS (so may not work very well)

