
CSC 384 Lecture Slides (c) 2002, C. Boutilier

CSC384: Lecture 8
�Last time

• Action Representation; planning as search

�Today
• STRIPS Planning, Regression planning

�Readings:
• Today: 8.3 (STRIPS planning in depth, regression

planning, briefly resolution-based planning)
• Next week: uncertainty 10.1, 10.2, start on 10.3

CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS Planner

�Last time, discussed intuitive sketch of STRIPS
• a divide-and-conquer approach
• tries to find independent plans for individual subgoals

and then pieces these plans together
• recursively tries to achieve necessary preconditions

�We’ll sketch a version of the algorithm designed
to work with the CWR-D representation

• contrast with algorithm in text, which is designed to
work with the situation calculus representation

CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS with CWR-D

�achieve_all(GList,S0,S1,Plan)
• action sequence Plan applied at state S0 results in

state S1, satisfying all goals in GList

CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS w/ CWR-D: Goal Selection

�remove(G, GList,RestG)
• selects a goal G from goal list for achievement
• implementation #1 below always selects first goal
• note: we’ll see that allowing different orderings is

important---it should really be a “choose” not “select”
• implementation #2 allows backtracking

CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS w/ CWR-D: Goal Achievem’t

�achieve(G, S0, S1, Plan)
• action sequence Plan applied at state S0 results in

state S1, satisfying all goal G (single goal)
• all predicates used defined earlier except effect_of
• effect_of(A,G): action A has G as an effect

CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS: Handling Derived Relations

�If we have derived relations, STRIPS can’t
directly achieve such a fact (not mentioned as
effects of any actions)

• so simply set Body as subgoals to achieve

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Issues with STRIPS (1)

�Order of goal selection can
impact quality/length of plan

• e.g., we picked mov(l,o) to achieve
loc(o) in final plan step; but what if
we had picked mov(m,o)?

• might have picked mov(h,m), then
mov(c,h), etc. and taken long way
around

• might have gotten in a cycle

�In general, goal selection
ordering can benefit from
heuristics; and can even require
systematic search/backtracking

Start State: loc(o), lck(l),
neg(rhk), neg(labtidy) …

Goal: loc(o), labtidy

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Issues with STRIPS (2)

�STRIPS can return incorrect plans!
• suppose we chose goal loc(o) before labtidy
• plan for loc(o) is [] (it’s true in initial state s0)
• plan for labtidy is [getkeys, mov(o,l), tidy]
• the second plan destroys or clobbers the subgoal

achieved by the first plan!
• so returned plan [] + [gk,m(o,l),t] is incorrect

�Subgoal protection:
• circumvents this problem by protecting achieved

subgoals when producing plans for the next subgoals

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Subgoal Protection
� Given k goals [g1, …, gk] in this order

• produce a subplan that achieves g1 (say p1)
• produce a subplan p2 that produces that achieves g2

without affecting g1
• in general, produce a plan pi for gi that does not

affect any gh ordered before gi
• Solution p1; p2;… pk guaranteed to achieve all goals

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Subgoal Protection (con’t)

�Key to above algorithm:
• achieve(G, S0, S1, Plan, Protected) is not allowed to

construct a subplan that “touches” any literal in the
protected list

• exercise: try it (tricky to do this with derived rel’ns)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example of Protection (1)

�If we choose loc(o) first:
• we get plan p1 = [] (loc(o) true in S0)

• we protect loc(o) --- it’s already achieved

• attempt to find plan to achieve labtidy
without altering loc(o)

• impossible because of protection

�Once it fails, we retry with labtidy as
first goal

• this will succeed as in original example

• notice that it’s critical to allow algorithm to
backtrack over goal choices so it can try a
different ordering

Start State: loc(o), lck(l),
Goal: loc(o), labtidy

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example of Protection (2)
�Same example, but suppose action

mov(l,o) magically makes labtidy false!
�Choose labtidy as first goal

• we get plan p1 = [getkys, mov(o,l), tidy]

• we protect labtidy
• attempt to find plan to achieve loc(o)

without altering labtidy

• try to achieve loc(o) using mov(l,o); but this
undoes labtidy, so fails due to protection

• try to achieve loc(o) using mov(m,o); this
works; sets up subgoal of loc(m); etc.

• soln: tidy the lab then go back to office the
long way around

�Subgoal protection has desired effect

Start State: loc(o), lck(l),
Goal: loc(o), labtidy

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Is STRIPS with SGP “ Complete” ?

�STRIPS with subgoal protection is sound
• if it returns a plan, the plan is correct (achieves goals)

�But STRIPS with SGP is not complete
• it may not find a plan even if it exists
• this is true even if it searches over all goal orderings
• this is due to its notion of achievement

�Why? Let’s consider an example…

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Problems with STRIPS (3)

�Example using only two locations -- loc(o), loc(c)
• but if robot in office and Craig has coffee, if robot

leaves office, C throws coffee against wall in
megalomaniacal fit of rage (robot must watch C drink)

• so action mov(o,c) has effect neg(chc)
• Start: neg(cm), neg(chc), neg(rhc), loc(c)
• Goal: chc, cm

�To solve, STRIPS must solve with
• ordering #1: cm then chc; or
• ordering #2: chc then cm

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Problems with STRIPS (3)
�Ordering #1: cm then chc is not suitable

• you could achieve cm by simply making coffee

• If you did that, any way of achieving chc would clobber cm.
Robot must grabcoffee – neg(cm) – to give it to Craig

• Note: you could [makecof, grabcof, makecof] and then take
coffee to Craig; but STRIPS won’t consider this, since once you
achieve cm you can’t clobber it. The only reason to consider it is
if STRIPS looks ahead to next goal

�Ordering #2: chc then cm is not suitable
• once you make chc true by the usual plan (make, grab, move,

give) , can’t leave office to make more

• Note: you could [makecf, grabcf, makecf,mov,givecf]; but unless
it looks ahead to next goal, STRIPS has no reason to consider
this

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Serializability
�A set of goals G is serializable (wrt s0) if there is
some ordering of the goals [g1, …, gk] s.t.

• you can achieve g1 from s0
• you can achieve g2 without clobbering g1 no matter

what plan you used to achieve g1

• you can achieve g3 without clobbering g1, g2 no
matter what plan you used to achieve g1, g2 , etc…

�STRIPS-SGP can solve any serializable goal set
• backtracking over goal orderings must be allowed

�Note: earlier example is not serializable
• success depends on the plan chosen
• but we can’t allow STRIPS to consider arbitrary plans

or we lose the benefits of divide and conquer

CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS Summary

�STRIPS biggest problem:
• forced to completely solve one subgoal before

considering how it affects other goals
• with subgoal protection we get correct plans, but only

if subgoal set is serializable
• but this prevents you from finding plans where goals

interact strongly

�A different view: regression planning
• when you insert an action into a plan, you consider

how it influences all current subgoals
• but you still focus on achieving one subgoal

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Planning: Intuitions
�Basic idea behind regression is quite simple:

• given a goal list G, the regression of G through action
A is the weakest set of preconditions WC that ensure
G is true after A is performed

• In other words:
� if WC holds at state S, then G holds at result(A,S)
�no logically weaker set of conditions satisfies this

property

�This leads to an obvious subgoaling strategy
• given G, find an action A “that makes progress” on G
• find a plan P’ that achieves WC
• then return the plan P = [P’, A]

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Example

�Let’s look at intuitions before getting into details
• consider nonserializable example with G = [chc,cm]

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Planning

�We first need to define the notion of regression
formally (and basic idea behind implementation)
�We then need to define a planner that relies on
the notion of regression

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Planning
� Basic structure of the algorithm:

• start with subgoal (SG) list equal to goal list
• Loop:

� choose an action A that:
a. achieves at least one subgoal on SG list
b. doesn’t destroy any other subgoals on list
c. preconds are consistent with other subgoals

� regress SG list through action A to obtain
SGNew

� set SG list to SGNew
• until all elements in SG list are true in S0

� Conditions b, c necessary, otherwise A cannot
make SG list true (more to come)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Why Conditions (b) and (c)
�Why we need condition (b)

• action a: precond x; effects y, neg(z)
• subgoals SG = [y, z]
• impossible to do action a and (immediately) result in a

state where SG is true: a achieves y, but makes z false

�Why we need condition (c)
• action a: precond x, neg(z); effects y
• subgoals SG = [y, z]
• impossible to do action a and (immediately) result in a

state where SG is true: a achieves y, but requires z to
be false when executed; since a doesn’t affect z, z
must be false immediately after doing a

�Note: (b) and (c) ensure regression is “possible”

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (1)

�regress(A,GL,WP)
• true if: WP is the weakest precondition such that

executing A when WP holds results in goal list GL
becoming true; WP is consistent

• fails if no such consistent WP exists
• assumes GL is consistent already

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (2)
�removeeffects(A,GL,WGL)

• true if WGL obtained by removing effects of A from
goallist GL (fails if any goal contradicts effect of A)

• version for “nonboolean” predicates posted online

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (3)

�Simple auxilliary predicate “achieves”

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (4)

�regress(A,GL,WP)
• true if: WP is the weakest precondition such that

executing A when WP holds results in goal list GL
becoming true; WP is consistent

• fails if no such consistent WP exists
• assumes GL is consistent already

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (4)

� addpreconds(PC,WGL,WP)
• true if: WP results from adding preconditions PC to

(weakened) goal list WGL, and result is consistent
• fails if preconditions conflict with WGL.
• WGL is assumed consistent.

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Regression for CWR (5)

�To add precondition consistently (fails if
precondition contradicts subgoal list)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Regression Planner

�rplan(GoalList,State,Plan)
• true if Plan achieves GoalList starting at State

�Basic intuition: see slide 4

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Some Notes on rplan
�We assume that initial goal list is consistent

• we ensure subgoal lists remain consistent in “regress”

�Search occurs with goal and action choices
• member(Goal,GList) chooses a goal to achieve
• achieves(A,Goal) chooses action to achieve it
• backtracking taken care of by Prolog

�This implementation will never work in practice!
• by allowing Prolog to do the search, we’re committing

to DFS without cycle checking!

�Exercise (asst?): fix this by controlling search
yourself (don’t hand it off to Prolog)

• e.g., use BrFS or iterative deepening

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Wrap up of Regression Planning

�Main idea: we are
reasoning backward from
the goal conditions to S0

• choose a goal and an
action that achieves it

• search space is not the set
of states, but the set of
subgoal lists (nbrs are
subgoal lists we can reach
by regressing consistently
through some “useful”
action)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Planning
�Most modern planners more sophisticated than
STRIPS/regression

• but most rely on basic ideas of decomposition and the
idea of “regressing” (reasoning backward) from goal

�Partial-order planning (see 8.3 of text)
• exploits “least commitment” idea by choosing actions

without commiting to their order right away
• nice ideas, but computationally expensive in practice

�Planning as search quite common (fast)
• use backchaining ideas to guide search/generate

heuristics
• sophisticated search used (e.g., stochastic search)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Situation Calculus

�SC an alternative representation for actions
�A logical language in which

• situations are terms (e.g., init, s27, S0)
� init a special constant referring to initial state

• actions are terms (e.g., mov(X,Y), mov(o,l), getkeys)
• do(A,S) refers to situation that results from doing A in

situation S (do a special function symbol)
• domain predicate all have a situation argument (e.g.,

rhc(s27), or loc(m,init)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SitCalc: Example expressions

�Situations (states of world, but w/ action history)
• init
• do(grabcof, init)
• do(grabcof, S)
• do(givecof, do(mov(c,o), do(grabcof, init)))

�corresponds to sequence: grab, move, give at init

�Statements about what’s true
• loc(c, init)
• cm(init)
• rhc(do(grabcof, init))
• chc(do(givecof, do(mov(c,o), do(grabcof, init))))

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Actions in the SitCalc

�We specify actions by specifying preconditions
and effects
�Preconditions specified using the poss predicate

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Effect Axioms

�Action effects specified using effect axioms

�Sadly, specifying effects alone logically insufficient
• how do we know if labtidy is true after doing givecof?
• must explicitly specify frame axioms stating that

unaffected things remain unchanged after an action

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Reasoning in the SitCalc

�You can use these axioms to prove that certain
things are true or false after performing a
sequence of actions

• provide action specifications (incl. frame axioms)
• state what is true at init (e.g., loc(c,init), cm(init),…)
• ask query, e.g.,

�?- chc(do(givecof, do(mov(c,o), do(grabcof, init)))).

�If axioms allow proof, then you know chc is true
after this sequence from init

• but must rely on negation as failure for false things
• no way to prove “neg(cm)” after grabcof otherwise

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Planning as Theorem Proving

�You can now use SLD to construct a plan
• given init specification, poss and effect axioms
• given a goal G such as [chc, cm]
• ask the query: ?- chc(S), cm(S).

�SLD will return an answer in which variable S is
bound to a situation term from which plan can be
extracted; e.g.

• S= do(givecf, do(mov(c,o), do(makecf, do(grabcf, do(makecf,init)))))

�Computationally: this relies on SLD/Prolog doing
usual DFS (so may not work very well)

