
CSC 384 Lecture Slides (c) 2002, C. Boutilier

CSC384: Lecture 7
�Last time

• game tree search (note: no text readings)

�Today
• Intro to Planning; State and action representations
• planning: start on STRIPS planning

�Readings:
• Today: Ch.8.1, 8.2 (STRIPS, skim Situation Calculus,

skip Event Calculus), 8.3 (forward planning)
• Next week: 8.3 (STRIPS planning in depth,

regression planning, briefly resolution-based
planning)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Search in Complex Situations
�Search algorithms so far are graph-based:

• produce sequence of actions or moves that change
the world in specific ways (start � �����

� � �� � 	 �
 � � 	 ��
 �� � �� � �
 ��
 �
 � � � ��
 � �	 � � �
 � � � �
 � �	 �
 � �
 �

 �� � � � �� � � � �� � �	 � � �
 �
 � �
 �� �	 �
 � � �

� � � �� � � � �� � ��� �
 � �	 � � � �� � � � � �� � � �
 �
 � � �� �
 � �	

� �
 �
 � � � � �� � � 	 �� �
 � � �
 � � � �
 �� � � � �� � ��

����������	
��
����	�������	��������	���
���	
������	�� 	�� �	� ����

� �
 � � �� � � �
 �
 � � � � �	 � � � � � � � � � 	
 � � ��
 � � �� � �
 � � � � � ��� �

� ��
 � �	 � � � � �	 �� �
 � � �
 � �
 � � �� � � � � � � � � 	
 � � ��
 �

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Planning

�Planning problems are like search problems
• given an initial state of the world
• given some goal conditions (facts we would like to

make true, in contrast to goal states)
• find a sequence of actions that will take you from the

start state to some state satisfying the goal conditions
(note: these are goal states, but specified differently)

�What’s different?
• states are complex entities (possible worlds)
• actions tend to affect only certain facts

�End result: planning algorithms look a little
different than search algorithms (usually)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

A Planning Problem

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Robot Example: Domain
�Predicates:

• loc(X) - location of robot is X

• adj(X,Y) - locations X,Y adjacent

• rhk - robot has keys

• cm - coffee is made
• chc - craig has coffee (or maybe

hc(P))

• rhc - robot has coffee (or maybe
carrying(O))

• lt - lab is tidy

�Derived predicates possibly:
accessible(X,Y) ← adj(X,Y) & rhk.
accessible(X,Y) ← adj(X,Y) & unlck(X).

�Constants:
• The locations:

off, hall, lab, mr, cr

• Domain objects?
coffee, mail, keys,
etc,

• other things?

CSC 384 Lecture Slides (c) 2002, C. Boutilier

States of the World

�A state is an assignment of truth values to all
(relevant) atoms

• e.g., think of it as an “interpretation” or complete KB
• it is a way the world could be

�Formally, given a finite number of predicates and
domain objects, a world state is any assignment
of truth values to all ground atoms

• e.g., True: loc(off), adj(cr,hall),…, rhc, rhk, etc…
False: loc(hall), loc(mr), …, adj(off,hall), … cm,

chc, etc.

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Robot Example: Actions

�What actions might we consider?
• move(X,Y), getkeys, dropkeys, makecoffee,

grabcoffee or grab(X) ?, tidylab, etc…

�Almost all actions have preconditions
• can’t apply an action at state S unless all

preconditions are satisfied
• move(X,Y) requires accessible(X,Y)
• givecoffee at S requires loc(off), rhc, etc.

�Actions change the state of the world
• move(X,Y) makes loc(X) false, loc(Y) true
• givecoffee makes rhc false, chc true
• these actions affect no other facts!

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Neighbor Representation

�For any state S, action A, we could specify the state
resulting from applying S at A; but…
�How many states?

• if k ground atoms, 2k states (so far our trivial robot
domain has about 40 ground atoms!)

�Action effects have a lot of structure
• actions tend to affect only a few atoms, most unaffected

�But if we decided to do this (and ignore these
issues), we could apply our favorite search
algorithms to this planning problem!

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Planning Basics

� Almost all work in planning relies on some
basic principles
a) use specific state representations that are easy to

manipulate
b) use specific action representations that exploit the

fact that actions affect only a few atoms generally
c) devise planning algorithms that exploit the “locality”

of actions and the fact that we’re concerned with
only a few goal propositions

� We’ll look at each of these in turn

CSC 384 Lecture Slides (c) 2002, C. Boutilier

State Representation

�A world state is just like a KB, but we can’t just
write a bunch of facts/rules to assert what’s true

• we’ll need to look at a bunch of worlds, not just one
• and we can’t retract/assert things in KB (easily)

�So we need a state representation
�Consider the state:

• True: loc(c), adj(o,m), adj(m,o), adj(o,l), adj(l,o), …,
rhk, cm, lck(c), lck(l), …

• False: loc(o), loc(l), loc(m), loc(h), adj(c,o), etc…,
chc, rhc, lck(o), lck(h), …

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Explicit World Represn’tion (EWR)

�EWR the simplest possible state representation
• Keep two lists of ground atoms: true list, false list
• or use negation and have one list:
• e.g., [loc(c), neg(loc(o)), neg(loc(m)), rhk, neg(chc)…]

�Difficulties:
• list has one entry for each ground atom in language
• generally, there are far more negative literals than

positive literals
• e.g., adj(X,Y) false for many more pairs than true;

loc(X) false for all but one location;
• consider airline planner with relation

flight(City1,City2,FltNum): many false instances!!!

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Closed World Representation (CWR)

�CWR makes the closed world assumption
• You specify every atom that is true (e.g., in a list)
• If atom is not in list, it is assumed false
• A state is a list of positive ground facts
• e.g., [loc(c), rhk, cm, adj(o,m), adj(m,o)…]

�Give state S (list), when is literal L true at S?

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Meta-Interpreter
�The holds predicate: a (simple) meta-interpreter

• the list State is our own little ‘KB’, built into a list
• the holds predicate asks a “query” of this ‘KB’: is the

(pos’tv or neg’tv) Fact true in State (our mini ‘KB’)
• we allow holds to ask queries about negative literals

(and we exploit Prolog’s negation-as-failure
mechanism to implement the CWA)

• Thus we’ve implemented a (trivial) Prolog-like query
interpreter in Prolog

�Note: Elements in State are “atoms” in our
domain language, but are just terms in Prolog

• allows us to treat a state (‘KB’) as an object in Prolog
• why is this important?

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Derived Relations in CWR (CWR-D)

�Certain facts derivable from other facts
• e.g., the accessible(X,Y) relation

�Don’t want these explicitly represented in state
• they are redundant (can be derived from others)
• they complicate action rep’n (potential inconsistency)
• e.g., robot drops keys (-rhk): what happens to accsbl?

�So we can separate basic relations in our
domain from derived relations

• only ground atoms of basic type allowed in state

�For each domain “predicate”, must specify type

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Derived Relation: Example
�Basic relations specified as follows:

�Derived relations include how they are derived:

CSC 384 Lecture Slides (c) 2002, C. Boutilier

A Meta-Interpreter for CWR-D

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Static Facts
�Certain facts never change as actions performed

• e.g., adj(X,Y) in our example is a static fact

�No need to carry these around in state list
�Static facts can be represented as derived
relations with empty “bodies”

CSC 384 Lecture Slides (c) 2002, C. Boutilier

The CWR-D Meta-Interpreter

�holds(F,S) for CWR-D looks a lot more like
Prolog. This metainterpreter allows us to assert
facts in the state (thus varying the “fact” part of
the KB) and assert rules (via derived relations)
that do not vary. The holds predicate essentially
tries to find a proof for the query F using the KB
S (and the rules).
�We can thus have many different “KBs” at once
�For more on meta-interpreters, see Ch.6 of the
text (if you’re interested).

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Action Representation
�Actions are concrete things an agent can do

• e.g., move(l,o), tidylab, getkeys, etc.

�Action schema: a collection of “related” actions
• e.g., move(X,Y) is a schema
• ground instances of a schema are true actions

�As discussed, actions cause state changes
�A neighbor of state S is any state S’ such that an
action A can be applied at S and results in S’
�So we need to describe (and represent):

• when A can be applied at S; i.e., A’s preconditions
• the effect A has on state S; i.e., A’s effects

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Precondition Representation
�Precondition for action A: a logical condition that
must hold at S for A to be applicable

• precondition representation: a list of ground literals
• for an action schema, preconditions literals may

include variables mentioned in the action schema

�Assert precond predicate (one fact per action)
• e.g., precond(move(X,Y), [loc(X), acc(Y), adj(X,Y)]).

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Effect Representation

�Actions affect only a few world facts, so we’re
best off describing only what changes when an
action is performed

• assume unmentioned facts are unaffected (like CWA)

�Effects are either positive or negative
• action makes an atom true or false

�In CWR or CWR-D state rep’n:
• we should add positive effects to the state list
• we should delete negative effects from the state list

CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS Action Representation

�STRIPS representation uses add and delete lists
(and precondition lists) to represent an actions

• addlist(givecoffee, [chc, craighappy]).
• deletelist(givecoffee, [rhc]).
• addlist(move(X,Y), [loc(Y)]).
• deletelist(move(X,Y), [loc(X)]).

�Important: if you use CWR-D relation, add and
delete lists should not include derived relations

• changes to derived facts due to changes in base facts

�STRIPS: Stanford Res. Inst. (SRI) Planning System
(1970-72)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Domain Descriptions

�A domain description: a specification of the
actions (and language) required in your specific
planning domain

• for each action: precondition, addlist, deletelist
statements should be asserted in KB

• if CWR-D, state which relations are basic, derived
• might have a list of all action names (schemas) in KB

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Neighbors (Result of Action)

�Exercises
• define predicate results(Action,State,NewState)

�given State in CWR-D, Action, what is resulting state
� if Action preconditions not satisfied at State, fails

• define neighbor predicate for STRIPS/CWR-D
�nb(State,NBList) : S’ is a neighbor of S if exists an A’

s.t. preconds of A’ satisfied at S, and results(A’,S,S’)
�assume actionList([move(X,Y), givecof, …]) in KB

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Planning Problems
�Given a domain description

• preconditions, addlist, deletelist, actionlist, derivedRel,
baseRel, all specified in KB

�Given an initial state s0 in CWR or CWR-D
• initial state is just a list of positive ground atoms

�Given a goal set G
• G is a list of (post’v or negt’v) literals to be made true

�Find a sequence of actions (a plan) a1, a2, …, an
s.t. applying that sequence to s0 leads to a state sn
satisfying all goal literals

• results(a1,s0,s1), results(a2,s1,s2), … results(an,sn-1,sn)
and holdsall(G,sn) are all true

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example Planning Problem

�Initial State (CWR-D): [loc(o), lck(c)]
• unmentioned: neg(cm), neg(rhk), neg(chc), etc…
• unmentioned: adj(o,l), adj(o,c), neg(adj(l,c)),

accessible(l), neg(accessible(c)), etc…

�Goal: [loc(o), chc]
• note: this is not a state in CWR-D, it is just a set of

conditions we want true

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Planning as Search

�Given this formulation of neighbors, goals, it is
easy to see how planning can be solved using
any standard search algorithm

• initial state s0 is root of search tree
• for any s in the tree, it’s children (neighbors) are

determined by nb (states reachable using one action)
• is_goal(S) determined by holdsAll(G,S)

�Your favorite search algorithm builds a sequence
of states from start to (some) goal state

• note: you don’t want state sequence, but an action
sequence (so modify nb predicate, search algorithm
to extract actions you took to reach these states)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Partial Search Tree in Example

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Difficulties with Generic Search
�Search tree is generally quite large

• our branching factor roughly 3; solution depth is 7
• BFS: about 3300 node expansions
• DFS is easily lead astray in this problem

�Goal provides no guidance
• path selection uninfluenced by goal (e.g., why even

consider going to lab as the first step?)
• suggests we need heuristics (people do work on this)

�Can we get by without heuristics?
• heuristics generally handcrafted for specific domains
• want a general purpose planner that is directed

toward the goal somehow

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Goal-Influenced Planning
�In our example, intuitively the action tidylab is
irrelevant to the literals in the goal list

• it doesn’t achieve a goal literal, it doesn’t achieve the
precondition of any action that achieves a goal literal,
etc…

�Most planning algorithms work backward from
the goal list. The basic idea/intuition:

• find an action an that achieves a goal literal
• then find an action an-1 that acheives one of an’s

preconditions, etc…

�Focuses attention on goal literals or things that
need to be made true to achieve goal literals

• actions that have some (indirect) impact on the goal

CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS Planner

�STRIPS one of earliest AI planning algorithms
• note: distinguish STRIPS action repn (a good idea)

from STRIPS planning algorithm (not so great)
• focuses on actions relevant to your goals (so more

informed than blind search)

�Basically a divide-and-conquer approach to
“solving a goal list”

• tries to find independent plans for individual subgoals
and then pieces these plans together

• recursively tries to achieve necessary preconditions

CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS: Intuitive Sketch

�Given a goal list [g1, g2], initial state s0
• Select a goal to achieve, let’s say g1
• Find a sequence of actions that achieves g1 from s0,

let’s say a1, a2, a3
• Compute state s1 that results from applying a1,a2,a3

to s0: s1 = result(a3,result(a2,result(a1,s0)))
• Select a remaining goal (here only g2 remains)
• Find a sequence that achieves g2 from s1, let’s say

b1, b2, b3
• Return solution: Plan P = a1,a2,a3,b1,b2,b3

CSC 384 Lecture Slides (c) 2002, C. Boutilier

How to Solve a Subgoal

�How to find sequence to achieve g1 from s0?
• find an action (say, a3) that achieves g1 (so g1 must

be an effect of a3)
• to ensure we can execute a3, we make all of its

preconditions new goals, or subgoals (say p1, p2)
• recursively call STRIPS on subgoals [p1,p2] with start

state s0, to get sequence a1, a2 that acheives them
• sticking a3 on the end of a1,a2 ensures achievement

of g1

�Process terminates when all subgoals true at s0

CSC 384 Lecture Slides (c) 2002, C. Boutilier

A Simple Example of STRIPS
Start State: loc(o), lck(l),

neg(rhk), neg(labtidy) …
Goal: loc(o), labtidy

Goal: loc(o),labtidy
1. Pick subgoal labtidy

Action tidylab achieves it
Subgoals: loc(l)

Pick subgoal loc(l)
Action mov(o,l) achieves it

Subgoals: loc(o), rhk
Pick subgoal rhk

Action getkeys achieves it
Subgoal: loc(o)

Pick subgoal loc(o)
True in s0

Plan: [getkeys] goes from s0 to s1
Pick subgoal loc(o)

True in s1
Plan: [getkeys,mov(o,l)] goes from s0 to s2

Plan: [getk,mov(o,l),tidylb] goes from s0 to s3
and achieves first subgoal labtidy

Continued…
2. Pick subgoal loc(o)

Action mov(l,o) achieves it
Subgoals: loc(l)

Pick subgoal loc(l)
True in s3

Plan: [gk,mov(o,l),tl,mov(l,o)]

