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CSC384: Lecture 7
�Last time

• game tree search (note: no text readings)

�Today
• Intro to Planning; State and action representations
• planning: start on STRIPS planning

�Readings:
• Today: Ch.8.1, 8.2 (STRIPS, skim Situation Calculus, 

skip Event Calculus), 8.3 (forward planning)
• Next week: 8.3 (STRIPS planning in depth, 

regression planning, briefly resolution-based 
planning)
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Search in Complex Situations
�Search algorithms so far are graph-based:

• produce sequence of actions or moves that change 
the world in specific ways (start � �����
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Planning

�Planning problems are like search problems
• given an initial state of the world
• given some goal conditions (facts we would like to 

make true, in contrast to goal states)
• find a sequence of actions that will take you from the 

start state to some state satisfying the goal conditions 
(note: these are goal states, but specified differently)

�What’s different?
• states are complex entities (possible worlds)
• actions tend to affect only certain facts

�End result: planning algorithms look a little 
different than search algorithms (usually)
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A Planning Problem
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Robot Example: Domain
�Predicates:

• loc(X) - location of robot is X

• adj(X,Y) - locations X,Y adjacent

• rhk - robot has keys

• cm - coffee is made
• chc - craig has coffee  (or maybe 

hc(P) )

• rhc - robot has coffee   (or maybe 
carrying(O) )

• lt - lab is tidy 

�Derived predicates possibly:
accessible(X,Y) ← adj(X,Y) & rhk.
accessible(X,Y) ← adj(X,Y) & unlck(X).

�Constants:
• The locations:    

off, hall, lab, mr, cr

• Domain objects?       
coffee, mail, keys, 
etc,

• other things?
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States of the World

�A state is an assignment of truth values to all 
(relevant) atoms

• e.g., think of it as an “interpretation” or complete KB
• it is a way the world could be

�Formally, given a finite number of predicates and 
domain objects, a world state is any assignment 
of truth values to all ground atoms

• e.g., True: loc(off), adj(cr,hall),…, rhc, rhk, etc…
False: loc(hall), loc(mr), …, adj(off,hall), … cm,            

chc, etc.



CSC 384 Lecture Slides (c) 2002, C. Boutilier

Robot Example: Actions

�What actions might we consider?
• move(X,Y), getkeys, dropkeys, makecoffee, 

grabcoffee or grab(X) ?, tidylab, etc…

�Almost all actions have preconditions
• can’t apply an action at state S unless all 

preconditions are satisfied
• move(X,Y) requires accessible(X,Y)
• givecoffee at S requires loc(off), rhc, etc.

�Actions change the state of the world
• move(X,Y) makes loc(X) false, loc(Y) true
• givecoffee makes rhc false, chc true
• these actions affect no other facts!
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Neighbor Representation

�For any state S, action A, we could specify the state 
resulting from applying S at A; but…
�How many states?

• if k ground atoms, 2k states (so far our trivial robot 
domain has about 40 ground atoms!)

�Action effects have a lot of structure
• actions tend to affect only a few atoms, most unaffected

�But if we decided to do this (and ignore these 
issues), we could apply our favorite search 
algorithms to this planning problem!
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Planning Basics

� Almost all work in planning relies on some 
basic principles
a) use specific state representations that are easy to 

manipulate
b) use specific action representations that exploit the 

fact that actions affect only a few atoms generally
c) devise planning algorithms that exploit the “locality” 

of actions and the fact that we’re concerned with 
only a few goal propositions

� We’ll look at each of these in turn
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State Representation

�A world state is just like a KB, but we can’t just 
write a bunch of facts/rules to assert what’s true

• we’ll need to look at a bunch of worlds, not just one
• and we can’t retract/assert things in KB (easily)

�So we need a state representation
�Consider the state:

• True:     loc(c), adj(o,m), adj(m,o), adj(o,l), adj(l,o), …,    
rhk, cm, lck(c), lck(l), …

• False:    loc(o), loc(l), loc(m), loc(h), adj(c,o), etc…,     
chc, rhc, lck(o), lck(h), …
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Explicit World Represn’tion (EWR)

�EWR the simplest possible state representation
• Keep two lists of ground atoms: true list, false list
• or use negation and have one list:
• e.g., [loc(c), neg(loc(o)), neg(loc(m)), rhk, neg(chc)…]

�Difficulties:
• list has one entry for each ground atom in language
• generally, there are far more negative literals than 

positive literals
• e.g., adj(X,Y) false for many more pairs than true; 

loc(X) false for all but one location; 
• consider airline planner with relation 

flight(City1,City2,FltNum): many false instances!!!
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Closed World Representation (CWR)

�CWR makes the closed world assumption
• You specify every atom that is true (e.g., in a list)
• If atom is not in list, it is assumed false
• A state is a list of positive ground facts
• e.g., [loc(c), rhk, cm, adj(o,m), adj(m,o)… ]

�Give state S (list), when is literal L true at S?
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Meta-Interpreter
�The holds predicate: a (simple) meta-interpreter

• the list State is our own little ‘KB’, built into a list
• the holds predicate asks a “query” of this ‘KB’: is the 

(pos’tv or neg’tv) Fact true in State (our mini ‘KB’)
• we allow holds to ask queries about negative literals 

(and we exploit Prolog’s negation-as-failure 
mechanism to implement the CWA)

• Thus we’ve implemented a (trivial) Prolog-like query 
interpreter in Prolog

�Note: Elements in State are “atoms” in our 
domain language, but are just terms in Prolog

• allows us to treat a state (‘KB’) as an object in Prolog
• why is this important?
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Derived Relations in CWR (CWR-D)

�Certain facts derivable from other facts
• e.g., the   accessible(X,Y) relation

�Don’t want these explicitly represented in state
• they are redundant (can be derived from others)
• they complicate action rep’n (potential inconsistency)
• e.g., robot drops keys (-rhk): what happens to accsbl?

�So we can separate basic relations in our 
domain from derived relations

• only ground atoms of basic type allowed in state

�For each domain “predicate”, must specify type



CSC 384 Lecture Slides (c) 2002, C. Boutilier

Derived Relation: Example
�Basic relations specified as follows:

�Derived relations include how they are derived:
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A Meta-Interpreter for CWR-D
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Static Facts
�Certain facts never change as actions performed

• e.g., adj(X,Y) in our example is a static fact

�No need to carry these around in state list
�Static facts can be represented as derived 
relations with empty “bodies”



CSC 384 Lecture Slides (c) 2002, C. Boutilier

The CWR-D Meta-Interpreter

�holds(F,S) for CWR-D looks a lot more like 
Prolog. This metainterpreter allows us to assert 
facts in the state (thus varying the “fact” part of 
the KB) and assert rules (via derived relations) 
that do not vary. The holds predicate essentially 
tries to find a proof for the query F using the KB 
S (and the rules).
�We can thus have many different “KBs” at once
�For more on meta-interpreters, see Ch.6 of the 
text (if you’re interested).
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Action Representation
�Actions are concrete things an agent can do

• e.g., move(l,o), tidylab, getkeys, etc.

�Action schema: a collection of “related” actions
• e.g., move(X,Y) is a schema
• ground instances of a schema are true actions

�As discussed, actions cause state changes
�A neighbor of state S is any state S’ such that an 
action A can be applied at S and results in S’
�So we need to describe (and represent):

• when A can be applied at S; i.e.,  A’s preconditions
• the effect A has on state S; i.e., A’s effects
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Precondition Representation
�Precondition for action A: a logical condition that 
must hold at S for A to be applicable

• precondition representation: a list of ground literals
• for an action schema, preconditions literals may 

include variables mentioned in the action schema

�Assert precond predicate (one fact per action)
• e.g.,  precond(move(X,Y), [loc(X), acc(Y), adj(X,Y)]).
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Effect Representation

�Actions affect only a few world facts, so we’re 
best off describing only what changes when an 
action is performed

• assume unmentioned facts are unaffected (like CWA)

�Effects are either positive or negative
• action makes an atom true or false

�In CWR or CWR-D state rep’n:
• we should add positive effects to the state list
• we should delete negative effects from the state list



CSC 384 Lecture Slides (c) 2002, C. Boutilier

STRIPS Action Representation

�STRIPS representation uses add and delete lists 
(and precondition lists) to represent an actions

• addlist(givecoffee, [ chc, craighappy ]).
• deletelist(givecoffee, [ rhc ]).
• addlist(move(X,Y), [ loc(Y) ]).
• deletelist(move(X,Y), [ loc(X) ]).

�Important: if you use CWR-D relation, add and 
delete lists should not include derived relations

• changes to derived facts due to changes in base facts

�STRIPS: Stanford Res. Inst. (SRI) Planning System 
(1970-72)
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Domain Descriptions

�A domain description: a specification of the 
actions (and language) required in your specific 
planning domain

• for each action: precondition, addlist, deletelist
statements should be asserted in KB

• if CWR-D, state which relations are basic, derived
• might have a list of all action names (schemas) in KB
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Neighbors (Result of Action)

�Exercises
• define predicate results(Action,State,NewState)

�given State in CWR-D, Action, what is resulting state
� if Action preconditions not satisfied at State, fails

• define neighbor predicate for STRIPS/CWR-D
�nb(State,NBList) : S’ is a neighbor of S if exists an A’ 

s.t. preconds of A’ satisfied at S, and results(A’,S,S’)
�assume  actionList( [ move(X,Y), givecof, …]) in KB
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Planning Problems
�Given a domain description

• preconditions, addlist, deletelist, actionlist, derivedRel, 
baseRel, all specified in KB

�Given an initial state  s0 in CWR or CWR-D
• initial state is just a list of positive ground atoms

�Given a goal set G
• G is a list of (post’v or negt’v) literals to be made true

�Find a sequence of actions (a plan) a1, a2, …, an
s.t. applying that sequence to s0 leads to a state sn
satisfying all goal literals

• results(a1,s0,s1), results(a2,s1,s2), … results(an,sn-1,sn)
and  holdsall(G,sn) are all true
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Example Planning Problem

�Initial State (CWR-D):   [loc(o), lck(c)]
• unmentioned: neg(cm), neg(rhk), neg(chc), etc…
• unmentioned: adj(o,l), adj(o,c), neg(adj(l,c)), 

accessible(l), neg(accessible(c)), etc…

�Goal: [loc(o), chc]
• note: this is not a state in CWR-D, it is just a set of 

conditions we want true 
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Planning as Search

�Given this formulation of neighbors, goals, it is 
easy to see how planning can be solved using 
any standard search algorithm

• initial state s0 is root of search tree
• for any s in the tree, it’s children (neighbors) are 

determined by nb (states reachable using one action)
• is_goal(S) determined by holdsAll(G,S)

�Your favorite search algorithm builds a sequence 
of states from start to (some) goal state

• note: you don’t want state sequence, but an action
sequence (so modify nb predicate, search algorithm 
to extract actions you took to reach these states)
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Partial Search Tree in Example
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Difficulties with Generic Search
�Search tree is generally quite large

• our branching factor roughly 3; solution depth is 7
• BFS: about 3300 node expansions
• DFS is easily lead astray in this problem

�Goal provides no guidance
• path selection uninfluenced by goal (e.g., why even 

consider going to lab as the first step?)
• suggests we need heuristics (people do work on this)

�Can we get by without heuristics?
• heuristics generally handcrafted for specific domains
• want a general purpose planner that is directed 

toward the goal somehow
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Goal-Influenced Planning
�In our example, intuitively the action tidylab is 
irrelevant to the literals in the goal list

• it doesn’t achieve a goal literal, it doesn’t achieve the 
precondition of any action that achieves a goal literal, 
etc…

�Most planning algorithms work backward from 
the goal list. The basic idea/intuition:

• find an action an that achieves a goal literal
• then find an action an-1 that acheives one of an’s

preconditions, etc…

�Focuses attention on goal literals or things that 
need to be made true to achieve goal literals

• actions that have some (indirect) impact on the goal
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STRIPS Planner

�STRIPS one of earliest AI planning algorithms
• note: distinguish STRIPS action repn (a good idea) 

from STRIPS planning algorithm (not so great)
• focuses on actions relevant to your goals (so more 

informed than blind search)

�Basically a divide-and-conquer approach to 
“solving a goal list”

• tries to find independent plans for individual subgoals
and then pieces these plans together

• recursively tries to achieve necessary preconditions
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STRIPS: Intuitive Sketch

�Given a goal list  [g1, g2], initial state s0
• Select a goal to achieve, let’s say g1
• Find a sequence of actions that achieves g1 from s0, 

let’s say a1, a2, a3
• Compute state s1 that results from applying a1,a2,a3 

to s0:  s1 = result(a3,result(a2,result(a1,s0)))
• Select a remaining goal (here only g2 remains)
• Find a sequence that achieves g2 from s1, let’s say 

b1, b2, b3
• Return solution: Plan P = a1,a2,a3,b1,b2,b3
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How to Solve a Subgoal

�How to find sequence to achieve g1 from s0?
• find an action (say, a3) that achieves g1 (so g1 must 

be an effect of a3)
• to ensure we can execute a3, we make all of its 

preconditions new goals, or subgoals (say p1, p2)
• recursively call STRIPS on subgoals [p1,p2] with start 

state s0, to get sequence a1, a2 that acheives them
• sticking a3 on the end of a1,a2 ensures achievement 

of g1

�Process terminates when all subgoals true at s0
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A Simple Example of STRIPS
Start State: loc(o), lck(l), 

neg(rhk), neg(labtidy) …
Goal: loc(o), labtidy

Goal: loc(o),labtidy
1. Pick subgoal labtidy

Action tidylab achieves it
Subgoals: loc(l)

Pick subgoal loc(l)
Action mov(o,l) achieves it

Subgoals: loc(o), rhk
Pick subgoal rhk

Action getkeys achieves it 
Subgoal: loc(o)

Pick subgoal loc(o)
True in s0

Plan: [getkeys] goes from s0 to s1
Pick subgoal loc(o)

True in s1
Plan: [getkeys,mov(o,l)] goes from s0 to s2

Plan: [getk,mov(o,l),tidylb] goes from s0 to s3
and achieves first subgoal labtidy

Continued…
2. Pick subgoal loc(o)

Action mov(l,o) achieves it
Subgoals: loc(l)

Pick subgoal loc(l)
True in s3

Plan:  [gk,mov(o,l),tl,mov(l,o)]


