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CSC384: Lecture 6
�Last time

• Costs, Heuristics, LCFS, BeFS, A*, IDS

�Today
• wrap up last class slides (Misc Search topics)
• game tree search

�Readings:
• Today: none (you should use lecture slides)
• Next week: Ch.8.1, 8.2 (STRIPS, skim Situation 

Calculus, skip Event Calculus), 8.3 (up to STRIPS 
planning)
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Generalizing Search Problems

�So far: our search problems have assumed 
agent has complete control of environment

• agent (courier, robot) has the only effect on state
• straight path to goal state is reasonable

�Assumption not always reasonable
• stochastic environment
• other agents whose interests conflict with yours

�In these cases, we need to generalize our view 
of search to handle “uncontrollable” state change
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Two-person Zero-Sum Games

�Two-person, zero-sum games an extreme case
• chess, checkers, tic-tac-toe, backgammon, go, 

Command&Conquer:Renegade, New Adventures 
with Pooh, travel agents, “find the last parking space”

• you want to get somewhere (winning position) and 
opponent wants you to end up somewhere else 
(losing position)

�Key insight:
• how you act depends on how other agent acts (or 

how you think they will act)
• and vice versa
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More General Games

�What makes something a game:
• there are two (or more) agents influencing state change
• each agent has their own interests

�e.g., goal states are different; or we assign different 
values to different paths/states

�What makes games hard?
• how you should play depends on how you think the 

other person will play; but how they play depends on 
how they think you will play; so how you should play 
depends on how you think they think you will play; but 
how they play should depend on how they think you 
think they think you will play; …
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More General Games

�Zero-sum games are “fully competitive”
• if one player wins, the other player loses
• e.g., the amt of money I win (lose) at poker is the 

amount of money you lose (win)

�More general games are “cooperative”
• some outcomes are preferred by both of us, or at 

least our values aren’t diametrically opposed

�We’ll look in detail at zero-sum games
• but first, a couple simple zero-sum and cooperative 

games for fun

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Game 1: Rock, Paper Scissors
�Scissors cut paper, 
paper covers rock, rock 
smashes scissors
�Represented as a 
matrix: Player I chooses 
a row, Player II chooses 
a column
�Payoff to each player in 
each cell   (Pl.I / Pl.II)

�1: win, 0: tie, -1: loss
• so it’s zero-sum
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Game 2: Prisoner’s Dilemma

�Two prisoner’s in separate cells, DA doesn’t have 
enough evidence to convict them

�If one confesses, other doesn’t: 
• confessor goes free
• other sentenced to 4 years

�If both confess (both defect)
• both sentenced to 3 years

�Neither confess (both cooperate)
• sentenced to 1 year on minor charge

�Payoff: 4 minus sentence
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Game 3: Battlebots

�Two robots: Blue (Craig’s), Red (Fahiem’s)
• one cup of coffee, one tea left
• both C, F prefer coffee (value 10)
• tea acceptable (value 8)

�Both robot’s go for Cof
• collide and get no payoff

�Both go for tea: same
�One goes for coffee, other for tea:

• coffee robot gets 10
• tea robot gets 8
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Two Player Zero Sum Games

�Key point of previous games: what you should do 
depends on what other guy does
�Previous games are simple “one shot” games

• single move each
• in game theory: strategic or normal form games

�Many games extend over multiple moves
• e.g., chess, checkers, etc.
• in game theory: extensive form games

�We’ll focus on the extensive form
• that’s where the computational questions emerge
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Two-Player, Zero-Sum Game: Defn

�Two players A (Max) and B (Min)
�set of positions P (states of game)
�a starting position s � ���	��
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Intuitions

�Players alternate moves (starting with Max)
• Game ends when some terminal p VLW4X Y reached

�A game state: a position-player pair
• tells us what position we’re in, whose move it is

�Utility function and terminals replace goals
• Max wants to maximize the terminal payoff
• Min wants to minimize the terminal payoff

�Think of it as:
• Max gets U(t), Min gets –U(t) for terminal node t
• This is why it’s called zero (or constant) sum
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Tic-tac-toe: States 

Max(X) Max(X)

Max(X)

Min(O)

Min(O)

U = -1 U = +1
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Tic-tac-toe: Game Tree
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Game Tree

�Game tree looks like a search tree
• Layers reflect the alternating moves

�But Max doesn’t decide where to go alone
• after Max moves to state a, Mins decides whether to 

move to state b, c, or d

�Thus Max must have a strategy
• must know what to do next no matter what move Min 

makes (b, c, or d)
• a sequence of moves will not suffice: Max may want 

to do something different in response to b, c, or d

�What is a reasonable strategy?
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Minimax Strategy: Intuitions

t1 t2 t3 t4 t5 t6 t7

s1 s2 s3
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If Max goes to s1, Min goes to t2

* U(s1) = min{U(t1), U(t2), U(t3)} = -6
If Max goes to s2, Min goes to t4

* U(s2) = min{U(t4), U(t5)} = 3
If Max goes to s3, Min goes to t6

* U(s3) = min{U(t6), U(t7)} = -10

So Max goes to s1: so 
U(s0) 

= max{U(s1), U(s2), U(s3)} 
= 3
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Minimax Strategy

�Build full game tree (all leaves are terminals)
• root is start state, edges are possible moves, etc.
• label terminal nodes with utilities

�Back values up the tree
• U(t) is defined for all terminals (part of input)
• U(n) = min {U(c) : c a child of n} if n is a min node
• U(n) = max {U(c) : c a child of n} if n is a max node

�Max chooses, at any (max) state, the action that 
leads to the highest utility child
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Depth-first Implementation on MMX

�Depth-first evaluation of game tree
• maxLevel(L) holds if level L is Max’s move; similarly 

for minLevel(L) and terminal(L).
• utility of terminals must be specified as input
• if game isn’t strictly alternating, then move might be 

associated with the node (or you might need to record 
whose move it is explicitly)

utility(N,L,U) :- terminal(L), utility(N,U).
utility(N,L,U) :- maxLevel(L), children(N,CList),

maxValue(CList, U).
utility(N,L,U) :- minLevel(L), children(N,CList),

minValue(CList, U).

� �
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Depth-first Implementation of MMX

�maxValue recursively calls utility on each child 
and sets U to max of all values over these 
children (ditto for minValue)

• note: can’t return until all children evaluated

�Notice that the game tree has to have finite 
depth for this to work
�Advantage of DF implementation: space efficient

utility(N,L,U) :- maxLevel(L), children(N,CList),
maxValue(CList, U).

utility(N,L,U) :- minLevel(L), children(N,CList),
minValue(CList, U).
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Visualization of DF-MMX

t3 t4 t5

t11 t12

t25 t26

s1 s13 s16

s0

s2 s6 s17 s24

s21s18

t14 t15

t22 t23t19 t20

s10s7

t8 t9
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Pruning

�It is not necessary to examine entire tree to 
make correct minimax decision
�Assume depth-first generation of tree

• After generating value for only some of node n’s
children we can prove that we’ll never reach n

• So we needn’t generate or evaluate any further 
children of n !

�Two types of cuts:
� � -cuts: pruning of max nodes
� � -cuts: pruning of min nodes
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Defining Alpha/Beta Values

�At a Max node n:
� � is best value of n’s children examined so 

far (dynamic: changes as children examined)
� � is worst value of n’s parent’s children 

examined so far (fixed when evaluating n)
�At a Min node n:

� � is worst value of n’s children examined so 
far (dynamic: changes as children examined)

� � is best value of n’s parent’s children 
examined so far (fixed when evaluating n)
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An Alpha Cut
�Once alpha-value at max node n reaches its 
beta-value (i.e., it’s parent P’s beta-value), we 
can stop expansion of n

• Min will never choose to move to n from P since it can 
guarantee the lower beta-value already
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A Beta Cut
�Once beta-value at min node n reaches its 
alpha-value (i.e., it’s parent P’s alpha-value), we 
can stop expansion of n

• Max will never choose to move to n from P since it 
can guarantee the greater alpha-value already
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Alpha-Beta Algorithm

Evaluate(startNode):
/* assume Max moves first */
MavEval(start, -infnty, +infnty)

MaxEval(node, alpha, beta):
If terminal(node), return  U(n)
For each c in childlist(n)

val ← MinEval(c, alpha, beta)
alpha ← max(alpha, val)
If alpha � beta, return beta

Return alpha

MinEval(node, alpha, beta):
If terminal(node), return  U(n)
For each c in childlist(n)

val ← MaxEval(c, alpha, beta)
beta ← min(beta, val)
If alpha � beta, return alpha

Return beta
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Rational Opponents

�This all assumes that your opponent is rational
• e.g., will choose moves that minimize your max score

�Storing your strategy is a potential issue:
• you must store “decisions” for each node you can 

reach by playing optimally
• if your opponent has unique rational choices, this is a 

single branch through game tree
• if there are “ties”, opponent could choose any one of 

the “tied” moves: must store strategy for each subtree

�What if your opponent doesn’t play rationally?
• will it affect quality of outcome?
• what to do if you haven’t stored a full strategy?
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Practical Matters
�All “real” games are too large to enumerate tree

• e.g., chess branching factor is roughly 35
• Depth 10 tree: 2,700,000,000,000,000 nodes
• Yikes! Even alpha-beta pruning won’t help here!

�We must limit depth of search tree
• can’t expand all the way to terminal nodes
• we must make heuristic estimates about the values of 

the (nonterminal) states at the leaves of the tree
• evaluation function is an often used term
• evaluation functions are often learned

�Depth-first expansion almost always used for 
game trees because of sheer size of trees

� �
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Heuristics

�Think of a few games and suggest some 
heuristics for estimating the “goodness” of a 
position

• chess?
• checkers?
• your favorite video game?
• “find the last parking spot”?
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Some Interesting Games

�Tesauro’s TD-Gammon
• champion backgammon player which learned 

evaluation function; stochastic component (dice)

�Checker’s (Samuel, 1950s; Schaeffer)
�Chess (which you all know about)
�Bridge, Poker, etc.

�Check out Jonathan Schaeffer’s Web page:
• www.cs.ualberta.ca/~games
• they’ve studied lots of games (you can play too)
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An Aside on Large Search Problems

�Issue: inability to expand tree to terminal nodes 
is relevant even in standard search

• often we can’t expect A* to reach a goal by expanding 
full frontier

• so we often limit our lookahead, and make moves 
before we actually know the true path to the goal

• sometimes called online or realtime search

�In this case, we use the heuristic function not just 
to guide our search, but also commits us to 
moves we actually make

• in general, guarantees of optimality are lost, but we 
reduce computational/memory expense dramatically

� �
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Realtime Search Graphically
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