
1

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

CSC384: Lecture 6
�Last time

• Costs, Heuristics, LCFS, BeFS, A*, IDS

�Today
• wrap up last class slides (Misc Search topics)
• game tree search

�Readings:
• Today: none (you should use lecture slides)
• Next week: Ch.8.1, 8.2 (STRIPS, skim Situation

Calculus, skip Event Calculus), 8.3 (up to STRIPS
planning)

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Generalizing Search Problems

�So far: our search problems have assumed
agent has complete control of environment

• agent (courier, robot) has the only effect on state
• straight path to goal state is reasonable

�Assumption not always reasonable
• stochastic environment
• other agents whose interests conflict with yours

�In these cases, we need to generalize our view
of search to handle “uncontrollable” state change

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Two-person Zero-Sum Games

�Two-person, zero-sum games an extreme case
• chess, checkers, tic-tac-toe, backgammon, go,

Command&Conquer:Renegade, New Adventures
with Pooh, travel agents, “find the last parking space”

• you want to get somewhere (winning position) and
opponent wants you to end up somewhere else
(losing position)

�Key insight:
• how you act depends on how other agent acts (or

how you think they will act)
• and vice versa

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

More General Games

�What makes something a game:
• there are two (or more) agents influencing state change
• each agent has their own interests

�e.g., goal states are different; or we assign different
values to different paths/states

�What makes games hard?
• how you should play depends on how you think the

other person will play; but how they play depends on
how they think you will play; so how you should play
depends on how you think they think you will play; but
how they play should depend on how they think you
think they think you will play; …

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

More General Games

�Zero-sum games are “fully competitive”
• if one player wins, the other player loses
• e.g., the amt of money I win (lose) at poker is the

amount of money you lose (win)

�More general games are “cooperative”
• some outcomes are preferred by both of us, or at

least our values aren’t diametrically opposed

�We’ll look in detail at zero-sum games
• but first, a couple simple zero-sum and cooperative

games for fun

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Game 1: Rock, Paper Scissors
�Scissors cut paper,
paper covers rock, rock
smashes scissors
�Represented as a
matrix: Player I chooses
a row, Player II chooses
a column
�Payoff to each player in
each cell (Pl.I / Pl.II)

�1: win, 0: tie, -1: loss
• so it’s zero-sum

� � �

� � �

� � �

� � �

� � � �

� � � �

� � � � � � � �

� � � �

� � � �

�

�

�

� � 	
 � �
 � �

��
	

��

�

2

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Game 2: Prisoner’s Dilemma

�Two prisoner’s in separate cells, DA doesn’t have
enough evidence to convict them

�If one confesses, other doesn’t:
• confessor goes free
• other sentenced to 4 years

�If both confess (both defect)
• both sentenced to 3 years

�Neither confess (both cooperate)
• sentenced to 1 year on minor charge

�Payoff: 4 minus sentence

� �

� � �

� � �

� � �

� � �

�

�

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Game 3: Battlebots

�Two robots: Blue (Craig’s), Red (Fahiem’s)
• one cup of coffee, one tea left
• both C, F prefer coffee (value 10)
• tea acceptable (value 8)

�Both robot’s go for Cof
• collide and get no payoff

�Both go for tea: same
�One goes for coffee, other for tea:

• coffee robot gets 10
• tea robot gets 8

� �

� � �

� � �

� � � �

� � � �

�

�

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Two Player Zero Sum Games

�Key point of previous games: what you should do
depends on what other guy does
�Previous games are simple “one shot” games

• single move each
• in game theory: strategic or normal form games

�Many games extend over multiple moves
• e.g., chess, checkers, etc.
• in game theory: extensive form games

�We’ll focus on the extensive form
• that’s where the computational questions emerge

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Two-Player, Zero-Sum Game: Defn

�Two players A (Max) and B (Min)
�set of positions P (states of game)
�a starting position s � ���	��

���������������
����� �
���
� � �! #"%$ &�')(+*-,/.!$ � $,!&). 021 �3�	��

�����������4��5!�������!6��
�
�
��7�8
9�6�� ���)5:7;�)6���6)���)�=<�> 1 ��?2�@�	ACB � "=,-DE�/. �
�
�
��7�8
9�6�� ���)5:7;�)6���6)���)�=<GF 1 ��?2�@�IHGB � "=,-DE�/. �

� J)� $ ($	� K 8)� *L'/KL,�M M�MNJO&�P!� $,!& QSR!0=TSU

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Intuitions

�Players alternate moves (starting with Max)
• Game ends when some terminal p VLW4X Y reached

�A game state: a position-player pair
• tells us what position we’re in, whose move it is

�Utility function and terminals replace goals
• Max wants to maximize the terminal payoff
• Min wants to minimize the terminal payoff

�Think of it as:
• Max gets U(t), Min gets –U(t) for terminal node t
• This is why it’s called zero (or constant) sum

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Tic-tac-toe: States

Max(X) Max(X)

Max(X)

Min(O)

Min(O)

U = -1 U = +1

�

�

�

��

�

�

�

�

��

�

��

�

�

� � 	
� �

� � �
� � �

	 �

� � �
� � �

	 �

3

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Tic-tac-toe: Game Tree

�

�

�

�

�

�

� �

�
�

� �
�

�
�

�

�

U = +1

� 	 �

� 	 �

� � �

� � �

	

� �

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Game Tree

�Game tree looks like a search tree
• Layers reflect the alternating moves

�But Max doesn’t decide where to go alone
• after Max moves to state a, Mins decides whether to

move to state b, c, or d

�Thus Max must have a strategy
• must know what to do next no matter what move Min

makes (b, c, or d)
• a sequence of moves will not suffice: Max may want

to do something different in response to b, c, or d

�What is a reasonable strategy?

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Minimax Strategy: Intuitions

t1 t2 t3 t4 t5 t6 t7

s1 s2 s3

s0 � 	 �
 � ! �

� � �
 � ! �

� � � � � � 	 �

" � # � � $ � � � %
If Max goes to s1, Min goes to t2

* U(s1) = min{U(t1), U(t2), U(t3)} = -6
If Max goes to s2, Min goes to t4

* U(s2) = min{U(t4), U(t5)} = 3
If Max goes to s3, Min goes to t6

* U(s3) = min{U(t6), U(t7)} = -10

So Max goes to s1: so
U(s0)

= max{U(s1), U(s2), U(s3)}
= 3

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Minimax Strategy

�Build full game tree (all leaves are terminals)
• root is start state, edges are possible moves, etc.
• label terminal nodes with utilities

�Back values up the tree
• U(t) is defined for all terminals (part of input)
• U(n) = min {U(c) : c a child of n} if n is a min node
• U(n) = max {U(c) : c a child of n} if n is a max node

�Max chooses, at any (max) state, the action that
leads to the highest utility child

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Depth-first Implementation on MMX

�Depth-first evaluation of game tree
• maxLevel(L) holds if level L is Max’s move; similarly

for minLevel(L) and terminal(L).
• utility of terminals must be specified as input
• if game isn’t strictly alternating, then move might be

associated with the node (or you might need to record
whose move it is explicitly)

utility(N,L,U) :- terminal(L), utility(N,U).
utility(N,L,U) :- maxLevel(L), children(N,CList),

maxValue(CList, U).
utility(N,L,U) :- minLevel(L), children(N,CList),

minValue(CList, U).

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Depth-first Implementation of MMX

�maxValue recursively calls utility on each child
and sets U to max of all values over these
children (ditto for minValue)

• note: can’t return until all children evaluated

�Notice that the game tree has to have finite
depth for this to work
�Advantage of DF implementation: space efficient

utility(N,L,U) :- maxLevel(L), children(N,CList),
maxValue(CList, U).

utility(N,L,U) :- minLevel(L), children(N,CList),
minValue(CList, U).

4

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Visualization of DF-MMX

t3 t4 t5

t11 t12

t25 t26

s1 s13 s16

s0

s2 s6 s17 s24

s21s18

t14 t15

t22 t23t19 t20

s10s7

t8 t9

� � � �
 � � "
 � & 	 � ' (
 � !
 � � �
 � !
 � � ! � �
� � � �)
 � � #
 ! � �

 � � � �
 � � �
 & 	 � * � +
� � � �
 � % �
 & 	 � * �
 � ! � , * � � (
 - �
 � 	 �
� & 	 � * 	 � �
 � � #

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Pruning

�It is not necessary to examine entire tree to
make correct minimax decision
�Assume depth-first generation of tree

• After generating value for only some of node n’s
children we can prove that we’ll never reach n

• So we needn’t generate or evaluate any further
children of n !

�Two types of cuts:
� � -cuts: pruning of max nodes
� � -cuts: pruning of min nodes

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Alpha/Beta Values

�At a Max node n:
� � is best value of n’s children examined so

far (dynamic: changes as children examined)
� � is worst value of n’s parent’s children

examined so far (fixed when evaluating n)
�At a Min node n:

� � is worst value of n’s children examined so
far (dynamic: changes as children examined)

� � is best value of n’s parent’s children
examined so far (fixed when evaluating n)

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

An Alpha Cut
�Once alpha-value at max node n reaches its
beta-value (i.e., it’s parent P’s beta-value), we
can stop expansion of n

• Min will never choose to move to n from P since it can
guarantee the lower beta-value already

n

P

s1 s2 s3

� � � % �

� � � 	
 .
 �

% � $

	 � , / 	
 .
 % � $

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

A Beta Cut
�Once beta-value at min node n reaches its
alpha-value (i.e., it’s parent P’s alpha-value), we
can stop expansion of n

• Max will never choose to move to n from P since it
can guarantee the greater alpha-value already

n

P

s1 s2 s3

% "

	 � , / 	
 .
 "

$ � �

� � � 	
 .
 $ � �

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Alpha-Beta Algorithm

Evaluate(startNode):
/* assume Max moves first */
MavEval(start, -infnty, +infnty)

MaxEval(node, alpha, beta):
If terminal(node), return U(n)
For each c in childlist(n)

val ← MinEval(c, alpha, beta)
alpha ← max(alpha, val)
If alpha � beta, return beta

Return alpha

MinEval(node, alpha, beta):
If terminal(node), return U(n)
For each c in childlist(n)

val ← MaxEval(c, alpha, beta)
beta ← min(beta, val)
If alpha � beta, return alpha

Return beta

� � � * ! � � ! �
 	 � 0 ! � � � / �
 � / 	 �

	 � � ! � � 	 � � �
 	
 & 	 � * �
 - � � /
 � 	 � /

� ! � +
 � � � 	 � � 0

 � � � � 	 � � �
 �

� ! & � � 0
 � !
 � 	 �
 � ! �
 1 � 2

 ! *

	 � �
 , � 	
 � �
 � 	 � 3
 	 �
 � 	 � /

� � � , +

5

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Rational Opponents

�This all assumes that your opponent is rational
• e.g., will choose moves that minimize your max score

�Storing your strategy is a potential issue:
• you must store “decisions” for each node you can

reach by playing optimally
• if your opponent has unique rational choices, this is a

single branch through game tree
• if there are “ties”, opponent could choose any one of

the “tied” moves: must store strategy for each subtree

�What if your opponent doesn’t play rationally?
• will it affect quality of outcome?
• what to do if you haven’t stored a full strategy?

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Practical Matters
�All “real” games are too large to enumerate tree

• e.g., chess branching factor is roughly 35
• Depth 10 tree: 2,700,000,000,000,000 nodes
• Yikes! Even alpha-beta pruning won’t help here!

�We must limit depth of search tree
• can’t expand all the way to terminal nodes
• we must make heuristic estimates about the values of

the (nonterminal) states at the leaves of the tree
• evaluation function is an often used term
• evaluation functions are often learned

�Depth-first expansion almost always used for
game trees because of sheer size of trees

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Heuristics

�Think of a few games and suggest some
heuristics for estimating the “goodness” of a
position

• chess?
• checkers?
• your favorite video game?
• “find the last parking spot”?

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Some Interesting Games

�Tesauro’s TD-Gammon
• champion backgammon player which learned

evaluation function; stochastic component (dice)

�Checker’s (Samuel, 1950s; Schaeffer)
�Chess (which you all know about)
�Bridge, Poker, etc.

�Check out Jonathan Schaeffer’s Web page:
• www.cs.ualberta.ca/~games
• they’ve studied lots of games (you can play too)

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

An Aside on Large Search Problems

�Issue: inability to expand tree to terminal nodes
is relevant even in standard search

• often we can’t expect A* to reach a goal by expanding
full frontier

• so we often limit our lookahead, and make moves
before we actually know the true path to the goal

• sometimes called online or realtime search

�In this case, we use the heuristic function not just
to guide our search, but also commits us to
moves we actually make

• in general, guarantees of optimality are lost, but we
reduce computational/memory expense dramatically

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Realtime Search Graphically

� + 4 �
 � * �
 5 6
 1 ! �
 ! * �
 2 	 & ! � � � �
 � � 	 � � /
 	 � 0 ! � � � / �

* � � � �
 - �
 	 � �
 2 ! � � �
 � !
 � 	 7 �
 	
 � ! & �
 ! �
 � * �
 ! * �

! 2
 � � � ! �
 +
 8 ! � �)
 � !
 � � 	 & � �
 	 � �
 0 ! 	 � �

 � � +

% +
 4 �
 * � �
 � & 	 � * 	 � � ! �
 2 * � � � � ! �
 2 1 � 3
 � !
 � � � �
 - / � � /

, 	 � /
 � ! ! 7 � � � � �
 1 � � � ' �
 � 	

 � �
 � �
 � / �
 � � ! � � 3 +

� +
 4 �
 � 	 7 �
 � / �
 2 � � � �
 � � � ,
 	 � ! � 0
 � / �
 � � � �
 , 	 � /

1 � � 3 (
 �

 	 � � * 	 � �

 � 	 7 � � 0
 � / 	 �
 � ! & � +

� +
 4 �
 � � � � 	 � �
 � � 	 � � /
 	 �
 � / �
 � ! �
 - �
 � � 	 � /
 �

� 	 7 � � 0
 � / 	 �
 � ! & � +
 1 4 �
 � 	

 	 � � * 	 � �

 � 	 � / �
 � / �

� � � * � � �
 ! 2
 � / �
 � � � � & 	 � �
 , 	 � �
 ! 2
 2 � � � �
 � � 	 � � /

� � � �
 � 2
 � � ' �
 / 	 � 0 � � 0
 	 � ! * � (
 	 �
 � �
 - ! * �
 - � � /
 5 6 3 +

