
CSC 384 Lecture Slides (c) 2002, C. Boutilier

CSC384: Lecture 6
�Last time

• Costs, Heuristics, LCFS, BeFS, A*, IDS

�Today
• wrap up last class slides (Misc Search topics)
• game tree search

�Readings:
• Today: none (you should use lecture slides)
• Next week: Ch.8.1, 8.2 (STRIPS, skim Situation

Calculus, skip Event Calculus), 8.3 (up to STRIPS
planning)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Generalizing Search Problems

�So far: our search problems have assumed
agent has complete control of environment

• agent (courier, robot) has the only effect on state
• straight path to goal state is reasonable

�Assumption not always reasonable
• stochastic environment
• other agents whose interests conflict with yours

�In these cases, we need to generalize our view
of search to handle “uncontrollable” state change

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Two-person Zero-Sum Games

�Two-person, zero-sum games an extreme case
• chess, checkers, tic-tac-toe, backgammon, go,

Command&Conquer:Renegade, New Adventures
with Pooh, travel agents, “find the last parking space”

• you want to get somewhere (winning position) and
opponent wants you to end up somewhere else
(losing position)

�Key insight:
• how you act depends on how other agent acts (or

how you think they will act)
• and vice versa

CSC 384 Lecture Slides (c) 2002, C. Boutilier

More General Games

�What makes something a game:
• there are two (or more) agents influencing state change
• each agent has their own interests

�e.g., goal states are different; or we assign different
values to different paths/states

�What makes games hard?
• how you should play depends on how you think the

other person will play; but how they play depends on
how they think you will play; so how you should play
depends on how you think they think you will play; but
how they play should depend on how they think you
think they think you will play; …

CSC 384 Lecture Slides (c) 2002, C. Boutilier

More General Games

�Zero-sum games are “fully competitive”
• if one player wins, the other player loses
• e.g., the amt of money I win (lose) at poker is the

amount of money you lose (win)

�More general games are “cooperative”
• some outcomes are preferred by both of us, or at

least our values aren’t diametrically opposed

�We’ll look in detail at zero-sum games
• but first, a couple simple zero-sum and cooperative

games for fun

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Game 1: Rock, Paper Scissors
�Scissors cut paper,
paper covers rock, rock
smashes scissors
�Represented as a
matrix: Player I chooses
a row, Player II chooses
a column
�Payoff to each player in
each cell (Pl.I / Pl.II)
�1: win, 0: tie, -1: loss

• so it’s zero-sum

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Game 2: Prisoner’s Dilemma

�Two prisoner’s in separate cells, DA doesn’t have
enough evidence to convict them
�If one confesses, other doesn’t:

• confessor goes free
• other sentenced to 4 years

�If both confess (both defect)
• both sentenced to 3 years

�Neither confess (both cooperate)
• sentenced to 1 year on minor charge

�Payoff: 4 minus sentence

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Game 3: Battlebots

�Two robots: Blue (Craig’s), Red (Fahiem’s)
• one cup of coffee, one tea left
• both C, F prefer coffee (value 10)
• tea acceptable (value 8)

�Both robot’s go for Cof
• collide and get no payoff

�Both go for tea: same
�One goes for coffee, other for tea:

• coffee robot gets 10
• tea robot gets 8

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Two Player Zero Sum Games

�Key point of previous games: what you should do
depends on what other guy does
�Previous games are simple “one shot” games

• single move each
• in game theory: strategic or normal form games

�Many games extend over multiple moves
• e.g., chess, checkers, etc.
• in game theory: extensive form games

�We’ll focus on the extensive form
• that’s where the computational questions emerge

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Two-Player, Zero-Sum Game: Defn

�Two players A (Max) and B (Min)
�set of positions P (states of game)
�a starting position s � � � � � � � � � � 	
 � � � � � 	
 � � �

���������	
�������� � � � � � � � � � � � � 	
 � � � �
 � � � � � �

� � � � � � � � �
 � � � � � � � � � 	 ��
 ���

� � � � � � � � �
 � � � � � � � � � 	 ��
 ���

� � ������ � � �
�� �� � 	� � �� ���� � � � � � � � �

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Intuitions

�Players alternate moves (starting with Max)
• Game ends when some terminal p � � � � � � reached

�A game state: a position-player pair
• tells us what position we’re in, whose move it is

�Utility function and terminals replace goals
• Max wants to maximize the terminal payoff
• Min wants to minimize the terminal payoff

�Think of it as:
• Max gets U(t), Min gets –U(t) for terminal node t
• This is why it’s called zero (or constant) sum

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Tic-tac-toe: States

Max(X) Max(X)

Max(X)

Min(O)

Min(O)

U = -1 U = +1

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Tic-tac-toe: Game Tree

U = +1

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Game Tree

�Game tree looks like a search tree
• Layers reflect the alternating moves

�But Max doesn’t decide where to go alone
• after Max moves to state a, Mins decides whether to

move to state b, c, or d

�Thus Max must have a strategy
• must know what to do next no matter what move Min

makes (b, c, or d)
• a sequence of moves will not suffice: Max may want

to do something different in response to b, c, or d

�What is a reasonable strategy?

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Minimax Strategy: Intuitions

t1 t2 t3 t4 t5 t6 t7

s1 s2 s3

s0

If Max goes to s1, Min goes to t2
* U(s1) = min{U(t1), U(t2), U(t3)} = -6

If Max goes to s2, Min goes to t4
* U(s2) = min{U(t4), U(t5)} = 3

If Max goes to s3, Min goes to t6
* U(s3) = min{U(t6), U(t7)} = -10

So Max goes to s1: so
U(s0)

= max{U(s1), U(s2), U(s3)}
= 3

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Minimax Strategy

�Build full game tree (all leaves are terminals)
• root is start state, edges are possible moves, etc.
• label terminal nodes with utilities

�Back values up the tree
• U(t) is defined for all terminals (part of input)
• U(n) = min {U(c) : c a child of n} if n is a min node
• U(n) = max {U(c) : c a child of n} if n is a max node

�Max chooses, at any (max) state, the action that
leads to the highest utility child

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Depth-first Implementation on MMX

�Depth-first evaluation of game tree
• maxLevel(L) holds if level L is Max’s move; similarly

for minLevel(L) and terminal(L).
• utility of terminals must be specified as input
• if game isn’t strictly alternating, then move might be

associated with the node (or you might need to record
whose move it is explicitly)

utility(N,L,U) :- terminal(L), utility(N,U).
utility(N,L,U) :- maxLevel(L), children(N,CList),

maxValue(CList, U).
utility(N,L,U) :- minLevel(L), children(N,CList),

minValue(CList, U).

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Depth-first Implementation of MMX

�maxValue recursively calls utility on each child
and sets U to max of all values over these
children (ditto for minValue)

• note: can’t return until all children evaluated

�Notice that the game tree has to have finite
depth for this to work
�Advantage of DF implementation: space efficient

utility(N,L,U) :- maxLevel(L), children(N,CList),
maxValue(CList, U).

utility(N,L,U) :- minLevel(L), children(N,CList),
minValue(CList, U).

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Visualization of DF-MMX

t3 t4 t5

t11 t12

t25 t26

s1 s13 s16

s0

s2 s6 s17 s24

s21s18

t14 t15

t22 t23t19 t20

s10s7

t8 t9

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Pruning

�It is not necessary to examine entire tree to
make correct minimax decision
�Assume depth-first generation of tree

• After generating value for only some of node n’s
children we can prove that we’ll never reach n

• So we needn’t generate or evaluate any further
children of n !

�Two types of cuts:
� �-cuts: pruning of max nodes
� � -cuts: pruning of min nodes

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Alpha/Beta Values

�At a Max node n:
� � is best value of n’s children examined so

far (dynamic: changes as children examined)
� � is worst value of n’s parent’s children

examined so far (fixed when evaluating n)
�At a Min node n:

� � is worst value of n’s children examined so
far (dynamic: changes as children examined)

� � is best value of n’s parent’s children
examined so far (fixed when evaluating n)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

An Alpha Cut
�Once alpha-value at max node n reaches its
beta-value (i.e., it’s parent P’s beta-value), we
can stop expansion of n

• Min will never choose to move to n from P since it can
guarantee the lower beta-value already

n

P

s1 s2 s3

CSC 384 Lecture Slides (c) 2002, C. Boutilier

A Beta Cut
�Once beta-value at min node n reaches its
alpha-value (i.e., it’s parent P’s alpha-value), we
can stop expansion of n

• Max will never choose to move to n from P since it
can guarantee the greater alpha-value already

n

P

s1 s2 s3

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Alpha-Beta Algorithm

Evaluate(startNode):
/* assume Max moves first */
MavEval(start, -infnty, +infnty)

MaxEval(node, alpha, beta):
If terminal(node), return U(n)
For each c in childlist(n)

val ← MinEval(c, alpha, beta)
alpha ← max(alpha, val)
If alpha � beta, return beta

Return alpha

MinEval(node, alpha, beta):
If terminal(node), return U(n)
For each c in childlist(n)

val ← MaxEval(c, alpha, beta)
beta ← min(beta, val)
If alpha � beta, return alpha

Return beta

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Rational Opponents

�This all assumes that your opponent is rational
• e.g., will choose moves that minimize your max score

�Storing your strategy is a potential issue:
• you must store “decisions” for each node you can

reach by playing optimally
• if your opponent has unique rational choices, this is a

single branch through game tree
• if there are “ties”, opponent could choose any one of

the “tied” moves: must store strategy for each subtree

�What if your opponent doesn’t play rationally?
• will it affect quality of outcome?
• what to do if you haven’t stored a full strategy?

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Practical Matters
�All “real” games are too large to enumerate tree

• e.g., chess branching factor is roughly 35
• Depth 10 tree: 2,700,000,000,000,000 nodes
• Yikes! Even alpha-beta pruning won’t help here!

�We must limit depth of search tree
• can’t expand all the way to terminal nodes
• we must make heuristic estimates about the values of

the (nonterminal) states at the leaves of the tree
• evaluation function is an often used term
• evaluation functions are often learned

�Depth-first expansion almost always used for
game trees because of sheer size of trees

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Heuristics

�Think of a few games and suggest some
heuristics for estimating the “goodness” of a
position

• chess?
• checkers?
• your favorite video game?
• “find the last parking spot”?

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Some Interesting Games

�Tesauro’s TD-Gammon
• champion backgammon player which learned

evaluation function; stochastic component (dice)

�Checker’s (Samuel, 1950s; Schaeffer)
�Chess (which you all know about)
�Bridge, Poker, etc.
�Check out Jonathan Schaeffer’s Web page:

• www.cs.ualberta.ca/~games
• they’ve studied lots of games (you can play too)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

An Aside on Large Search Problems

�Issue: inability to expand tree to terminal nodes
is relevant even in standard search

• often we can’t expect A* to reach a goal by expanding
full frontier

• so we often limit our lookahead, and make moves
before we actually know the true path to the goal

• sometimes called online or realtime search

�In this case, we use the heuristic function not just
to guide our search, but also commits us to
moves we actually make

• in general, guarantees of optimality are lost, but we
reduce computational/memory expense dramatically

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Realtime Search Graphically

