CSC384: Lecture 5

=L ast time

¢ search, DFS & BrFS; cycle checking & MPC
="Today

e arc costs; heuristics; LCFS, BeFS, A*

* misc: iterative deepening, etc.
®"Readings:

* Today: Ch.4.5,4.6

* Next Weds: class notes (no text reading)

€50 384 Lecture Stk 112002, . Boter 1

| Manhattan Bike Courier (Acyclic)

GG

BN

—g/‘</

CSC.384 Lecture Stides (¢ 2002, €. Bouler

O .‘/

Arc Costs

=*DFS/BrFS make sense when no arc costs
* e.g., BrFS ensures shortest path (fewest arcs)
=|f arc costs & aim of finding least-cost path, BFS
in not suitable
¢ e.g., goal=ls, start=mo: BrFS finds shortest path [Is,mo]
with cost 5; but least-cost path is [Is,eif,al,mo] with cost
4 (even though it has more arcs)
= east-cost first search (LCFS) : least cost path

¢ works much like BrFS, except paths are ordered
according to cost, rather than “length”

CSC.384 Lecture Siides (¢ 2002, C. Boutiler 3

Least-cost First Search

=|mplementing LCFS is straightforward
=|et cost of any path p to node n be denoted g(n)

* note: this notation is misleading but conventional
=Qrganize frontier as a priority queue

* with each path on frontier, attach cost g(n)

 paths with lower cost are at the head of the frontier

* new paths (nbrs) are inserted in order of cost

* soadd_to_f is just priority queue insertion
=Selecting a path from the head of the frontier

e thus, you always get least cost path from the frontier

€984 Lecture Slides (¢ 2002, C. Boutlier

Trace of LCFS (with paths: mo to Is)

Frontier evolution:

1. [mo]:0

2. [ch,mo]:1 [al,mo]:2 [ws,mo]:2 [Is,mo]:5

3. [al.mo]:2 [ws,mo]:2 [fs.chmo]:3 [trp,ch,mo]4 [ac.ch,mo]:5 [Ismo]:5

4. [ws,mo]:2 [eif,al, mol:3 [fs,chmol:3 [trp,ch,mo 14 [ac,ch,mo]:5 [Is,mo]:5

5. [eif,al, mo]:3 [fs,chmo]:3 [fs,ws,mo]:4 [myse ws,mol:4 [trp,chmo]:4
[ac,ch,mo]:5 [Is,mo]:5 [ac,ws,mo]:6 [sec,ws,mo]:9

6. [fs,chmo]:3 [Is eif,al, mo]:4 [fsws,mo]:4 [myse,ws,mo]:4 [trp,ch,mo]:4
[ac,ch,mo]:5 [Is,mo]:5 [ac,ws,mo]:6 [sec,ws,mo]:9

7. [Is,eif,al,mo]: 4 [fs,ws,mo]:4 [myse,ws,mo]:4 [trp,chmo]:4
[ac,ch,mo]:5 [Is,mo]:5 [ac,ws,mo]:6 [sec,ws,mo]:9

Goal found after 7 node expansions; least-cost path to Is

CSC.384 Lecture Stides (¢ 2002, C. Boutlier 5

Paths Explored by LCFS in Example

mo

o]
ISA/EJ\ch.
[2a El /l\.E

k) trp

No nbrs

.fs‘/@‘// nys

Red paths: expanded
Black paths: added to frontier, but not expanded

€50 384 Lecture Stdes (¢ 2002, C. Boutilier

Properties of LCFS

=Guaranteed to find least-cost path under certain
circumstances
=|f all arc costs are greater than 0 (assume a
solution exists)
 exercise: prove it will find least-cost path
¢ what can happen if we have negative arc costs?
=Space and time complexity similar to BrFS

* note: BrFS is a special case of LCFS when all arc
costs are “uniform” (e.g., all arc costs are 1)

Uninformed Search Strategies

=For any search strategy so far (DFS, BFS, LCFS)
suppose | give you goal g1 and ask you to trace
the paths explored. Then | change the goal to g2
and ask you to repeat the process.
=Both traces will look the same (up to the point
that the goal is found)
®These search strategies are blind or uninformed
 search process in uninfluenced by the goal
® e.g., in LCFS (goal=Is), first step is toward ch

¢ e.g., Craig often turns right at red lights no matter
what direction he’s heading

(CSC 384 Lecture Slides () 2002, C. Boutilier 7 CSC 384 Lecture Slides () 2002, C. Boutilier 8
Heuristics Good Heuristics
=Heuristics generally refer to any rules of thumb *Where do heuristics come from?
that provide some help when solving a problem * depends on the problem we're trying to solve
* e.g., an estimate/guess as to best way to proceed ° pLannlgg?| we lfl |I?°k zt Sk:?meb 4 oosit
. . . ¢ chess? rules of thumb about board position
generally guidance is nc_)t Perfect _) (vulnerability, number of pieces, etc.)
®In graph search, a heuristic function h(n) is an * Manhattan bike courier? see handout of “grid”
estimate of cost to goal g from node n =Features of a good heuristic function
* Why an estimate? What if h(n) were perfect? « should be somewhat accurate
¢ Exercise: prove that if h(n) is true cost to goal for « should be easy to compute (e.g., if it requires lots of
each n, you can find best path without backtracking search, that defeats the purpose!)
° NQIE: h(n) will vary with goal g; so we sometimes ¢ should underestimate true cost (for reasons we’ll see)
write h(n,g1), h(n,g2), etc. for emphasis
(C5C 384 Lecture ks (2002, €. Boutiler 9 (€SC 384 Lecture ks (2002, C. Boutiler 10

|Heuristic for MBC

: @)
2| () ®
)

3 4 5 &

CSC384 Lecture Siides (0 2002, €. Boutiler

SiclAifelfo

Heuristic for MBC (see handout)

For instance, if our Goal location was s1b, we could represent our heuristic function directly as follows:

himo, 2). h{slb, 0). hitrp, 5). h(sec, 0). hi{fs, 3). hich, 3).
hibb, 6). hiws, 2}. hi{eif, 2). hinyse, 1). hiac, 2). hirp, 2).
h{al, 3). hi{p27, 4). hiase, 1). hils, 1}. hibp, 3}.

A generic heuristic for arbitrary goals h(n,g):

nd (Loc,3,D) :- coord(@,X1,Yl}, coord(Loc,X2,¥2), dist{X1,Y1,X2,¥2,D).
diat(X1,¥1,X2,¥2,D) :- dist2{X1,X2,X), dist2(Y1,¥2,¥}, D is X+¥.

dist2{X1,X2,2)} :- X1 >= X2, Z is X1-X2.
dist2{X1,X2,%) :- X1 < X2, % is X2-X1.

coordial,1,1). coordims,1,2}. coord(ch,1,3). coorditrp,1,5). ete. ..

(€5 394 Lecture S () 2002, . Boutiler 12

Best-first Search (BeFS)

=\We can use heuristics to guide search in
heuristic DFS (see text), best-first search, A*
=Best-first search works just like LCFS except
we attach h(n) to each path instead of g(n)
* i.e., priority queue sorts paths based on h(n) value

* we explore paths whose end points appear to be
closest to the goal (according to h)

(€50 394 Lecture St () 2002, . Boutiler 13

| Paths Explored by BeFS: mo to slb
mo E
e
Eal | 2
o]

W
ase nyse |
2Nt

IS

Goal

Red paths: expanded
Black paths: added to frontier, but not expanded

(€503 Lecture St () 2002, . Boutier 14

| Search Tree: MBC Acyclic; Start mo

mo

= | T—.
— S

al l
1 sec fs ac trp
eif AN |
l ase bp nyse trp nyse p27 pp
TR NN |
slb bp bp we bb bp
ass/blp\r:ySe '54 \";59\‘ ac
slb/ \b;) b£ ass/bp nyse b{) trp nyse p27
slb/\b;) b£ blb b£

(€503 Lecture Sl () 2002, . Boutiler 15

Problem with BeFS

=|n previous example, BeFS guides us very
directly to a path to slb (in fact, no backtracking)

=Unfortunately, not the least-cost path

®|Indeed, BeFS ignores arc costs altogether!
¢ chooses path to expand based only on estimated
cost-to-go, h(n), and is uninfluenced by cost of path
so far g(n)
* makes sense if you've already “gone” to the node, but
not if you're searching for the shortest path

(€539 Lecture St () 2002, . Boutiler 16

A* Search

=A* search combines aspects of LCFS and BeFS
* we use both h(n) and g(n) when choosing paths
=Quality of path on frontier is given by the
evaluation function: f(n) =g(n) + h(n)
=Paths are ordered on the frontier according to
f-value f(n)

« if expanded path is not a soln, it is extended by its
neighbors; which are inserted according to f-values

¢ always select path from frontier with minimal f-value
* Implementation: priority queue sorted on f-value

€503 Lecture Sl (0 2002, . Boutiler 17

| Paths Explored by A*: mo to slb

2]

2 I A/5 \ "
S
2 2 3
1' 1 176 ./‘l\.
i Prune using MPC fs ac
ef 1 (fo keep slide simple) %1\9‘
No nbrs trp nyse p27

3
! w (2]

0/6 sec
- e N
s AN sec/ac

ase bp nyse fs

N 1] 5Ja

slb n No nbrs bp 3/12

-0/8 -2/10
| Red paths: expanded; |h-value/f-value
oa Black paths: added to frontier, but not expanded

(€5 394 Lecture St () 2002, . Boutiler 18

trp

A* Analysis

=|n this example, A* leads pretty directly to the
goal slb
¢ it expands six “false leads” and “prunes” one more
=A* also found the least-cost path to slb
=Seems to combine the best of LCFS (best path)
and BeFS (goes fairly directly to the goal)
=Space and time complexity similar to BrFS

* note: BrFS and LCFS are special cases of A* (under
what conditions?)

(€50 394 Lecture St () 2002, . Boutiler 19

Properties of A* (Informally)

0
=Will A* always find shortest ‘/'f“

path? 3 K
=Not necessarily: I e bayse

* suppose h(al) =17 in our § pp bp
example? AN Longer

* this very misleading (and ai\e s"yfe
pessimistic!) estimate of bp bp
cost-to-go from al means it \
won't get expanded before Shortest
[Is, mo]

* will find longer path to slb

(€503 Lecture St () 2002, . Boutier 20

Admissible Heuristics

=Suppose h(n) never overestimates the true cost-
to-goal from n?
* A* will find least-cost path (assuming arcs costs > 0)
¢ a heuristic s.t. h(n) < mincost(n,g)is admissible
¢ our example heuristic turns out to be admissible
=Special case: let h(n) = 0 for all n
¢ since f(n) = h(n) + g(n) = g(n): reduces to LCFS
¢ an admissible, but uninformative heuristic
=|n general, the more “informative” h(n) is, the
better A* will perform (more “direct” search)

¢ Exercise: Prove that if h(n) = mincost(n,g) — that is,
h(n) is perfect — A* will find optimal path directly (no
backtracking)

(€503 Lecture Sl () 2002, . Boutiler 21

Optimality of A* (Intuitions)
®"Assume admissible heuristic h
¢ Let p be a nonoptimal path to goal x with cost c(p)
¢ Let p* be optimal path to goal x with cost c(p*) < c(p)

* Note: every subpath q of p* has f-value < ¢(p*) < c(p)
since h is admissible

* So every such path—including p* -- will be expanded
(removed from frontier) before p

* Note: some subpaths of p can be expanded, but not p

s n1* n2* n3%*eee X p*
f(nj*) < ¢(p”) < clp)
f(x on path p) = ¢(p)
s nl n2 N3 eee

X P

(€539 Lecture St () 2002, . Boutiler 22

Multiple Path Checking in A*

=*"MPC: If you find a path to node n that you've
already expanded, don’t expand it again

¢ was OK for BFS and LCFS, since first path expanded
to any node n was assured to be shortest/cheapest

* In A*, you can be misled by heuristic that takes you all
the way to node n along an “expensive path” (though
it can’t take you all the way to goal if admissible)

p*(n)

§—— ese—n' oo N ees X
— c(p*) < c(p).
p(n) but f(p*) > f(p)

(€50 394 Lecture St () 2002, . Boutiler 23

Multiple Path Checking in A*

p*(n)
s n oo eee —— X EEJPT*;E <p).

p*) > f(p)
T—

®|In example, p expanded before p*, and MPC ignores
shorter path p* to node n
* MPC can destroy optimality of A*
=But this can only happen if:
* some n’ on p*is on frontier, with fy«(n’) > fy(n)
=But gp«(n’) + dist(n’,n) < gp(n)
®"So we must have h(n’) > h(n) + dist(n,n’)
¢ thus h(n’) makes n’ look worse than n by more than the actual
distance it takes to get from n’to n
* this can happen even if h is admissible: basically it means
heuristic is too optimistic about n relative to n’

(€5 394 Lecture S () 2002, . Boutiler 24

The Monotone Restriction

=Can insist h satisfy the monotone restriction:
|h(n,) —h(n)| s d(n,n) for all nodes n, n’
=This is enough to ensure that MPC can be

performed safely with A* (i.e., MPC will preserve
optimality)

(€50 394 Lecture St () 2002, . Boutiler 25

Iterative Deepening (IDS)

=|DS is motivated by the following tension:
* BFS guarantees optimal soln, requires expnt’l space
* DFS requires linear space, can’'t guarantee optimality
* How can we get best of both worlds?
=Trick: add a depth bound d to DFS
¢ normal DFS, but never expand path with length > d
®"How do | ensure | find solution if one exists?
« if failure at depth bound d, increase bound and repeat
=How do | ensure shortest path is found first?
¢ use the depth bounds: d=1, d=2, d=3, d=4, etc.

(€503 Lecture St () 2002, . Boutier 26

Iterative Deepening Graphically

/\ DFS(1)
N
/\ A /\ If no soln found

using DFS(1):

A/\/\/\ A A run DFS(2)

Full search tree If no soln found

ing DFS(2):
VAAN- DFS((3))
VAVAVAVAN

efc.

€503 Lecture Sl (0 2002, . Boutiler 27

Properties of IDS
="Guaranteed to find shortest solution
=Will only use linear space:
¢ O(db) space with depth bound d, branching factor b
¢ Important: do not “save” results from previous iteration
=How do we get this benefit?
* we're repeating computation!

¢ At depth bound d, we repeat all computation done at
all earlier depth bounds. The only “new” steps are the
expansion of leafs from previous iteration

="Why redo? Why not store previous tree?
* requires exponential space

(€539 Lecture St () 2002, . Boutiler 28

What Price do We Pay?

®|DS seems silly: a lot of wasted effort it seems!
* but how bad is it compared to BFS?
* Assume shortest soln has length d

=BFS generates:

bd + bd-1 + bd-2 +.,.+ b0 = O(bd) nodes
=|DS generates:

bd + 2 bd-1 + 3 bd-2 +...+ d bO nodes

which is roughly bd (1-1/b) -2 = O(bd) nodes

(€50 394 Lecture St () 2002, . Boutiler 29

Benefit of IDS

"We pay a constant time overhead (compared to
BFS) for exponential space savings!
=Note: constant factor (1-1/b)-2 is pretty small
¢ if b = 2, overhead factor is 4 (4 times as long as BFS)
¢ if b = 4, overhead factor is 1.8
* overhead factor decreases with b!
"|terative Deepening can be used with A*; IDA*

* basically, do DFS, but let “depth bound” be maximum
f-value you consider, and increase f-value-bound
gradually

CSC.384 Lecture Stides (¢ 2002, €. Boutiler 30

Implicit Search Graphs

=Most search problems are not specified with
explicit search graphs; nbr predicate “creates”
neighboring states on the fly
¢ chess, SLD-derivations, planning robot activity, etc.
=Example: 8-puzzle
* Each board position a state
* 91 = 362880 states
¢ each state has 2, 3, or 4 nbrs
* nbrs correspond to possible moves
¢ nbr predicate: returns list of states reachable
=State Representation? Neighbor implementation?
Possible Heuristics? see assignment 2!

(€50 394 Lecture St () 2002, . Boutiler 31

Other Issues

=Suppose list of neighbors is too large:
* to add to frontier? to calculate all heuristic values?

* What might one do? How could you use heuristic info
to limit your attention?

* One possibility: generate neighbors in heuristic order
(only a subset of nbrs ever put on frontier)

¢ can destroy optimality unless more nbrs added when
backtracking

=Other things we can do to increase efficiency?
e control the direction of search

(€503 Lecture St () 2002, . Boutier 32

Backward Search

=Backward branching factor is the (avg) set of
moves that can be made to a specific node
« if | have the inverse nbr relation available, | can
search in the graph backwards from the goal to the
start state
=Advantage: if backward BF b- less than forward
BF b+, then search algth’'m (any type) benefits
* examples: planning (as we'll see later)

* lower time and space complexity since optimal path
length still the same

* heuristic methods need a backwards heuristic, though

©SC.384 Lecture Siides (0 2002, €. Boutiler 33

Bidirectional Search

=Search simultaneously in both directions

« if two frontiers intersect, you can “join” forward and
backward paths to node in intersection to get a sol'n

 contrast # expansions for b-d BrFS vs. normal BrFS

S s

CSC.384 Lecture Siides (¢ 2002, €. Boutiler

34

Bidirectional Search

="Suppose we do BrFS
¢ length of sol'n (shortest path) is k
¢ branching factor (frwd/bkwd) is b
®"Each component of the bidirectional search
expands O(bk/2) nodes
®"Normal BrFS expands O(bk) nodes
=Bidirectional is exponential, but offers
exponential savings

®|ssues: need bkwd dynamics, need to test
intersection, must choose search alg. carefully

CSC384 Lecture Siides (0 2002, €. Boutiler 35

Island Search

=Suppose you know that any (good) s
path to goal must pass through island A

states iy, ip, ... ix
* e.g., must pass through specific tunnels to
deliver pkg
=Complexity can be cut significantly by
searching for path from s to i, i1 to iy,
w1 toiy, iktog
¢ what is potential savings (say) for BrFS ‘

using this strategy if avg subpath between
islands has length m?

CSC.384 Lecture Stides (¢ 2002, €. Boutiler 36

