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CSC384: Lecture 5
�Last time

• search, DFS & BrFS; cycle checking & MPC 

�Today
• arc costs; heuristics; LCFS, BeFS, A*
• misc: iterative deepening, etc.

�Readings:
• Today: Ch.4.5, 4.6
• Next Weds: class notes (no text reading)
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Manhattan Bike Courier (Acyclic)
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Arc Costs

�DFS/BrFS make sense when no arc costs
• e.g., BrFS ensures shortest path (fewest arcs)

�If arc costs & aim of finding least-cost path, BFS 
in not suitable

• e.g., goal=ls, start=mo: BrFS finds shortest path [ls,mo]
with cost 5; but least-cost path is [ls,eif,al,mo] with cost 
4 (even though it has more arcs)

�Least-cost first search (LCFS) : least cost path
• works much like BrFS, except paths are ordered 

according to cost, rather than “length”
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Least-cost First Search

�Implementing LCFS is straightforward
�Let cost of any path p to node n be denoted g(n)

• note: this notation is misleading but conventional

�Organize frontier as a priority queue
• with each path on frontier, attach cost g(n)
• paths with lower cost are at the head of the frontier
• new paths (nbrs) are inserted in order of cost
• so add_to_f is just priority queue insertion

�Selecting a path from the head of the frontier
• thus, you always get least cost path from the frontier
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Trace of LCFS (with paths: mo to ls)
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Paths Explored by LCFS in Example
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Properties of LCFS

�Guaranteed to find least-cost path under certain 
circumstances
�If all arc costs are greater than 0 (assume a 
solution exists)

• exercise: prove it will find least-cost path
• what can happen if we have negative arc costs?

�Space and time complexity similar to BrFS
• note: BrFS is a special case of LCFS when all arc 

costs are “uniform” (e.g., all arc costs are 1)
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Uninformed Search Strategies

�For any search strategy so far (DFS, BFS, LCFS) 
suppose I give you goal g1 and ask you to trace 
the paths explored. Then I change the goal to g2
and ask you to repeat the process.
�Both traces will look the same (up to the point 
that the goal is found)
�These search strategies are blind or uninformed

• search process in uninfluenced by the goal
• e.g., in LCFS (goal=ls), first step is toward ch
• e.g., Craig often turns right at red lights no matter 

what direction he’s heading
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Heuristics

�Heuristics generally refer to any rules of thumb 
that provide some help when solving a problem

• e.g., an estimate/guess as to best way to proceed
• generally guidance is not perfect

�In graph search, a heuristic function h(n) is an 
estimate of cost to goal g from node n

• Why an estimate? What if h(n) were perfect?
• Exercise: prove that if  h(n)  is true cost to goal for 

each  n, you can find best path without backtracking
• Note: h(n) will vary with goal g; so we sometimes 

write   h(n,g1),  h(n,g2),  etc.   for emphasis
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Good Heuristics

�Where do heuristics come from?
• depends on the problem we’re trying to solve
• planning?  we’ll look at some
• chess? rules of thumb about board position 

(vulnerability, number of pieces, etc.)
• Manhattan bike courier? see handout of “grid”

�Features of a good heuristic function
• should be somewhat accurate
• should be easy to compute (e.g., if it requires lots of 

search, that defeats the purpose!)
• should underestimate true cost (for reasons we’ll see)
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Heuristic for MBC
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Heuristic for MBC (see handout)
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Best-first Search (BeFS)

�We can use heuristics to guide search in 
heuristic DFS (see text), best-first search, A*
�Best-first search works just like LCFS except 
we attach h(n) to each path instead of g(n)

• i.e., priority queue sorts paths based on h(n) value
• we explore paths whose end points appear to be

closest to the goal (according to h)
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Paths Explored by BeFS: mo to slb
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Search Tree: MBC Acyclic; Start mo
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Problem with BeFS

�In previous example, BeFS guides us very
directly to a path to slb (in fact, no backtracking)
�Unfortunately, not the least-cost path
�Indeed, BeFS ignores arc costs altogether!

• chooses path to expand based only on estimated 
cost-to-go, h(n), and is uninfluenced by cost of path 
so far g(n)

• makes sense if you’ve already “gone” to the node, but 
not if you’re searching for the shortest path
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A* Search

�A* search combines aspects of LCFS and BeFS
• we use both  h(n)  and  g(n)  when choosing paths

�Quality of path on frontier is given by the 
evaluation function:  f(n) = g(n) + h(n)
�Paths are ordered on the frontier according to    
f-value f(n)

• if expanded path is not a soln, it is extended by its 
neighbors; which are inserted according to f-values

• always select path from frontier with minimal f-value
• Implementation: priority queue sorted on f-value
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Paths Explored by A*: mo to slb
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A* Analysis

�In this example, A* leads pretty directly to the 
goal slb

• it expands six “false leads” and “prunes” one more

�A* also found the least-cost path to slb
�Seems to combine the best of LCFS (best path) 
and BeFS (goes fairly directly to the goal)
�Space and time complexity similar to BrFS

• note: BrFS and LCFS are special cases of A* (under 
what conditions?)
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Properties of A* (Informally)

�Will A* always find shortest 
path?
�Not necessarily:

• suppose  h(al) = 17 in our 
example?

• this very misleading (and 
pessimistic!) estimate of 
cost-to-go from al means it 
won’t get expanded before 
[ls, mo]

• will find longer path to slb
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Admissible Heuristics
�Suppose h(n) never overestimates the true cost-
to-goal from n?

• A* will find least-cost path (assuming arcs costs > 0)
• a heuristic s.t. h(n) � � � � � � � � 	 � 
 � � �������������

• our example heuristic turns out to be admissible

�Special case: let h(n) = 0 for all n
• since f(n) = h(n) + g(n) = g(n): reduces to LCFS
• an admissible, but uninformative heuristic

�In general, the more “informative” h(n) is, the 
better A* will perform (more “direct” search)

• Exercise: Prove that if h(n) = mincost(n,g) – that is, 
h(n) is perfect – A* will find optimal path directly (no 
backtracking)
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Optimality of A* (Intuitions)
�Assume admissible heuristic h

• Let p be a nonoptimal path to goal x with cost c(p)
• Let p* be optimal path to goal x with cost c(p*) < c(p)
• Note: every subpath q of p* has f-value � � � � � 	 �
 �� � � 	 �
��� � � �
 ����� � � ����� � �

� � � �� � � � � ��� � 
 �� � � 
 � �� � � � � �� � �� � �� � � �� � �� � �� � � � � � � � �
� � � � � � � � �� � � � �� � � � � �� � 	 �� � � � � � ��

�  � � � ! � � � � 
 �� � � � � 
 � � � �� �� � � �� � �� � � � � � � � " �� � � �� � � ��

f(nj*) � � 	 � � � � � � � 	 � � �

f(x on path p) � � � 	 � � �
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Multiple Path Checking in A*

�MPC: If you find a path to node n that you’ve 
already expanded, don’t expand it again

• was OK for BFS and LCFS, since first path expanded 
to any node n was assured to be shortest/cheapest

• In A*, you can be misled by heuristic that takes you all 
the way to node n along an “expensive path” (though 
it can’t take you all the way to goal if admissible)
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Multiple Path Checking in A*

�In example, p expanded before p*, and MPC ignores 
shorter path p* to node n

• MPC can destroy optimality of A*

�But this can only happen if:
• some n’ on p* is on frontier, with fp*(n’) > fp(n)

�But   gp*(n’) + dist(n’,n) < gp(n) 
�So we must have  h(n’) > h(n) + dist(n,n’)

• thus h(n’) makes n’ look worse than n by more than the actual 
distance it takes to get from n’ to n

• this can happen even if h is admissible: basically it means 
heuristic is too optimistic about n relative to n’
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The Monotone Restriction

�Can insist h satisfy the monotone restriction:

|h(n,) – h(n)| � � � � � � � � � � 	 
 � � � 
 
 � � 
 � � � � � � � � �

������������	
��������	�����
�������
�����

� ��� ��� �� ��
� �� � �� ����� � �� �� �� � ������ �� � �� ������ ��

�� ��� 
� ���  
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Iterative Deepening (IDS)

�IDS is motivated by the following tension:
• BFS guarantees optimal soln, requires expnt’l space
• DFS requires linear space, can’t guarantee optimality
• How can we get best of both worlds?

�Trick: add a depth bound d to DFS
• normal DFS, but never expand path with length > d

�How do I ensure I find solution if one exists? 
• if failure at depth bound d, increase bound and repeat

�How do I ensure shortest path is found first?
• use the depth bounds: d=1, d=2, d=3, d=4, etc.
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Iterative Deepening Graphically
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Properties of IDS
�Guaranteed to find shortest solution
�Will only use linear space:

• O(db) space with depth bound d, branching factor b
• Important: do not “save” results from previous iteration

�How do we get this benefit?
• we’re repeating computation!
• At depth bound d, we repeat all computation done at 

all earlier depth bounds. The only “new” steps are the 
expansion of leafs from previous iteration

�Why redo? Why not store previous tree?
• requires exponential space
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What Price do We Pay?
�IDS seems silly: a lot of wasted effort it seems!

• but how bad is it compared to BFS?
• Assume shortest soln has length d

�BFS generates: 
bd + bd-1 + bd-2 +…+ b0 = O(bd)   nodes

�IDS generates: 
bd + 2 bd-1 + 3 bd-2 +…+ d b0 nodes
which is roughly bd (1-1/b) -2 = O(bd) nodes
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Benefit of IDS 

�We pay a constant time overhead (compared to 
BFS) for exponential space savings!
�Note: constant factor (1-1/b)-2 is pretty small

• if b = 2, overhead factor is 4 (4 times as long as BFS)
• if b = 4, overhead factor is 1.8
• overhead factor decreases with b!

�Iterative Deepening can be used with A*: IDA*
• basically, do DFS, but let “depth bound” be maximum 

f-value you consider, and increase f-value-bound 
gradually
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Implicit Search Graphs
�Most search problems are not specified with 
explicit search graphs; nbr predicate “creates” 
neighboring states on the fly

• chess, SLD-derivations, planning robot activity, etc.

�Example: 8-puzzle
• Each board position a state
• 9! = 362880 states
• each state has 2, 3, or 4 nbrs
• nbrs correspond to possible moves
• nbr predicate: returns list of states reachable

�State Representation? Neighbor implementation? 
Possible Heuristics? see assignment 2!
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Other Issues

�Suppose list of neighbors is too large:
• to add to frontier? to calculate all heuristic values?
• What might one do? How could you use heuristic info 

to limit your attention?
• One possibility: generate neighbors in heuristic order 

(only a subset of nbrs ever put on frontier)
• can destroy optimality unless more nbrs added when 

backtracking

�Other things we can do to increase efficiency?
• control the direction of search
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Backward Search

�Backward branching factor is the (avg) set of 
moves that can be made to a specific node

• if I have the inverse nbr relation available, I can 
search in the graph backwards from the goal to the 
start state

�Advantage: if backward BF  b- less than forward 
BF  b+, then search algth’m (any type) benefits

• examples: planning (as we’ll see later)
• lower time and space complexity since optimal path 

length still the same
• heuristic methods need a backwards heuristic, though
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Bidirectional Search
�Search simultaneously in both directions

• if two frontiers intersect, you can “join” forward and 
backward paths to node in intersection to get a sol’n

• contrast # expansions for b-d BrFS vs. normal BrFS
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Bidirectional Search

�Suppose we do BrFS
• length of sol’n (shortest path) is k
• branching factor (frwd/bkwd) is b

�Each component  of the bidirectional search 
expands O(bk/2) nodes
�Normal BrFS expands O(bk) nodes
�Bidirectional is exponential, but offers 
exponential savings
�Issues: need bkwd dynamics, need to test 
intersection, must choose search alg. carefully



CSC 384 Lecture Slides (c) 2002, C. Boutilier

Island Search

�Suppose you know that any (good) 
path to goal must pass through island 
states i1, i2, … ik

• e.g., must pass through specific tunnels to 
deliver pkg

�Complexity can be cut significantly by 
searching for path from s to i1, i1 to i2, 
…, ik-1 to ik, ik to g

• what is potential savings (say) for BrFS
using this strategy if avg subpath between 
islands has length m?


