
CSC 384 Lecture Slides (c) 2002, C. Boutilier

CSC384: Lecture 5
�Last time

• search, DFS & BrFS; cycle checking & MPC

�Today
• arc costs; heuristics; LCFS, BeFS, A*
• misc: iterative deepening, etc.

�Readings:
• Today: Ch.4.5, 4.6
• Next Weds: class notes (no text reading)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Manhattan Bike Courier (Acyclic)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Arc Costs

�DFS/BrFS make sense when no arc costs
• e.g., BrFS ensures shortest path (fewest arcs)

�If arc costs & aim of finding least-cost path, BFS
in not suitable

• e.g., goal=ls, start=mo: BrFS finds shortest path [ls,mo]
with cost 5; but least-cost path is [ls,eif,al,mo] with cost
4 (even though it has more arcs)

�Least-cost first search (LCFS) : least cost path
• works much like BrFS, except paths are ordered

according to cost, rather than “length”

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Least-cost First Search

�Implementing LCFS is straightforward
�Let cost of any path p to node n be denoted g(n)

• note: this notation is misleading but conventional

�Organize frontier as a priority queue
• with each path on frontier, attach cost g(n)
• paths with lower cost are at the head of the frontier
• new paths (nbrs) are inserted in order of cost
• so add_to_f is just priority queue insertion

�Selecting a path from the head of the frontier
• thus, you always get least cost path from the frontier

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Trace of LCFS (with paths: mo to ls)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Paths Explored by LCFS in Example

sec

ac

ac

ls

eif

nysefs

mo

trpfs
al

ls

ws

ch

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Properties of LCFS

�Guaranteed to find least-cost path under certain
circumstances
�If all arc costs are greater than 0 (assume a
solution exists)

• exercise: prove it will find least-cost path
• what can happen if we have negative arc costs?

�Space and time complexity similar to BrFS
• note: BrFS is a special case of LCFS when all arc

costs are “uniform” (e.g., all arc costs are 1)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Uninformed Search Strategies

�For any search strategy so far (DFS, BFS, LCFS)
suppose I give you goal g1 and ask you to trace
the paths explored. Then I change the goal to g2
and ask you to repeat the process.
�Both traces will look the same (up to the point
that the goal is found)
�These search strategies are blind or uninformed

• search process in uninfluenced by the goal
• e.g., in LCFS (goal=ls), first step is toward ch
• e.g., Craig often turns right at red lights no matter

what direction he’s heading

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Heuristics

�Heuristics generally refer to any rules of thumb
that provide some help when solving a problem

• e.g., an estimate/guess as to best way to proceed
• generally guidance is not perfect

�In graph search, a heuristic function h(n) is an
estimate of cost to goal g from node n

• Why an estimate? What if h(n) were perfect?
• Exercise: prove that if h(n) is true cost to goal for

each n, you can find best path without backtracking
• Note: h(n) will vary with goal g; so we sometimes

write h(n,g1), h(n,g2), etc. for emphasis

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Good Heuristics

�Where do heuristics come from?
• depends on the problem we’re trying to solve
• planning? we’ll look at some
• chess? rules of thumb about board position

(vulnerability, number of pieces, etc.)
• Manhattan bike courier? see handout of “grid”

�Features of a good heuristic function
• should be somewhat accurate
• should be easy to compute (e.g., if it requires lots of

search, that defeats the purpose!)
• should underestimate true cost (for reasons we’ll see)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Heuristic for MBC

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Heuristic for MBC (see handout)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Best-first Search (BeFS)

�We can use heuristics to guide search in
heuristic DFS (see text), best-first search, A*
�Best-first search works just like LCFS except
we attach h(n) to each path instead of g(n)

• i.e., priority queue sorts paths based on h(n) value
• we explore paths whose end points appear to be

closest to the goal (according to h)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Paths Explored by BeFS: mo to slb

ase

slb

bp

bp

sec

nyse

mo

al
ls

ws

ch

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Search Tree: MBC Acyclic; Start mo

ase

slb

bp

bp

sec

nyse

bp
ase

slb

bp

bp

sec

nyse

bp

ac

nyse

bp

trp

bb

p27

ac

nyse

bp

trp

bb

p27

ls

eif

nyse

bp

fs

ase

slb

bp

bp

sec

nyse

bp

mo

trp

bb

fs
al

ls

ws

ch

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Problem with BeFS

�In previous example, BeFS guides us very
directly to a path to slb (in fact, no backtracking)
�Unfortunately, not the least-cost path
�Indeed, BeFS ignores arc costs altogether!

• chooses path to expand based only on estimated
cost-to-go, h(n), and is uninfluenced by cost of path
so far g(n)

• makes sense if you’ve already “gone” to the node, but
not if you’re searching for the shortest path

CSC 384 Lecture Slides (c) 2002, C. Boutilier

A* Search

�A* search combines aspects of LCFS and BeFS
• we use both h(n) and g(n) when choosing paths

�Quality of path on frontier is given by the
evaluation function: f(n) = g(n) + h(n)
�Paths are ordered on the frontier according to
f-value f(n)

• if expanded path is not a soln, it is extended by its
neighbors; which are inserted according to f-values

• always select path from frontier with minimal f-value
• Implementation: priority queue sorted on f-value

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Paths Explored by A*: mo to slb
mo

al
ls

ws

ch

sec acnysefs

sec

ls

eif

slb rp

ase bp nyse

bp

ac trpfs

nysetrp p27

CSC 384 Lecture Slides (c) 2002, C. Boutilier

A* Analysis

�In this example, A* leads pretty directly to the
goal slb

• it expands six “false leads” and “prunes” one more

�A* also found the least-cost path to slb
�Seems to combine the best of LCFS (best path)
and BeFS (goes fairly directly to the goal)
�Space and time complexity similar to BrFS

• note: BrFS and LCFS are special cases of A* (under
what conditions?)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Properties of A* (Informally)

�Will A* always find shortest
path?
�Not necessarily:

• suppose h(al) = 17 in our
example?

• this very misleading (and
pessimistic!) estimate of
cost-to-go from al means it
won’t get expanded before
[ls, mo]

• will find longer path to slb

ase

slb

b
p

bp

sec

nyse

bp

ls

eif
ase

slb

b
p

bp

sec

nyse

bp

mo

al
ls

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Admissible Heuristics
�Suppose h(n) never overestimates the true cost-
to-goal from n?

• A* will find least-cost path (assuming arcs costs > 0)
• a heuristic s.t. h(n) � � � � � � � � 	 �
 � � �������������

• our example heuristic turns out to be admissible

�Special case: let h(n) = 0 for all n
• since f(n) = h(n) + g(n) = g(n): reduces to LCFS
• an admissible, but uninformative heuristic

�In general, the more “informative” h(n) is, the
better A* will perform (more “direct” search)

• Exercise: Prove that if h(n) = mincost(n,g) – that is,
h(n) is perfect – A* will find optimal path directly (no
backtracking)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Optimality of A* (Intuitions)
�Assume admissible heuristic h

• Let p be a nonoptimal path to goal x with cost c(p)
• Let p* be optimal path to goal x with cost c(p*) < c(p)
• Note: every subpath q of p* has f-value � � � � � 	 �
 �� � � 	 �
��� � � �
 ����� � � ����� � �

� � � �� � � � � ��� �
 �� � �
 � �� � � � � �� � �� � �� � � �� � �� � �� � � � � � � � �
� � � � � � � � �� � � � �� � � � � �� � 	 �� � � � � � ��

� � � � ! � � � �
 �� � � � �
 � � � �� �� � � �� � �� � � � � � � � " �� � � �� � � ��

f(nj*) � � 	 � � � � � � � 	 � � �

f(x on path p) � � � 	 � � �

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Multiple Path Checking in A*

�MPC: If you find a path to node n that you’ve
already expanded, don’t expand it again

• was OK for BFS and LCFS, since first path expanded
to any node n was assured to be shortest/cheapest

• In A*, you can be misled by heuristic that takes you all
the way to node n along an “expensive path” (though
it can’t take you all the way to goal if admissible)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Multiple Path Checking in A*

�In example, p expanded before p*, and MPC ignores
shorter path p* to node n

• MPC can destroy optimality of A*

�But this can only happen if:
• some n’ on p* is on frontier, with fp*(n’) > fp(n)

�But gp*(n’) + dist(n’,n) < gp(n)
�So we must have h(n’) > h(n) + dist(n,n’)

• thus h(n’) makes n’ look worse than n by more than the actual
distance it takes to get from n’ to n

• this can happen even if h is admissible: basically it means
heuristic is too optimistic about n relative to n’

CSC 384 Lecture Slides (c) 2002, C. Boutilier

The Monotone Restriction

�Can insist h satisfy the monotone restriction:

|h(n,) – h(n)| � � � � � � � � � � 	
 � � �

 � �
 � � � � � � � � �

������������	
��������	�����
�������
�����

� ��� ��� �� ��
� �� � �� ����� � �� �� �� � ������ �� � �� ������ ��

�� ���
� ���

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Iterative Deepening (IDS)

�IDS is motivated by the following tension:
• BFS guarantees optimal soln, requires expnt’l space
• DFS requires linear space, can’t guarantee optimality
• How can we get best of both worlds?

�Trick: add a depth bound d to DFS
• normal DFS, but never expand path with length > d

�How do I ensure I find solution if one exists?
• if failure at depth bound d, increase bound and repeat

�How do I ensure shortest path is found first?
• use the depth bounds: d=1, d=2, d=3, d=4, etc.

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Iterative Deepening Graphically

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Properties of IDS
�Guaranteed to find shortest solution
�Will only use linear space:

• O(db) space with depth bound d, branching factor b
• Important: do not “save” results from previous iteration

�How do we get this benefit?
• we’re repeating computation!
• At depth bound d, we repeat all computation done at

all earlier depth bounds. The only “new” steps are the
expansion of leafs from previous iteration

�Why redo? Why not store previous tree?
• requires exponential space

CSC 384 Lecture Slides (c) 2002, C. Boutilier

What Price do We Pay?
�IDS seems silly: a lot of wasted effort it seems!

• but how bad is it compared to BFS?
• Assume shortest soln has length d

�BFS generates:
bd + bd-1 + bd-2 +…+ b0 = O(bd) nodes

�IDS generates:
bd + 2 bd-1 + 3 bd-2 +…+ d b0 nodes
which is roughly bd (1-1/b) -2 = O(bd) nodes

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Benefit of IDS

�We pay a constant time overhead (compared to
BFS) for exponential space savings!
�Note: constant factor (1-1/b)-2 is pretty small

• if b = 2, overhead factor is 4 (4 times as long as BFS)
• if b = 4, overhead factor is 1.8
• overhead factor decreases with b!

�Iterative Deepening can be used with A*: IDA*
• basically, do DFS, but let “depth bound” be maximum

f-value you consider, and increase f-value-bound
gradually

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Implicit Search Graphs
�Most search problems are not specified with
explicit search graphs; nbr predicate “creates”
neighboring states on the fly

• chess, SLD-derivations, planning robot activity, etc.

�Example: 8-puzzle
• Each board position a state
• 9! = 362880 states
• each state has 2, 3, or 4 nbrs
• nbrs correspond to possible moves
• nbr predicate: returns list of states reachable

�State Representation? Neighbor implementation?
Possible Heuristics? see assignment 2!

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Other Issues

�Suppose list of neighbors is too large:
• to add to frontier? to calculate all heuristic values?
• What might one do? How could you use heuristic info

to limit your attention?
• One possibility: generate neighbors in heuristic order

(only a subset of nbrs ever put on frontier)
• can destroy optimality unless more nbrs added when

backtracking

�Other things we can do to increase efficiency?
• control the direction of search

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Backward Search

�Backward branching factor is the (avg) set of
moves that can be made to a specific node

• if I have the inverse nbr relation available, I can
search in the graph backwards from the goal to the
start state

�Advantage: if backward BF b- less than forward
BF b+, then search algth’m (any type) benefits

• examples: planning (as we’ll see later)
• lower time and space complexity since optimal path

length still the same
• heuristic methods need a backwards heuristic, though

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Bidirectional Search
�Search simultaneously in both directions

• if two frontiers intersect, you can “join” forward and
backward paths to node in intersection to get a sol’n

• contrast # expansions for b-d BrFS vs. normal BrFS

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Bidirectional Search

�Suppose we do BrFS
• length of sol’n (shortest path) is k
• branching factor (frwd/bkwd) is b

�Each component of the bidirectional search
expands O(bk/2) nodes
�Normal BrFS expands O(bk) nodes
�Bidirectional is exponential, but offers
exponential savings
�Issues: need bkwd dynamics, need to test
intersection, must choose search alg. carefully

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Island Search

�Suppose you know that any (good)
path to goal must pass through island
states i1, i2, … ik

• e.g., must pass through specific tunnels to
deliver pkg

�Complexity can be cut significantly by
searching for path from s to i1, i1 to i2,
…, ik-1 to ik, ik to g

• what is potential savings (say) for BrFS
using this strategy if avg subpath between
islands has length m?

