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CSC384: Lecture 4
�Last time

• done with DCL (except for the fact that we’ll use it!)

�Today
• quick summary of uses of DCL (from last time)
• Intro to search; generic search procedure; BrFS, 

DFS, path extraction, cycle and mult.path checking

�Readings:
• Today: Ch.4.1 – 4.4, 4.6 
• Next week: Ch.4.5/4.6
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A Planning Problem

�A planning problem: we want robot to decide 
what to do; how to act to achieve our goals
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A Planning Problem

�How to change the world to suit our needs
�Critical issue: we need to reason about how the 
world will be after doing a few actions, not just
what it is like now
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Planning

�So far, we’ve seen DCL used to reason about 
static environments (what the world is like)

• what is correct treatment for symptom X?
• is this region water or land?

�Want to use DCL to reason about dynamic 
environments

• A,B,C are true: will they still be true after doing X?
• A,B,C are true: what do I need to do to make D true?

�The heart of decision making!
• complexities: uncertainty (where is craig? navigate 

stairs?); many actions to choose from (what is right 
sequence?); exogenous events (battery loses charge) 
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Graph Search
�We’ll abstract away complexities of planning

• focus on finding the right sequence of actions only
• going to ignore the fact that at any point in time many 

things are true and false

�Treat planning as the search for a path from one 
state (of the world) to a desired goal state
�Informally : We have a set of states, and a set of 
moves/actions that take us from one state to 
another. Given an initial state (current) and target 
state (goal), find a sequence of moves that gets 
me from initial state to goal

• or shortest sequence, or cheapest sequence, or …
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Graph Search is Very General
�This viewpoint applies to a wide variety of tasks

• RoboCof – find plan that gives Craig coffee; route 
across floor plan; etc.   [states? moves? objective?]

• Games – 8-puzzle; backgammon; chess; Doom;   
[complications: other players making moves]

• Scheduling, logistics, planning, most optimization 
problems

• Medical diagnosis
• Scene interpretation – find a consistent labeling
• Finding a derivation in DCL/Prolog   [what are 

states? moves? goal?]
• Finding a good travel package [states? moves?]
• Almost every problem in AI can be viewed this way!
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Graph-based Search Formalization

�A directed graph: set of nodes N, set of directed 
edges E  
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• written    �S�TU &V (relation is not symmetric)

• edges correspond to possible moves we can make

�A node labeling is a function L W : N X Nlabels
• denote properties of states (e.g., a value)

�An edge labeling is a function L Y : E X Elabels
• denote properties of edges (e.g., a move cost)
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An Very Simple Search Graph
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Nodes (states) are
locations robot
can move among

Edges are routes
among these
locations

Edge labels
denote costs
(e.g., expected
travel time)
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Paths and Cycles

�A path in graph G =(N,E) is a sequence of nodes 
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Graph Search Problems
�A graph search problem: given graph (N,E), a 
start node s F��2B � >�� �H
����AQ <6� QA��� > Q � �A
���� �2B
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A Couple Notes

�If arcs are labeled with actions, we often want to 
return the sequence of actions, not just the path
�Most interesting search problems involve implicit 
search graphs

• e.g., consider chess: nobody constructs a graph of all 
1030  board positions explicitly

• e.g., Prolog: answer clauses generated as derived
• when solving search problem, we generate neighbors 

as we need them
• define states, neighborhood relation…or define 

moves and how to generate neighboring state
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Generic Search Procedure

�Many graph search techniques share the 
following common structure

• let the frontier refer to set of nodes we already know 
how to reach from the start node s

1. Let F = {s}     ;; (initial frontier is start node)

2. Loop until frontier is empty

(a) Choose some node n on frontier; remove n from F

(b) If n F�Î then stop; report success

(c) Otherwise add each neighbor of n to F
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A Generic DCL Implementation
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1. nbs(Node, NbList)  defines the search graph
- for each node, we assert its list of nbs in KB
- if implicit search graph, nbs will generate NBList

2. is_goal(N) defines the set of goal nodes
- for each goal node, we assert this in KB
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Generic Search Procedure

�Assume frontier represented as a list of nodes
• search(F) returns yes there is some path to G from F
• so call with start node s on frontier:  search( [s] )

�select(N,F,RemF): true if selecting node N from 
frontier F leaves remaining frontier RemF
�add_to_frontier(RemF,NbList,NewF):  true if 
adding nodes in NbList to RemF results in NewF
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One Instantiation of Search Proc.

�Simple implementation
• you can only select the first node on the frontier
• you add neighbors of selected node to the beginning 

of the frontier (just append them to front)
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A Modified Example
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Search Tree for Modified Example
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Depth-First Search

�The specific instantiation we’ve seen is simply 
depth-first search (which you’ve seen 
previously, no doubt)

• in the search tree, we work deep into the tree until we 
reach a dead-end, then we “backtrack”

�In generic search algorithm, this is achieved by:
• always selecting first node on the frontier
• always inserting the new neighbors at head of frontier

�Note: all “bookkeeping” required for backtracking 
is taken care of by organization of the frontier
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Defn of Search Tree

�Given a search graph, start node s
�The search tree rooted at s is a tree such that:

• root node is s
• each node has all its neighbors for children

�So at level k of the tree are all states that you 
can reach in exactly k moves (where root = 0)

• each path in search graph (including cyclic paths) is a 
path through search tree

• nodes in graph can appear many times in tree

�Frontier moves “down” the tree

� �
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Manhattan Bike Courier (Acyclic)
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The MBC Rep’n (No Costs)

nb( mo,  [ al ,  l s ,  ws,  ch] ) .     nb( sl b,  [ ] ) .
nb( sec,  [ ase,  bp,  nyse] ) .     nb( f s,  [ ] ) .
nb( ws,  [ f s,  sec,  nyse,  ac] ) .  nb( ei f ,  [ l s ] ) .
nb( ac,  [ t r p,  nyse,  p27] ) .     nb( al ,  [ ei f ] ) .
nb( ase,  [ sl b,  r p] ) .           nb( l s,  [ sec] ) .
nb( ch,  [ f s,  ac,  t r p] ) .        nb( r p,  [ ] ) .
nb( t r p,  [ bb] ) .                nb( p27,  [ ] ) .
nb( bb,  [ ] ) .                   nb( bp,  [ ] ) .
nb( nyse,  [ bp] ) .
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Search Tree: MBC Acyclic; Start mo
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DepthFirst Search: Start mo;Goal bp
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Example Summary

�DFS expands eight nodes in this example
• it examines eight nodes and tests if they are the goal 

(if they are not, it add neighbors to frontier)

�DFS does not find the shortest path to bp
• the order in which it is required to examine nodes 

doesn’t allow it to find the shortest path
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Path Extraction

�Generic search procedure behaves as follows:
• assert   isgoal(bp) ;   ask   ?search([mo]).
• algorithm says yes.
• but what path does courier take??
• says yes if there is a path, but doesn’t tell us what it is

�We need a path extraction mechanism
• simplest thing to do is store paths on frontier
• when you select a node from frontier, you also have a 

specific path to that node attached
�search(F,Path) : true if Path is solution to search
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Implementing Path Extraction
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Assume a path is represented as a list of nodes in
reverse order: so the path   mo � al � eif is 

represented as  the list:   [eif, al, mo]
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Notes on Path Extraction
�We call search from start node mo using     

search( [ [mo] ], Path).
• initial frontier consists of a length one path (not node)

�Only new predicate needed is extendpath
• basic idea: given a path [n3, n2, n1] and neighbors of 

n3 specified by nbs(n3, [n4, n5, n6]); it produces 3 new 
paths organized in a list:

[ [n4, n3, n2, n1] , [n5, n3, n2, n1] , [n6, n3, n2, n1] ]

� � � � � "
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DFS with Path Extraction
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Search Tree: MBC Acyclic; Start mo
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Trace of DFS (with paths: mo to fs)
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Paths Explored by DFS in Example
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Properties of DFS: Time
�How long can DFS take?
(a) Finite graph, no cycles:

• Could explore each branch of search tree 
(until goal found or search fails).

• If branching factor bounded by b, depth 
bounded by n, then we explore O(bn) full 
paths (length n)

• note: n ����� ���	��

�����
�����	������� �������� �"!$# %&# ' (*)$+ ,.-&/102# '�/23�4�3�5 (&6&7
• may not terminate unless we perform cycle checking (later)
• Does it ever make sense to explore a cyclic path?8 9;:"< =�02($> + ( 5 ?;3�@
4 0�# ' /A' / (B% C�D&(�C.+ D (E+�# %F)"7
• may find soln in n* steps (n* is length of shortest path to goal)
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Properties of DFS: Space

�How many paths on frontier at any 
one time?

• If current path length m (i.e., current 
node selected), then there are bm paths 
on frontier

• If longest path is length n, then never 
more than bn paths

• b paths have length 1, b length 2, etc. up 
to b paths of length n

• Total space b + 2b + 3b + … nb which is 
O(n2b) space

�Is quadratic space required?
• No: many paths have common substructure
• Consider how to store frontier in linear space O(nb): use a tree!

G

G

H
G

I aJ K J�L M N O P Q R S T P K U V W P X Y Q Z [ \ \ [ ] J ^ _ ` S R V U V P T

Properties of DFS: Solution Quality

�Will DFS find the shortest (min # arcs) solution?
• In general, no.
• It can if you are lucky.
• In Manhattan (acyclic) problem, with start mo and 

goal ls, it returns soln:   mo b  al b  eif b  ls,   even 
though shorter solution  mo b  ls exists.

�So how can we find shortest path? 
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Breadth-First Search

�One way to ensure shortest solution is found (wrt
# of arcs) is to explore paths in order of length
�Breadth-first search (BFS) does exactly this

�It is implemented by selecting nodes/paths from 
the front of the frontier (like DFS), but inserting 
new neighbors/paths at the end of the frontier
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Frontier Growth in BFS

ac

ls

eif

ase bp

sec

nyse

mo

trpfs

al ls
ws ch

¨
© ª «

sec acnysefs

¬

¨ ­ ¨v¨ ¨ «¨ ª¨ ©®
¨v®¨k¬

¯ ° ±

¨ °¨ ¯

e h	g;u



7

I �J K J�L M N O P Q R S T P K U V W P X Y Q Z [ \ \ [ ] J ^ _ ` S R V U V P T

Trace of BFS (with paths: mo to fs)
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Paths Explored by BFS in Example
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Properties of BFS

�All paths of length k occur on frontier after all 
length k-1 paths
�No length k path is added to frontier until we 
have expanded all length k-1 paths
�This last property ensures that we are 
guaranteed to find shortes path (if sol’n exists)

• If we find a length k sol’n, since we’ve looked at all 
shorter paths, no shorter sol’n exists
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Properties of BFS: Time
�How long can BFS take?
(a) Finite graph, no cycles:

• If branching factor bounded by b, and the 
shortest sol’n has length n*, then we’ll 
explore O(bn*) paths (length n)

• note: presence of cycles has no effect if a 
solution is present

• If no solution, will explore all paths: O(b|N|)

R�S8TVU1W X.W Y Z,[1\ ] ^._a`bW Y�_bc*decef Z.g.h
• if sol’n: same as above
• if no sol’n: may not terminate unless we perform cycle checking 

or multiple path checking
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Properties of BFS: Space

�How many paths on frontier at 
any one time?

• If current path length m, then there 
are between bm-1 and bm paths on 
frontier

• If shortest path has length n*, then 
guaranteed to have frontier of size 
O(bn*)

• Luck with node ordering plays no 
role: BFS is systematic

�Space cost is the price you pay 
for optimality
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Cycle Checking (see text for more)
�Cycles can hurt DFS: can prevent termination
�Cycle checking in DFS: requires a simple test

• when you select a path from frontier and extend it with 
its neighbors, we only add a new path to the frontier if 
the neighbor is not already on the path

�Test requires linear time in length of path
• some tricks can be used to reduce this

�Cannot affect existence of soln, rule out best soln

lVm lVn lVo
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lVn
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Multiple Paths to Same Node

�In Manhattan example, with start = mo:
• at depth 2, we have path  P1 = [ls, mo]
• at depth 4, we have path  P2 = [ls, eif, al, mo]

�Why add P2 to the frontier?
• If there is a path from ls to goal, then 

extension of P1 to the goal is shorter than the 
extension of P2 (each extension of P2 added 
to frontier is just wasted)

• If there is no path from ls to goal, not adding 
P2 to frontier cannot hurt
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Multiple Path Checking in BFS
�Cycle checking can be applied to BFS too

• saves some time (don’t explore cyclic path)
• ensures termination in cyclic graphs with no solution

�Multiple path checking is more general
• Every time a (path to a) node is considered for addition 

to frontier, check list of visited nodes (those that have 
already been expanded).

• If node is on list, do not add it to the frontier.
• If node is not on list, add it to frontier and visited list.

�In BFS, need an extra argument: VisitedList
�MPC subsumes cycle checking
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Notes on MPC

�In BFS, we need an extra argument, VisitedList,
to maintain the list of visited nodes

• what would you initialize VisitedList with on first call?

�MPC subsumes cycle checking
• a cycle is just one type of “multiple path” to same node

�Why doesn’t MPC make sense for DFS?
�Exercise: Sketch out revised clauses defining:

• DFS with cycle checking
• BFS with MPC


