
1

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

CSC384: Lecture 4
�Last time

• done with DCL (except for the fact that we’ll use it!)

�Today
• quick summary of uses of DCL (from last time)
• Intro to search; generic search procedure; BrFS,

DFS, path extraction, cycle and mult.path checking

�Readings:
• Today: Ch.4.1 – 4.4, 4.6
• Next week: Ch.4.5/4.6

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

A Planning Problem

�A planning problem: we want robot to decide
what to do; how to act to achieve our goals

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

A Planning Problem

�How to change the world to suit our needs
�Critical issue: we need to reason about how the
world will be after doing a few actions, not just
what it is like now

�����	�
����������	�
���

��	
�
������ ���

����� �� ��� �� ��� ���� � �
��	�� ��
���

� �
���

�� �� �� ��
� �
�������� �����

� �
�
�� �����

����� � � �� � �
� �� ��
�

���

� �

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Planning

�So far, we’ve seen DCL used to reason about
static environments (what the world is like)

• what is correct treatment for symptom X?
• is this region water or land?

�Want to use DCL to reason about dynamic
environments

• A,B,C are true: will they still be true after doing X?
• A,B,C are true: what do I need to do to make D true?

�The heart of decision making!
• complexities: uncertainty (where is craig? navigate

stairs?); many actions to choose from (what is right
sequence?); exogenous events (battery loses charge)

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Graph Search
�We’ll abstract away complexities of planning

• focus on finding the right sequence of actions only
• going to ignore the fact that at any point in time many

things are true and false

�Treat planning as the search for a path from one
state (of the world) to a desired goal state
�Informally : We have a set of states, and a set of
moves/actions that take us from one state to
another. Given an initial state (current) and target
state (goal), find a sequence of moves that gets
me from initial state to goal

• or shortest sequence, or cheapest sequence, or …

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Graph Search is Very General
�This viewpoint applies to a wide variety of tasks

• RoboCof – find plan that gives Craig coffee; route
across floor plan; etc. [states? moves? objective?]

• Games – 8-puzzle; backgammon; chess; Doom;
[complications: other players making moves]

• Scheduling, logistics, planning, most optimization
problems

• Medical diagnosis
• Scene interpretation – find a consistent labeling
• Finding a derivation in DCL/Prolog [what are

states? moves? goal?]
• Finding a good travel package [states? moves?]
• Almost every problem in AI can be viewed this way!

2

�
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Graph-based Search Formalization

�A directed graph: set of nodes N, set of directed
edges E

���������	�	
���
���������������������������� ��
��
� "!$#&%('*)+!(,-, %$'/.&!$ "#10 !2'30 4&0 %$'65*%2)+4(271!&8+%2497*!� +:

� ; <6=?>A@CBA>�D/E*FHGIB �	
�� >�>�D �
J� KL�9M NLO�P���� Q <R>�@
• written �S�TU &V (relation is not symmetric)

• edges correspond to possible moves we can make

�A node labeling is a function L W : N X Nlabels
• denote properties of states (e.g., a value)

�An edge labeling is a function L Y : E X Elabels
• denote properties of edges (e.g., a move cost)

Z
CSC 384 Lecture Slides (c) 2002, C. Boutilier

An Very Simple Search Graph

� ��� � �

� ��

� �� �

� ���

� �� � �

�
�

�

�

�

!

" "

Nodes (states) are
locations robot
can move among

Edges are routes
among these
locations

Edge labels
denote costs
(e.g., expected
travel time)

[
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Paths and Cycles

�A path in graph G =(N,E) is a sequence of nodes
=\>�]CB >�^&B	_`>AabE
�c ��c��A��dA
 =?>�e B >�e f"]3E*Fhgi j�k�Tlj&mAT _ Tlj"npo qIr s&r&t u*v w x$yzj�k$t x{j"n
�A cycle is a path =?>] B > ^ B	_`> a EL| � �	
 >]6} > a �?~h���9�i ����w r(s$u1��o qIr&�3�"�"� o ��o v9jCx{s"r&t u2o j1��o q�r2�3�"�"� �
i ��s&r"t-u2o qIr$�3�"�+� o ��x&v9j&x2q+�(�$sCr"t-u2o qIr2�3�"�"� �

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Graph Search Problems
�A graph search problem: given graph (N,E), a
start node s F��2B � >�� �H
����AQ <6� QA��� > Q � �A
���� �2B
< � >�� �������	
�� < ��Q������-Qh
�Q��h�

g F ��
����	�
 < � � >���A��Q�������� ��� c
� � QA
�
�� �A� ������Q ��� ���-� ��
 �2¡i ¢�£{¤	j&�(� � ¥?¦��6jC�§s+r&t u*t x2r(jC�§j+x$¨&�{o j1�H©�o � ��¨$x

� ª�« ¬$­2®�¯2°&¬+±*²�°�³ ´µ³ ¶µ³ ´$¯1¶�· · « ¸¹¯i ¢�£{¤	ºho q�t-u+� » ¯$¼&³ s&r"t-u*t x��$x&r9�3�*¥?¦�t u$o q�y*�(r$j&q6©I�u"r&½+�2q+x�yI�2x$s+t-o y2o ¾3r&t o x�j1�"w-o t �9w-o x�j�©I�{j+�$�&¨1t x2q+r&t o q3v �
�
s&x(q+q+o �$� �2�"w-o t �9w-o r�¦¹q"u&x�w t �$q3t�¿ À2�"¨$�"�$q+Á?Â/� �&r(q3t$�+x"q3t	Â3�&t �$Ã

� ª�« ¬$­2®�¯2¼+´&¶(Ä�³ ¯(¼&³ Å	· °$¼&³ ¯(¼&³b²A°�³ ´µ³ ¶2¶�· · « ¸�¯i ¢�£{¤	ºhuCr$qIÆ(�&r�� o t ��ÇJÈ¹¥A¿ r2q+r&t o q3v o �"o j&�2s(w x$�$� ��y1Á
� ª�« ¬$­2®�¯2°*²�°�³ ´µ³ ´"°�³�ÉA¯�³ ¼I®1¯µ³ ¶µ³ ´$¯1¶�· · « ¸¹¯ » ±�Ê-ËCÌRÍ

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

A Couple Notes

�If arcs are labeled with actions, we often want to
return the sequence of actions, not just the path
�Most interesting search problems involve implicit
search graphs

• e.g., consider chess: nobody constructs a graph of all
1030 board positions explicitly

• e.g., Prolog: answer clauses generated as derived
• when solving search problem, we generate neighbors

as we need them
• define states, neighborhood relation…or define

moves and how to generate neighboring state

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Generic Search Procedure

�Many graph search techniques share the
following common structure

• let the frontier refer to set of nodes we already know
how to reach from the start node s

1. Let F = {s} ;; (initial frontier is start node)

2. Loop until frontier is empty

(a) Choose some node n on frontier; remove n from F

(b) If n F�Î then stop; report success

(c) Otherwise add each neighbor of n to F

3

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

A Generic DCL Implementation

	
��
�# �$ �% ��& 	
�

� # ' ��
� �$ � ��
� $ % � ��	(���� # ' ��
% �

	
��
�# �$ �% ��& 	
�

� # ' ��
� �$ � ��
� $ % �
� � 	# ' ��
� �' � � �	� % �
�� � (� �(���� � �
�# �
� $ � �' � � �	� � �'
) $ % �
	
��
�# �'
) $ % �

1. nbs(Node, NbList) defines the search graph
- for each node, we assert its list of nbs in KB
- if implicit search graph, nbs will generate NBList

2. is_goal(N) defines the set of goal nodes
- for each goal node, we assert this in KB

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Generic Search Procedure

�Assume frontier represented as a list of nodes
• search(F) returns yes there is some path to G from F
• so call with start node s on frontier: search([s])

�select(N,F,RemF): true if selecting node N from
frontier F leaves remaining frontier RemF
�add_to_frontier(RemF,NbList,NewF): true if
adding nodes in NbList to RemF results in NewF

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

One Instantiation of Search Proc.

�Simple implementation
• you can only select the first node on the frontier
• you add neighbors of selected node to the beginning

of the frontier (just append them to front)

	
�

� # ' ��
� �* ' ��
+ �
� $, � ��
� $ % �

�� � (� � # �
� $ � �' � � �	� � �'
) $ % ��&
�- -
� � # ' � � �	� � ��
� $ � �'
) $ % �

	
��
�# �$ �% ��& 	
�

� # ' ��
� �$ � ��
� $ % � ��	(���� # ' ��
% �
	
��
�# �$ �% ��& 	
�

� # ' ��
� �$ � ��
� $ % � �� � 	# ' ��
� �' � � �	� % �

�� � (� �(���� � �
�# �
� $ � �' � � �	� � �'
) $ % �
	
��
�# �'
) $ % �

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

A Modified Example

� �

� ��

� �� �

� ��

� � �

�

. ��- ��
� � # ���� * � �� �, % �
� � # �� �* , % �
� � # � �� �* � � �, % �
� � # � � �� �* , % �
� � # � �� � �* � � �, % �

. ��� �' ��
�
�	���� # �% �

/ � ��� �' ��
�
����

	
��
�# * ���, % �
	
�

� ����� �� $ �0 �* ,
� �� ������� � �' $ �0 �* � �� ��,
	
��
�# * � �� ��, % �
	
�

� �� �� �� $ �0 �* �,
� �� ������� � �' $ �0 �* � � �� ��,
	
��
�# * � � �, % �
	
�

� ����� �� $ �0 �* �,
� �� ������� � �' $ �0 �* �,
	
��
�# * �, % �
	
�

� ����� �� $ �0 �* ,
�	������� � �' $ �0 �* � �� ��,
�
� � �� �1
	2

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Search Tree for Modified Example

���

� � �

� � �

�

� 3

"

' ���
���� ��	2

. ��� 2

' � � �
��� ���
��

� 	
���
���� �) ��
��� ��
	
��
�
4 �� ��
� �# �	���� 5 %

6 ��� ����)
��� �
� ��� �
� �
����� �� � � � ��� �� 5
� Z

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Depth-First Search

�The specific instantiation we’ve seen is simply
depth-first search (which you’ve seen
previously, no doubt)

• in the search tree, we work deep into the tree until we
reach a dead-end, then we “backtrack”

�In generic search algorithm, this is achieved by:
• always selecting first node on the frontier
• always inserting the new neighbors at head of frontier

�Note: all “bookkeeping” required for backtracking
is taken care of by organization of the frontier

4

� [
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defn of Search Tree

�Given a search graph, start node s
�The search tree rooted at s is a tree such that:

• root node is s
• each node has all its neighbors for children

�So at level k of the tree are all states that you
can reach in exactly k moves (where root = 0)

• each path in search graph (including cyclic paths) is a
path through search tree

• nodes in graph can appear many times in tree

�Frontier moves “down” the tree

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Manhattan Bike Courier (Acyclic)

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

The MBC Rep’n (No Costs)

nb(mo, [al , l s , ws, ch]) . nb(sl b, []) .
nb(sec, [ase, bp, nyse]) . nb(f s, []) .
nb(ws, [f s, sec, nyse, ac]) . nb(ei f , [l s]) .
nb(ac, [t r p, nyse, p27]) . nb(al , [ei f]) .
nb(ase, [sl b, r p]) . nb(l s, [sec]) .
nb(ch, [f s, ac, t r p]) . nb(r p, []) .
nb(t r p, [bb]) . nb(p27, []) .
nb(bb, []) . nb(bp, []) .
nb(nyse, [bp]) .

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Search Tree: MBC Acyclic; Start mo

ase

slb

bp

bp

sec

nyse

bp
ase

slb

bp

bp

sec

nyse

bp

ac

nyse

bp

trp

bb

p27

ac

nyse

bp

trp

bb

p27

ls

eif

nyse

bp

fs

ase

slb

bp

bp

sec

nyse

bp

mo

trp

bb

fs
al

ls

ws

ch

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

DepthFirst Search: Start mo;Goal bp

ase

slb

bp

bp

sec

nyse

bp
ase

slb

bp

bp

sec

nyse

bp

ac

nyse

bp

trp

bb

p27

ac

nyse

bp

trp

bb

p27

ls

eif

nyse

bp

fs

ase

slb

bp

bp

sec

nyse

bp

mo

trp

bb

fs
al

ls

ws

ch

�

�

"

3

7

! 8

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example Summary

�DFS expands eight nodes in this example
• it examines eight nodes and tests if they are the goal

(if they are not, it add neighbors to frontier)

�DFS does not find the shortest path to bp
• the order in which it is required to examine nodes

doesn’t allow it to find the shortest path

5

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Path Extraction

�Generic search procedure behaves as follows:
• assert isgoal(bp) ; ask ?search([mo]).
• algorithm says yes.
• but what path does courier take??
• says yes if there is a path, but doesn’t tell us what it is

�We need a path extraction mechanism
• simplest thing to do is store paths on frontier
• when you select a node from frontier, you also have a

specific path to that node attached
�search(F,Path) : true if Path is solution to search

	
��
�# �$ �% ��& 	
�

� # ' ��
� �$ � ��
� $ % � ��	(���� # ' ��
% �
	
��
�# �$ �% ��& 	
�

� # ' ��
� �$ � ��
� $ % � �� � 	# ' ��
� �' � � �	� % �

�� � (� �(���� � �
�# �
� $ � �' � � �	� � �'
) $ % �
	
��
�# �'
) $ % �

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Implementing Path Extraction

	
��
�# �$ � �* ' ��
�+ ��
	� 9 , % ��&
	
�

� # �* ' ��
�+ ��
	� 9 , � �$ � ��
� $ % � �
�	(���� # ' ��
% �

	
��
�# �$ � �9 �� � % ��&
	
�

� # �* ' ��
�+ ��
	� 9 , � �$ � ��
� $ % �
� � 	# ' ��
� �' � � �	� % �

4 �
� � - �� �# ' � � �	� � �* ' ��
�+ ��
	� 9 , � �'
) 9 �� �	 % �
�� � (� �(���� � �
�# �
� $ � �'
) 9 �� �	� �'
) $ % �
	
��
�# �'
) $ � �9 �� � % �

Assume a path is represented as a list of nodes in
reverse order: so the path mo � al � eif is

represented as the list: [eif, al, mo]

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Notes on Path Extraction
�We call search from start node mo using

search([[mo]], Path).
• initial frontier consists of a length one path (not node)

�Only new predicate needed is extendpath
• basic idea: given a path [n3, n2, n1] and neighbors of

n3 specified by nbs(n3, [n4, n5, n6]); it produces 3 new
paths organized in a list:

[[n4, n3, n2, n1] , [n5, n3, n2, n1] , [n6, n3, n2, n1]]

� � � � � "

� 3

� 7

� ��Z
CSC 384 Lecture Slides (c) 2002, C. Boutilier

DFS with Path Extraction
	
��
�# �$ � �* ' ��
�+ ��
	� 9 , �% ��&

	
�

� # * ' ��
 + ��
	� 9 , � �$ � ��
� $ % � �
�	(���� # ' ��
% �

	
��
�# �$ � �9 �� ��% ��&
	
�

� # �* ' ��
�+ ��
	� 9 , � �$ � ��
� $ % �
� � 	# ' ��
� �' � � �	� % �

4 �
� � - �� �# ' � � �	� � �* ' ��
�+ ��
	� 9 , � �'
) 9 �� �	 % �
�� � (� �(���� � �
�# �
� $ � �'
) 9 �� �	� �'
) $ % �
	
��
�# �'
) $ � � 9 �� ��% �

	
�

� # 9 �� �� �* 9 �� �+ �
	� 9 �� �	, � ��
	� 9 �� �	% �

�� � (� � # �
� $ � �9 �� �	� �'
) $ % ��&
�- -
� � # 9 �� �	� ��
� $ � �'
) $ % �

� [
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Search Tree: MBC Acyclic; Start mo

ase

slb

bp

bp

sec

nyse

bp
ase

slb

bp

bp

sec

nyse

bp

ac

nyse

bp

trp

bb

p27

ac

nyse

bp

trp

bb

p27

ls

eif

nyse

bp

fs

ase

slb

bp

bp

sec

nyse

bp

mo

trp

bb

fs
al

ls

ws

ch

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Trace of DFS (with paths: mo to fs)
��� �����
	 ���
������� ���
	 �����

� � �* � �,

� � �* �� � � �, �* � 	� � � , �*) 	� � �, �*
�� � �, �# 0 �: %

" � �*
��� �� � � �, �� � : � �

3 � �* � 	�
��� �� � � �, �� � : � �

7 � �* 	

� � 	�
��� �� � � �, �� � : � �

 � �* �	
� 	

� � � � � �, �
* � - � 	

� � � � � �, �* � 1 	
� 	

� � � � � �, � � : � � �# 0 �; %

! � �* 	� � � �	
� � � � � �, �* �- � �	
� � � � � �, �� � ; � � � � : � �

8 � �* �- � �	
� � � � � �, �� � ; � � � � : � �

< � �* � - � 	

� � � � � �, �* � 1 	
� 	

� � � � � �, � � � : � �

� = � �* � 1 	
� 	

� � � � � �, �� � : � �

� � � �* � - � � 1 	
� 	

� � � � � � , �� � : � �

� � � �* � 	� � �, �*) 	� � �, �*
�� � �,

� " � �* 	

� � 	� � �, �*) 	� � �, �*
�� � �,

� 3 & � < � �> 4 �
� � 1 �� ��
�
4 - �� 	��� ���
* 	

� � 	�) �
� �� � � �, ��� �/ �
- 	� & � �

� = � �*) 	� � �, �*
�� � �,

� � � �* �	�) 	� � �, * 	

�) 	� � �,
* � 1 	
�) 	� � �, �* �
�) 	� � �, �*
�� � �,

. � : � �0 ��	 �	���� � �

? �� �� �/
��
��	�
- 	��
� � �� ��
	�
4 - �� �
�

6

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Paths Explored by DFS in Example

ase

slb

bp

bp

sec

nyse

bp
ase

slb

bp

bp

sec

nyse

bp

ac

nyse

bp

trp

bb

p27

ac

nyse

bp

trp

bb

p27

ls

eif

nyse

bp

fs

ase

slb

bp

bp

sec

nyse

bp

mo

trp

bb

fs
al

ls

ws

ch

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Properties of DFS: Time
�How long can DFS take?
(a) Finite graph, no cycles:

• Could explore each branch of search tree
(until goal found or search fails).

• If branching factor bounded by b, depth
bounded by n, then we explore O(bn) full
paths (length n)

• note: n ����� ���	��

�����
�����	������� �������� �"!$# %&# ' (*)$+ ,.-&/102# '�/23�4�3�5 (&6&7
• may not terminate unless we perform cycle checking (later)
• Does it ever make sense to explore a cyclic path?8 9;:"< =�02($> + (5 ?;3�@
4 0�# ' /A' / (B% C�D&(�C.+ D (E+�# %F)"7
• may find soln in n* steps (n* is length of shortest path to goal)

G

GG

H

I�IJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Properties of DFS: Space

�How many paths on frontier at any
one time?

• If current path length m (i.e., current
node selected), then there are bm paths
on frontier

• If longest path is length n, then never
more than bn paths

• b paths have length 1, b length 2, etc. up
to b paths of length n

• Total space b + 2b + 3b + … nb which is
O(n2b) space

�Is quadratic space required?
• No: many paths have common substructure
• Consider how to store frontier in linear space O(nb): use a tree!

G

G

H
G

I aJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Properties of DFS: Solution Quality

�Will DFS find the shortest (min # arcs) solution?
• In general, no.
• It can if you are lucky.
• In Manhattan (acyclic) problem, with start mo and

goal ls, it returns soln: mo b al b eif b ls, even
though shorter solution mo b ls exists.

�So how can we find shortest path?

I�cJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Breadth-First Search

�One way to ensure shortest solution is found (wrt
of arcs) is to explore paths in order of length
�Breadth-first search (BFS) does exactly this

�It is implemented by selecting nodes/paths from
the front of the frontier (like DFS), but inserting
new neighbors/paths at the end of the frontier

d;e�f e�g;h�ikj�l;h�m&n&okj�l;h�mqp r�e;d;h	j l;h	m d;skn&r"e d	h�j�l;h�m&d	tvu
l;w&w	x1h�y*ivr"e z|{$n&j�l;h�m&d;n&}*e;~�{$t�� �

l;����e;� w&i �"�&�|�$���;�&�	� �;� }2e;~�{�tku

� � �k�k�.� �$��� �F�2���	��F��� ��� � � �
 �¡ � ���¢ � £�¤F�
�F� ¥��$¥��¢�¦�¦ �F� �

I�§J K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Frontier Growth in BFS

ac

ls

eif

ase bp

sec

nyse

mo

trpfs

al ls
ws ch

¨
© ª «

sec acnysefs

¬

¨ ­ ¨v¨ ¨ «¨ ª¨ ©®
¨v®¨k¬

¯ ° ±

¨ °¨ ¯

e h	g;u

7

I �J K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Trace of BFS (with paths: mo to fs)
��� �����	�
���
�
���� ���	� �����
����� ¡ ����� ��� ��!�� ��"
# �	��$
% ��� ¡ ����� � � ��!�� ��"'& (��"�¡ �	��¡� !*)��k¡ � �,+ ¡ � �.- !*� �	/(��"�¡ �	��¡� !0�.¡ �F ���)1) �
� ����(¡��2(�1� �
 �¡ �."��F��3��
# ¢ � 4 �	��$ # � �*4 �
��$ # 5 �04 �
��$ # 6�7 4 �	�8$
9 ��� ¡ ����� � % ��!*� ��"'& (��"�¡ �*��¡� !0)���¡��2: + ¡ � �.- !*� ��"�/(��"�¡ �	��¡� !0�.¡ �F ���)1) �
� ����(¡��2(�1� �
 �¡ �."��F��3��
# �F� �*4 ¢ � 4 �	��$ # �v� 6 4 � �*4 �	��$ # �k�04 5 �04 �	��$ # �v�*4 6�7 4 �	��$# �v� 6 4 5 �04 �	��$ # ¢ 6 4 6�7 4 �	��$# � �k�v��4 5 �*4 �
��$ # ¥�� ¦ 4 607 4 �	��$# ¢ 6 4 5 �*4 �	��$
: ��� ¡ ����� � 9 ��!*� ��"'& (��"�¡ �*��¡� !0)���¡��2; + ¡ � % - !*� ��"�/(��"�¡ �	��¡� !0�.¡ �F ���)1) �
� ����(¡��2(�1� �
 �¡ �."��F��3��# � �04 �F� �04 ¢ � 4 �
��$ # ¢ �v��4 �k� 6 4 � �*4 �	��$=< ¦ � ¤v�'> ?A�	�F� � ¦ ¢ ¥ 7 ��� ��¥ ¢ ���
����¥��"��� �F� ¥
� � � @# A ¦ 4 �k� 6 4 � �*4 �	��$# � �k�k��4 �k� 6 4 � �*4 �	��$

B ��C 7 � � �A��¥�� ¦<�D�� �2E ¢ ¥ 7 � ��¥ 7 �GF��F� £�¥ 7H ��� �F� ¥
� �F� @�4¥ 7 �"£�� ¢ ���
� 5 � � � A �"�v��¤�� � I
C;��¥ ¢ ����� ¢ � 6�7 �v¥�� ¦ �0J> K�?�K0D L'M
M�� ���
���&��N ¦ ¢ � �����

I�OJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Paths Explored by BFS in Example

ase

slb

bp

bp

sec

nyse

bp
ase

slb

bp

bp

sec

nyse

bp

ac

nyse

bp

trp

bb

p27

ac

nyse

bp

trp

bb

p27

ls

eif

nyse

bp

fs

ase

slb

bp

bp

sec

nyse

bp

mo

trp

bb

fs
al

ls

ws

ch

I PJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Properties of BFS

�All paths of length k occur on frontier after all
length k-1 paths
�No length k path is added to frontier until we
have expanded all length k-1 paths
�This last property ensures that we are
guaranteed to find shortes path (if sol’n exists)

• If we find a length k sol’n, since we’ve looked at all
shorter paths, no shorter sol’n exists

a�QJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Properties of BFS: Time
�How long can BFS take?
(a) Finite graph, no cycles:

• If branching factor bounded by b, and the
shortest sol’n has length n*, then we’ll
explore O(bn*) paths (length n)

• note: presence of cycles has no effect if a
solution is present

• If no solution, will explore all paths: O(b|N|)

R�S8TVU1W X.W Y Z,[1\] ^._a`bW Y�_bc*decef Z.g.h
• if sol’n: same as above
• if no sol’n: may not terminate unless we perform cycle checking

or multiple path checking

G

GG

H i

a8jJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Properties of BFS: Space

�How many paths on frontier at
any one time?

• If current path length m, then there
are between bm-1 and bm paths on
frontier

• If shortest path has length n*, then
guaranteed to have frontier of size
O(bn*)

• Luck with node ordering plays no
role: BFS is systematic

�Space cost is the price you pay
for optimality

G

GG

H i

a8kJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Cycle Checking (see text for more)
�Cycles can hurt DFS: can prevent termination
�Cycle checking in DFS: requires a simple test

• when you select a path from frontier and extend it with
its neighbors, we only add a new path to the frontier if
the neighbor is not already on the path

�Test requires linear time in length of path
• some tricks can be used to reduce this

�Cannot affect existence of soln, rule out best soln

lVm lVn lVo
l�p
lVn
lVq

�

�

�

o lep n lGoer�lGner�lGm s
o lGn n lGoer�lGner�lGm s
o lGq n l oer l ner l m s

8

a IJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Multiple Paths to Same Node

�In Manhattan example, with start = mo:
• at depth 2, we have path P1 = [ls, mo]
• at depth 4, we have path P2 = [ls, eif, al, mo]

�Why add P2 to the frontier?
• If there is a path from ls to goal, then

extension of P1 to the goal is shorter than the
extension of P2 (each extension of P2 added
to frontier is just wasted)

• If there is no path from ls to goal, not adding
P2 to frontier cannot hurt

���

���

��� 	

�

� � ��� �

a�aJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Multiple Path Checking in BFS
�Cycle checking can be applied to BFS too

• saves some time (don’t explore cyclic path)
• ensures termination in cyclic graphs with no solution

�Multiple path checking is more general
• Every time a (path to a) node is considered for addition

to frontier, check list of visited nodes (those that have
already been expanded).

• If node is on list, do not add it to the frontier.
• If node is not on list, add it to frontier and visited list.

�In BFS, need an extra argument: VisitedList
�MPC subsumes cycle checking

a cJ K J�L M N O P Q R S T P K U V W P X Y Q Z [\ \ [] J ^ _ ` S R V U V P T

Notes on MPC

�In BFS, we need an extra argument, VisitedList,
to maintain the list of visited nodes

• what would you initialize VisitedList with on first call?

�MPC subsumes cycle checking
• a cycle is just one type of “multiple path” to same node

�Why doesn’t MPC make sense for DFS?
�Exercise: Sketch out revised clauses defining:

• DFS with cycle checking
• BFS with MPC

