CSC384: Lecture 4

=L ast time

¢ done with DCL (except for the fact that we'll use it!)
="Today

* quick summary of uses of DCL (from last time)

¢ Intro to search; generic search procedure; BrFS,
DFS, path extraction, cycle and mult.path checking

®"Readings:
* Today: Ch.4.1-4.4,4.6
* Next week: Ch.4.5/4.6
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| A Planning Problem

=A planning problem: we want robot to decide
what to do; how to act to achieve our goals
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A Planning Problem

=How to change the world to suit our needs

=Critical issue: we need to reason about how the
world will be  after doing a few actions, not just
what it is like now

T

iy GOAL: Craig has coffee

] CURRENTLY: robot in mailroom,
has no coffee, coffee not made,
Craig in office, etc.

TO DO: goto lounge, make

coffee,..
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Planning

=So far, we've seen DCL used to reason about
static environments (what the world is like)
* what is correct treatment for symptom X?
¢ is this region water or land?
=\Want to use DCL to reason about dynamic
environments
* AB,C are true: will they still be true after doing X?
* AB,C are true: what do I need to do to make D true?
="The heart of decision making!

* complexities: uncertainty (where is craig? navigate
stairs?); many actions to choose from (what is right
sequence?); exogenous events (battery loses charge)
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Graph Search

=We'll abstract away complexities of planning
* focus on finding the right sequence of actions only
® going to ignore the fact that at any point in time many
things are true and false
=Treat planning as the search for a path from one
state (of the world) to a desired goal state
=|nformally : We have a set of states, and a set of
moves/actions that take us from one state to
another. Given an initial state (current) and target
state (goal), find a sequence of moves that gets
me from initial state to goal
e or shortest sequence, or cheapest sequence, or ...
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Graph Search is Very General

=This viewpoint applies to a wide variety of tasks

* RoboCof — find plan that gives Craig coffee; route
across floor plan; etc. [states? moves? objective?]

* Games — 8-puzzle; backgammon; chess; Doom;
[complications: other players making moves]

* Scheduling, logistics, planning, most optimization
problems

* Medical diagnosis

* Scene interpretation - find a consistent labeling

* Finding a derivation in DCL/Prolog [what are
states? moves? goal?]

* Finding a good travel package [states? moves?]

* Almost every problem in Al can be viewed this way!
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Graph-based Search Formalization

=A directed graph: set of nodes N, set of directed
edges E € Nx N (these are ordered pairs)
* nodes correspond to states we can move among
=|f<nq, Ny € £ then nyis a neighbor of n4
e written nq— ny (relation is not symmetric)
* edges correspond to possible moves we can make
=A node labeling is a function L,: N — Nlabels
¢ denote properties of states (e.g., a value)
=An edge labeling is a function Lg: E — Elabels
¢ denote properties of edges (e.g., a move cost)

|An Very Simple Search Graph
Office

5 Y /m
Q L e Hal
Edges are routes

MailRm@ 3
\ 3 among these
locations
&

® Lab
oz

Lounge

Nodes (states) are
locations robot
can move among

Edge labels
denote costs
(e.g., expected
travel time)
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Paths and Cycles Graph Search Problems
=A graph search problem: given graph (N,E), a
=A path in graph G =(N,E) is a sequence of nodes start node seN, and a set of goal nodes GEN,
MNq,Ng,... N> s.t. each jn.p e £ find a path P from s to some geG satisfying
*nq—ny— ...~ N is apath from nqto ng property X.
=A cycle is a path <nq,ny,... N with ny=n, (k> 1) =Possible properties X:
* A graph G is acyclic if no path in G is a cycle ° X ="null": Any path to any node in G will do
* A path is acyclic of no subpath is a cycle * Find me any path fo the office
* X="P is the best path to goal G”: this means we
have some optimization criterion we need to satisfy
=possible criteria: shortest (# edges); least cost; etc.
= Find me shortest/fastest path fo office
* X =“P has quality = ¢’ (a satisficing problem)
= Find me a path that gets me fo the office by 10AM
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A Couple Notes

=|f arcs are labeled with actions, we often want to
return the sequence of actions, not just the path

=Most interesting search problems involve implicit
search graphs

* e.g., consider chess: nobody constructs a graph of all
1030 board positions explicitly

* e.g., Prolog: answer clauses generated as derived

* when solving search problem, we generate neighbors
as we need them

* define states, neighborhood relation...or define
moves and how to generate neighboring state
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Generic Search Procedure

®=Many graph search techniques share the
following common structure

¢ let the frontier refer to set of nodes we already know
how to reach from the start node s

1.LetF={s} ;; (initial frontier is start node)
2. Loop until frontier is empty
(a) Choose some node n on frontier; remove n from F

(b) If n € G then stop; report success

(c) Otherwise add each neighbor of n to F
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A Generic DCL Implementation

search( F ) :- select(Node, F, RemF), is_goal(Node).

search( F) :- select(Node, F, RemF),
nbs(Node, NbList),
add_to_frontier(RemF, NbList, NewF),
search( NewF ).

1. nbs(Node, NbList) defines the search graph
- for each node, we assert its list of nbs in KB
- if implicit search graph, nbs will generate NBList

2.is_goal(N) defines the set of goal nodes
- for each goal node, we assert this in KB
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Generic Search Procedure

=Assume frontier represented as a list of nodes
¢ search(F) returns yes there is some path to G from F
* so call with start node s on frontier: search( [s])
=select(N,F,RemF): true if selecting node N from
frontier F leaves remaining frontier RemF
=add_to_frontier(RemF,NbList,NewF): true if
adding nodes in NbList to RemF results in NewF
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One Instantiation of Search Proc.

search( F ) :- select(Node, F, RemF), is_goal(Node).

search( F ) :- select(Node, F, RemF), nbs(Node, NbList),
add_to_frontier(RemF, NbList, NewF),
search( NewF ).

select(Node, [Node|RemF], RemF).

add_tf (RemF, NbList, NewF) :-
append(NbList, RemF, NewF).

=Simple implementation
* you can only select the first node on the frontier

¢ you add neighbors of selected node to the beginning
of the frontier (just append them to front)
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| A Modified Example

Off search([off]).

° /—N select of , RF = []
'/— oHall not a goal, NF = [mr, h]
° search([mr, h]).

MR select mr, RF = [h]
K’ N not a goal, NF = [Ing, h]
° Lab search([Ing]).
Lng ~— select of £, RF = [h]
not a goal, NF = [h]

Graph: Goal Node: search([h]).
nb(off [mr,h]). isgoal(h). select off, RF = []
nb(h, [1). is a goal, NF = [mr, h]

nb(nmr, [Ing]). Start Node: Return yes!

nb(Ing, [1). i
nb(lab, [Ing]). office
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| Search Tree for Modified Example

! off
2 /\ \
mr h
/ Goal!
3
Ing Numbering reflects
No neighbors! order in which nodes

are examined (isgoal?)

What if we added an edge from Ing to lab?

€503 Lecture Sl (0 2002, . Boutiler 17

Depth-First Search

®"The specific instantiation we've seen is simply
depth-first search (which you've seen
previously, no doubt)
¢ in the search tree, we work deep into the tree until we
reach a dead-end, then we “backtrack”
®|n generic search algorithm, this is achieved by:
¢ always selecting first node on the frontier
¢ always inserting the new neighbors at head of frontier
=Note: all “bookkeeping” required for backtracking
is taken care of by organization of the frontier
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Defn of Search Tree

=Given a search graph, start node s
®"The search tree rooted at s is a tree such that:
® root node is s
¢ each node has all its neighbors for children
=So at level k of the tree are all states that you
can reach in exactly k moves (where root = 0)
¢ each path in search graph (including cyclic paths) is a
path through search tree
* nodes in graph can appear many times in tree
=Frontier moves “down” the tree

| Manhattan Bike Courier (Acyclic)

@ 2 '“ @

14

‘—>®
@

@4
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The MBC Rep’n (No Costs) | Search Tree: MBC Acyclic; Start mo
mo

mo:  Main Office ch:  City Hall crp:  T.Rowe Price
R // | T —.
1ls:  Loeb Securities asec: Securities Exch. Comm, 27: Pier27
i}\:, ;]:;:inri:::hnmml Bros. :::-E- i::::;;r‘:;i - :yse: NY Stock Exch. all selc fs/alc\‘"p
nb(mo, [al, I's, ws, ch]).  nb(slb, []). T e P
nb(sec, [ase, bp, nyse]). nb(fs, []). s /\ l l
nb(ws, [fs, sec, nyse, ac]). nb(eif, [Is]). 1 b bp bp bp
nb(ac, [trp, nyse, p27]). nb(al, [eif]). sec
nb(ase, [slb, rp]). nb(l's, [sec]). N / \\‘
nb(ch, [fs, ac, trp]). nb(rp, [])- ase  bp  nyse “er
nb(t rp, [ bb] ) . nb( D27 [] ) . l ase bp nyse trp  nyse p27
nb(bb, []). nb(bp, []). om0 | [
nb(nyse, [bp]). slb bp bp bb  bp
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| DepthFirst Search: Start mo;Goal bp

1 m\
al 1 / l\
l sec fs ac p
3 eif
1 ase bp  nyse wp  nyse paT 4
4 s / \ l l
i l slb bp bp bp
sec
N T
ase bp nyse l
l ase b 27
slb bp bp P nyse pp tp  nyse p
7 0 sI.l';/\bl l l
P bp bb  bp
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Example Summary

®*DFS expands eight nodes in this example
¢ it examines eight nodes and tests if they are the goal
(if they are not, it add neighbors to frontier)
®*DFS does not find the shortest path to bp

* the order in which it is required to examine nodes
doesn’t allow it to find the shortest path
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Path Extraction

search( F ) :- select(Node, F, RemF), is_goal(Node).
search( F ) :- select(Node, F, RemF), nbs(Node, NbList),
add_to_frontier(RemF, NbList, NewF),
search( NewF ).
=Generic search procedure behaves as follows:
¢ assert isgoal(bp) ; ask ?search([mo]).
e algorithm says yes.
¢ but what path does courier take??
* says yes if there is a path, but doesn't tell us what it is
"We need a path extraction mechanism
¢ simplest thing to do is store paths on frontier

¢ when you select a node from frontier, you also have a
specific path to that node attached

=search(F,Path) : true if Path is solution to search

Implementing Path

Extraction

Assume a path is represented

reverse order: so the path mo — al — eif is
represented as the list: [eif, al, mo]

as a list of nodes in

search( F, [Node | Restl]):-

select( [Node | Restll], F, RemF),

is_goal(Node).

search( F, Dath):-

select( [Node | Restl], F, RemF ),

nbs(Node, NbList),

extendpath(NbList, [Node | Restl], Newlaths ),
add_to_frontier(RemF, Newllaths, NewF),

search( NewF, ath ).
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Notes on Path Extraction DFS with Path Extraction
=We call search from start node mo using searcr( Fi[[’\h‘lo;e‘\ ;esfﬂﬂll )F:-R 5
select([Node estl], F, RemF),
SearCh( [ [mO] ]1 Path) is_goal(Node).
* initial frontier .con3|sts ofa Ien.gth one path (not node) search(F. lath ) -
=Only new predicate needed is extendpath select( [Node | Rest0], F, RemF ),
.. . . nbs(Node, NbList),
¢ basic idea: given a path [n3, n2, n1] and neighbors of extendpath(NbList, [Node | Restl], Newlaths ),
n3 specified by nbs(nz, [n4, ns, ne)); it produces 3 new add_to_frontier(RemF, Newlaths, NewF),
paths organized in a list: search( NewF, lath ).
[[n4, n3, n2, n1], [ns, n3, N2, 1], [Ne, N3, N2, N1] ] select(Uath, [Dath|Restlaths], Restlaths).
n4 add_tf (RemF, Daths, NewF) :-
n N ns ng append(laths, RemF, NewF).
Ne
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| Search Tree: MBC Acyclic; Start mo

mo

‘%/ \ch
al 1 / l\
sec fs ac trp
eif
l ase bp nyse trp  nyse p27
BN |
! sb bp bp ~ B bp
sec
ase  bp  nyse s selc nyse ac
b b b£ ase bp nyse  pp trp  nyse p27
slb bp blp blb bp
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Trace of DFS (with paths: mo to fs)

Frontier evolution:

1. [mo]

2. [al,mo] [Is,mo] [ws,mo] [chmo] (=0)
3. [eif,al,mo].0..

4, [Iseif,al,mo] .0 ..

0. [sec,Iseif al,mo] .0 ..

6. [[asa,sac,“,mo]
bp.sec,..mo] [nyse sec,..mo].0.. (=0)

7. [slb,ase,..,mo] [rp,ase,..mo] .0.. .0 .
0. [rp.ase,.mo] 0. 0.
0. [bpsec,..mo] [nyse sec,..mo] .0 ..

10. [nyse sec,..mo] .0 ..
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11. [bp nyse sec,..mo] .0 ..
12. [Is,mo] [ws,mo] [ch,mo]
13. [sec,Is,mo] [ws,mo] [ch,mo]

14-10. Oxactly like expansion of
[sec,Iswic,almo]in Steps 6-11

20. [ws,mo] [ch,mo]

21. P‘s,ws,mu] [sec,ws,mo]
nyse,ws,mo] [ac,ws,mo] [chmo]

600L =fs is found
Dotal Search steps:
21 nodes expanded

002, C. Boutitier
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| Paths Explored by DFS in Example

Properties of DFS: Time

/m\ ®"How long can DFS take? /N
s ch (a) Finite graph, no cycles: b
al 1 / \ * Could explore each branch of search tree | /N o
1 sec fs ac p (until goal found or search fails). °
eif I [ * If branching factor bounded by b, depth /N
1 ase  bp  nyse trp  nyse p27 bounded by n, then we explore O(b") full 000
Is / \ ! l paths (length n) b b
l slb bp bp we bb bp e note: n < N (number of nodes in G)
sec
I / \ (b) Finite graph with cycles:
ase  bp  nyse fs se¢ nyse ac * may not terminate unless we perform cycle checking (later)
F > bl asS/blp\n‘yse b o nyse pa7 ¢ Does it ever make sense to explore a cyclic path?
s P P | | (c) Ifwe're lucky with the node ordering:
slb bp bp bb bp * may find soln in n* steps (n* is length of shortest path to goal)
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Properties of DFS: Space Properties of DFS: Solution Quality
*How many paths on frontier at any /N =Will DFS find the shortest (min # arcs) solution?
ime?
one time? ) /N b * In general, no.
* If current path length m (i.e., current n .
node selected), then there are bm paths b * It can if you are lucky.
on frontier ¢ In Manhattan (acyclic) problem, with start mo and
° g]gr;gtiinpg;h’;:t:fsngth n, then never b goal Is, it returns soln: mo — al — eif — Is, even

* b paths have length 1, b length 2, etc. up
to b paths of length n
¢ Total space b +2b + 3b + ... nb which is
0O(n2b) space
®|s quadratic space required?
* No: many paths have common substructure
* Consider how to store frontier in linear space O(nb): use a tree!
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though shorter solution mo — Is exists.
=So how can we find shortest path?
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Breadth-First Search

=One way to ensure shortest solution is found (wrt
# of arcs) is to explore paths in order of length

®"Breadth-first search (BFS) does exactly this

=t is implemented by selecting nodes/paths from
the front of the frontier (like DFS), but inserting
new neighbors/paths at the end of the frontier

differs from DFS
only in order of
arguments fo
append

select(Path, [Path|RestPaths], RestPaths).

add_tf (RemF, Paths, NewF) :-
append( RemF, Paths, NewF).
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| Frontier Growth in BFS

1 _mo

2,/./4\"15\‘ 5

A AN

6 elit 7 sec 'S sec  nyse ac fs ac trp
9 10 1 12 13 14
15 1s ase bp  nyse 000
o 16 17 18
[©]
O
etc.
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Trace of BFS (with paths: mo to fs)

Frontier evolution:

1. Length O Paths On Third Step
(3rd Path in the Length
[mo] 2 Frontier),

2 Length 1 Paths (inserted after 1 lent parh) | the goal FS will be found.

inserted at end of frontier in order shown
Total Search steps:
[al.mo] [Is,mo] [ws,mo] [ch,mo] 1+4+3:=8

3. Length 2 Paths (inserted after 4 lend paths) |__8 nodes expanded
inserted at end of frontier in order shown

[eif,al,mo] [sec,Is,mo] [fs,ws,mo] _ [fs,chmo]
secws,mo] [ac,chmo]
nyse,ws,mo]
ac,ws,mo]

4. Length 3 Paths (inserted after 9 len2 paths)
inserted at end of frontier in order shown
[Is eif ,al,mo] [ase,sec Is,mo] plus 14 more paths not added tfo frontier)
bp,sec,Is,mo]
nyse,sec,ls,mo]
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trp.ch,mo]

| Paths Explored by BFS in Example

mo

= | T
— P

al l
1 sec fs ac trp
eif / l\ / l\
l ase bp nyse trp  nyse p27 ,p
AN |

slb bp bp ws bb bp

ass/blp\r:yse fs sec / \n;se\‘ ac
| NN N

ase bp nyse  pp trp  nyse p27

!l

slb bp bp bb bp

slb bp bp
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Properties of BFS

=All paths of length k occur on frontier after all
length k-1 paths

=No length k path is added to frontier until we
have expanded all length k-1 paths

=This last property ensures that we are
guaranteed to find shortes path (if sol'n exists)

* If we find a length k sol'n, since we've looked at all
shorter paths, no shorter sol’'n exists
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Properties of BFS: Time

®"How long can BFS take? /N
(a) Finite graph, no cycles: b

* If branching factor bounded by b, and the n* /N %o
shortest sol'n has length n*, then we’'ll °

explore O(bn*) paths (length n) /N
* note: presence of cycles has no effect if a coo
solution is present b b

« If no solution, will explore all paths: O(bINI)

(b) Finite graph with cycles:
¢ if soI'n: same as above

* if no sol’n: may not terminate unless we perform cycle checking
or multiple path checking
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Properties of BFS: Space

=How many paths on frontier at /N b
any one time? /N o
e If current path length m, then there n* o

are between bm-1 and bm paths on

frontier coo /N

¢ If shortest path has length n*, then b b
guaranteed to have frontier of size
O(bn)
¢ Luck with node ordering plays no
role: BFS is systematic
=Space cost is the price you pay
for optimality
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Cycle Checking (see text for more)

=Cycles can hurt DFS: can prevent termination

=Cycle checking in DFS: requires a simple test

* when you select a path from frontier and extend it with
its neighbors, we only add a new path to the frontier if
the neighbor is not already on the path

=" Test requires linear time in length of path
* some tricks can be used to reduce this
=Cannot affect existence of soln, rule out best soln

ng & [ng,n3 nz ni]
n——s N2 —— n3 ——— N2 @ [N2,n3 Nz nij
ns @ [ns, N3 Nz ni]
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Multiple Paths to Same Node

®In Manhattan example, with start = mo: mo
 at depth 2, we have path P = [Is, mo] \
¢ at depth 4, we have path P2 = [Is, eif, al, mo] T'

=Why add P, to the frontier? eif

¢ If there is a path from Is to goal, then ‘
extension of P4 to the goal is shorter than the Is
extension of P» (each extension of P, added ‘
to frontier is just wasted)

* If there is no path from Is to goal, not adding ‘
P> to frontier cannot hurt goal?
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Multiple Path Checking in BFS

=Cycle checking can be applied to BFS too

* saves some time (don’t explore cyclic path)

* ensures termination in cyclic graphs with no solution
=Multiple path checking is more general

* Every time a (path to a) node is considered for addition
to frontier, check list of visited nodes (those that have
already been expanded).

¢ |f node is on list, do not add it to the frontier.

¢ |f node is not on list, add it to frontier and visited list.
=|In BFS, need an extra argument: VisitedList
=MPC subsumes cycle checking
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Notes on MPC

=In BFS, we need an extra argument, VisitedList,
to maintain the list of visited nodes

¢ what would you initialize VisitedList with on first call?
=MPC subsumes cycle checking

¢ acycle is just one type of “multiple path” to same node
="Why doesn't MPC make sense for DFS?
=Exercise: Sketch out revised clauses defining:

* DFS with cycle checking

* BFS with MPC
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