CSC384: Lecture 3

=L ast time
* DCL: syntax, semantics, proofs
* bottom-up proof procedure
="Today
* top-down proof procedure (SLD-resolution)
* perhaps start on uses of DCL
®"Readings:
* Today: 2.7; 2.8 (details in tutorial),
=perhaps Ch.3 (excl. 3.7); we'll discuss only part
* Next week: wrap Ch.3; start on Ch.4: 4.1-4.4/4.6

CSC 384 Lecture Slides (0 2002, C. Boutiler

Top-Down Proof Procedure

"BUPP is data-driven
¢ not influenced by query g, just facts and rules in KB!
* wasteful: proves things unneeded to prove q
=Top-down proof procedure is query-driven:
 focussed on deriving a specific query
=We'll describe a TDPP called SLD-resolution
* Basically, the strategy implemented within Prolog
¢ stands for selected linear, definite-clause resolution

CSC.384 Lecture Stides (¢ 2002, €. Bouler

SLD-Resolution (No vars)
®Basic intuitions:
* suppose we have query ?q; & g2
* suppose we haveruleq; — a&b &c.
« if we prove subgoal query ?a&b&c&qy thenwe
know that original query must be true
=SLD a form of backchaining or subgoaling:

* to prove g, we look for a rule with the head q, and
then attempt to prove the body of that rule; if proven,
we know q must be a consequence of KB

* Progress: when subgoals are facts!

=Defn: An answer clause: yes — ¢ &.. & gp
=Defn: An answer: yes - .

CSC.384 Lecture Siides (¢ 2002, C. Boutiler

SLD-Resolution: Algorithm (no vars)

Given query ?g74 ... & g and a KB
1. Construct answer clause yes —~ g1 & .. & gm
2. Until no KB-clause choosable or AC is an answer

(a) Select an atom a; from the current AC
yes — ar & .4 ax

(b) Choose a clause a; — by & .. & b, from KB
whose head matches selected atom

(c) Replace a; in AC with body to obtain new AC
yes — ard .. a1 & brd.. & by aps 4.4 ag

€984 Lecture Slides (¢ 2002, C. Boutlier

SLD-Resolution

=|f we reach an answer, return YES

e query is a logical consequence of KB
=1f we find no choosable clauses, return NO

* query not a consequence (but not necessarily false)
=A sequence of answer clauses that culminates in

an answer is an SLD-derivation of the query

=Qur algorithm attempts to find a derivation:

« if it chooses incorrectly at Step 2, it may fail

* see text for distinction between choice and selection

* we say derivation attempt fails if we get stuck

* how does Prolog deal with failure?

€384 Lecture Stides (¢ 2002, C. Boutlier

SLD: Example
Derivation Attempt #1

KB: (1) a <- bé&ec.
(2) b - d&e. |Yes<oa
(@)b <« c. yes<-b &c. Select a; choose (1)
(3) b «- g&e |YeS<-g &edic. Select b; choose (3)
(4) ¢ « e yes<-g&c. Select e; choose (6)
EZ; : Select g: FAIL! no choosable clause
(7) f <-adag.

Query: ?a

€50 384 Lecture Sldes (¢ 2002, C. Boutilier

SLD: Example
Derivation Attempt #2

KB: (1) a «- bé&ec.
(2) b «<- d&e |Yes<«a.

)b <« c. yes<b &c. Select a; choose (1)
(3) b - g&e. |YesS< d&ed&c. Selectb; choose (2)
4) ¢ « e yes<«-edc. Select d: choose (5)
(5) d. yes <-c. Select e; choose (6)
(6) e. yes <-e. Select c: choose (4)
7) f < a& g. yes <-. Select e; choose (6)
Query: ?a QUERY IS TRUE: obtained answer

CSC.384 Lecture Siides (¢ 2002, €. Boutiler 7

SLD Notes

=Does atom selected to resolve away matter?
* No: all must be “proven” eventually
®"Does KB clause chosen to resolve with matter?
* Yes: wrong choice can lead to failure
* We'll talk later about backtracking/search for a proof
=Soundness: should be fairly obvious
¢ Exercise: prove that if any body in any answer clause
is a consequence of KB, then so is query (soundness
follows: if we derive an answer, query holds)

=Completeness: if KBE g, thereis a derivation

e can we find it? Yes, if we make correct choices
* How? Might have to try all options (watch for cycles)

CSC.384 Lecture Stides (0 2002, €. Boutiler

Aside: Resolution

Resolution

avb, “bve Proof Rule

avece
Query yes —« g&h equivalent to -gv-hvyes
Rule h - a&bé&c equivalentto hv-av-bv-c

~gv-hvyes, hv-av-bv-c
~gVv-av-bv-cvyes

Resolvent ~gv-av-bv-cvyes
equiv. to yes — g&adbéc

©SC.384 Lecture Siides (0 2002, €. Boutiler 9

Variables in SLD (no functions)

=Recall query q(X) is interpreted existentially:
¢ is there some X s.t. q(X) is a consequence?
e return a ground instance/term t (or all t) s.t. q(t) holds
¢ with no functions, terms are just constants

Example: Query:

e ry
(1) rich(joan). ? rich(linda).
(2) mother(linda,joan). yes
(3) mother(mary linda). 2 rich(X).
(4) rich(X) <- mother(X.Y) joan, linda, mary

& rich(Y).

(€539 Lecture St () 2002, . Boutiler 10

SLD: Queries with no vars
=Query: ?rich(linda)

* set up answer clause: yes « rich(linda)

¢ but body matches no heads in KB! How to start??
=|ntuitively, rich(linda) does match the head of
the rule rich(X) — mother(X,Y) & rich(Y).

* just need to substitute constant linda for var X

e result: yes ~ mother(linda,Y) & rich(Y).
= Applying constant substituition {X/linda} to rule
(4) gives us an instance of rule (4):

¢ rich(linda) ~ mother(linda,Y) & rich(Y).

* Note: this instance is clearly entailed by KB

(€50 394 Lecture St () 2002, . Boutiler 11

Example: SLD with vars in KB

KB: uery:

(1) rich(joan). Q? r';Zh(linda).
(2) mother(linda,joan).

(3) mother(mary linda).

(4) rich(X) <- mother(X,Y) & rich(Y).

Derivation:
yes <- rich(linda).
yes <- mother(linda,Y) & rich(Y).
How: Select rich(linda). resolve with (4) using {X/linda}
yes <- rich(joan).
How: Select mother(linda,Y) : resolve with (2) using {Y/joan}
yes <-.
How: Select rich(joan): resolve with (1) using {}

(€5 394 Lecture S () 2002, . Boutiler 12

SLD: Queries with vars

=Query: ?rich(2)
* set up answer clause: yes(Z) - rich(Z)

¢ once derivation reaches an answer, this allows us to
extract an “individual” for which query holds

® can't just say yes: must say “for who”
=[ntuitively, rich(Z) does match the head of the
rule rich(X) — mother(X,Y) & rich(Y).
* just need to substitute var Z for var X
e result: yes(Z) ~ mother(Z,Y) & rich(Z).
=Applying substitution {X/Z} to rule (4) gives:
¢ rich(Z) — mother(Z,Y) & rich(Y).

(€50 394 Lecture St () 2002, . Boutiler 13

Example: SLD with vars in query

KB: Query:

(1) rich(joar) > HER(2).
(2) mother(linda,joan).

(3) mother(mary linda).

(4) rich(X) <- mother(X,Y) & rich(Y).

Derivation:
yes(Z) <- rich(Z).
yes(Z) <- mother(Z,Y) & rich(Y).
Select rich(Z): resolve with (4) using {X/Z}
yes(Z) <-mother(Z joan).
Select rich(Y): resolve with (1) using {Y/joan}
yes(linda) <- .
Select mother(Z,joan) : resolve with (2) using {Z/linda}

(€503 Lecture St () 2002, . Boutier 14

Example: SLD with vars in query

KB: Query:

(1) rich(joan). ?rr;Zh(Z).
(2) mother(linda,joan).

(3) mother(mary linda).

(4) rich(X) <- mother(X.Y) & rich(Y).

A Different Derivation:
yes(Z) <- rich(Z).
yes(joan) <- .
Select rich(Z): resolve with (1) using {Z/joan}

Different derivations can give different answers;
Exercise: construct derivation that gives the
answer “mary".

(€503 Lecture Sl () 2002, . Boutiler 15

SLD with Variables

=To recap, we've seen SLD with:
e variables in KB, but ground queries
¢ variables in KR and variables in query
=Basic idea: we need to make appropriate
substitutions of our variables in order to make
atoms in answer clause match heads of KB rules
= et’s look at one more example, sticking with the
“intuitive” definition of a substitution

=Then we'll formalize unifiers and MGUs

(€539 Lecture St () 2002, . Boutiler 16

Example Derivation #1

Query:

KB: 2busy(P).

1. busy(Z) <- teaches(Z X) &
teaches(Z.Y) & distinct(X.Y). Answer Clause:

2. busy(Z) <- teaches(Z,148). es(P) <- busy(P).
3. teaches(craig, 384). yes(P) =)
4. teaches(craig, 2534). Derivation:

5. teaches(kyros, 384).
6. teaches(kyros, 2501). yes(P) <- teaches(P,148).

7. teaches(suzanne, 148). Select busy(P). resolve with
8. distinct(2534,384). =(2) using {P/Z}

yes(P) <- busy(P).

9. distinct(2501,384). ves(suzanne) <- .
distinct.. Select 1(Z,148); resolve with
Could have used (2) using {Z/P}

Answer: suzanne

{Z/P} instead: as (others: craig, kyros... show!)

long as vars match

€503 Lecture Sl (0 2002, . Boutiler 17

SLD-Resolution: Algorithm (w/ vars)

Given query 2g;4& ... & g with vars x7... x,and a KB

1. Construct answer clause yes(X;s.. xp) « g1 & .. & gp.

2. Until no KB-clause choosable or AC is an answer

(a) Select an atom &; from the current AC yes — a; &..& ax

(b) Choose aclause A — by &... &b, from KB

and a substitution o that unifies the head #4; of the
KB clause with the selected atom a; (i.e., that when
applied to A; and a; makes them the same)

(c) apply o to AC and KB clause to obtain ACa, KBa

(d) Replace a;0 in ACO with body of KBO to obtain new AC
(ye.s'(x; X,,) « ay &... a1 & b1 4. & b,, 4 aj+1 4...& a/() g

G594 Lecture Siies (2002, C Bt 18

Example Derivation #2

e Derivation:

' yes(P) <- busy(P).
1busy(Z) « TenchesZ.X) & yes(P) < t(P.X) & t(P.Y) & d(XY).

eaches(Z,Y) & distinct(X.Y). busy(P). (1); Z/P)

2. busy(Z) <- teaches(Z,148). rer e
3. TeaZhes(cmig, 384). yes(cr‘cug') <- "r(cr‘mg,\f) &d(384Y).
4. teaches(craig, 2534). (P X). (3). {P/craig, X/384}
5. teaches(kyros, 384). yes(craig) <- d(384,2534).
6. teaches(kyros, 2501). t(c,Y): (4) {X/2534}
7. teaches(suzanne, 148).
8. distinct(2534,384). FAILS! Nothing will unify with
9. distinct(2501,384). d(384,2534)
10. d(148,384). d(2534, 2501). ! i

d(2534,148). d(2501,148). Problem lies in KB. We didn't

axiomatize domain correctly.
Add distinct(384,2534), efc...
or add rule: distinct(C,D) < distinct(D,C).

Same query: ?busy(P).

(€50 394 Lecture St () 2002, . Boutiler 19

Example Derivation #3
Assume KB fixed with rule: 12. distinct(C,D) <- distinct(D,C).

Derivation:
yes(P) <- busy(P).
yes(P) <- 1(P.X) & t(P.Y) & d(X.Y).
busy(P). (1):{Z/P}
yes(craig) <- t(craig,Y) & d(384.Y).
t(P.X): (3): {P/craig, X/384}
yes(craig) <- d(384,2534).
t(cY): (4): {X/2534}
yes(craig) <- d(2534,384).
d(384,2534); (12); {€/384, D/2534}
yes(craig) <- .
d(2534,384); (8):

(€503 Lecture St () 2002, . Boutier 20

Substitutions

=Defn: A substitution o is any assignment of
terms to variables
* we write it like as 0 = {X/t1, Y/t2, ...}
* constant substitution is a special case; terms can be
any terms (nonground included)
=without functions, only terms are constants,vars
® e.g., 0 = {X/craig, Y/father(craig), Z/P, W/father(X)}
=A substitution is applied to an expression by
uniformly and simultaneously substituting each
term for the corresponding variable
® e.g. using subst. above on related(mother(X),W)
gives related(mother(craig), father(X))

(€503 Lecture Sl () 2002, . Boutiler 21

Unifiers

=Defn: A substitution unifies two expressions e;
and e iff e;0 is identical to e,0
="E.g., p(X,f(a)) and p(Y, f(2)) are unified by:
e {X/b, YIb, Z/a}: gives p(b,f(a)) for both expressions
e {XIY, Zla}. gives p(Y,f(a)) for both expressions
* {X/Z,YIZ, Zla}. gives p(Z,f(a)) for both expressions
=Unifier o is a most general unifier (MGU) of e;
and e, iff ;0" is an instance of (unifies with) e;o
for any other unifier o’
* An MGU gives the most general instance of an
expression; any other unifier gives a result that would
unify with that given by the MGU

(€539 Lecture St () 2002, . Boutiler 22

MGUs: Examples

"Let e; = busy(X), e, = busy(Y)
=Unifier a;: {X/kyros, Y/kyros}
* result: e101 = ex01 = busy(kyros)
=Unifier g,: {X/craig, Y/craig}
* result: e102 = ex01 = busy(craig)
=Unifier az: { Y/X}
* result: e103 = e203 = busy(X)
=Unifier o3 an MGU of expressions; not 0y 03
* e103 unifies with result of any other unifier
* 101 = busy(kyros) cannot (e.g., cannot unify e101
with eo01 = busy(craig))

(€50 394 Lecture St () 2002, . Boutiler 23

Notes on General SLD Resolution

=Generally insist that you only use MGUs in SLD
resolution to match a body atom with a KB head
¢ ensures we don’t make too specific a choice and
force us into failure unnecessarily
="To obtain all answers:

¢ once we derive an answer, we pretend the derivation
failed and backtrack to find other derivations

* we only reconsider KB-clause choices, not atom
selections, or unifier choice

(€5 394 Lecture S () 2002, . Boutiler 24

Notes on General SLD Resolution

=Prolog (see Appendix B, Ch3.2, Ch3.3)

* based on SLD-resolution

 searches for derivations using a specific strategy: (a)
always selects atoms from answer clause in left-to-
right order; (b) always chooses KB clauses in top-to-
bottom order (using first unifiable rule/fact)

* records choices and tries alternatives if failure
(essentially does depth-first search: why?)

 provides a single answer for nonground queries; but
you can force it to search for others (semicolon op)

(€50 394 Lecture St () 2002, . Boutiler 25

Renaming of Variables: Example

KB: Que .
(1) rich(joar), > rith(mary).
(2) mother(linda,joan).
(3) mother(mary linda).
(4) rich(X) <- mother(X,Y) & rich(Y).

Derivation:
yes <- rich(mary).
yes <- mother(mary,Y) & rich(Y).
rich(mary); (4). {X/mary}
yes <- mother(mary X) & mother(X,X) & rich(X).
rich(Y) : (4) using {¥/X}

Must faill Nobody (in our KB) is their own mother!

(€503 Lecture St () 2002, . Boutier 26

Renaming of Variables

="When we add body of KB clause to answer
clause, we may have accidental name conflicts
¢ in example, Y in answer clause is not “same person”
as Y in KB clause (yet both replaced by X)
=To prevent problems, we always rename vars in
KB clause (uniformly) to prevent clashes
¢ changing var names in KB clause cannot change
meaning
=System: (a) each clause has diff. vars; (b) index
KB vars, increase with each use of the clause
e use rich(X;) <- mother(X;,Y;) & rich(Y;). i-th time you
use this clause in a derivation

€503 Lecture Sl (0 2002, . Boutiler 27

Renaming of Variables: Example

KB: Query:

(1) rich(joan). ? rich(mary).
(2) mother(linda,joan).

(3) mother(mary linda).

(4) rich(X) <- mother(X,Y) & rich(Y).

Derivation:
yes <- rich(mary).
yes <- mother(mary,Y1) & rich(Y1).
rich(mary): (4); {X1/mary}
yes <- mother(mary X2) & mother(X2.Y2) & rich(Y2).
rich(Y1): (4) using {Y1/X2}
etc... (no conflict now)

(€539 Lecture St () 2002, . Boutiler 28

DCL: How can we use it?

=Query-answering system:
 given KB representing a specific domain, use DCL
(and suitable proof procedure) to answer questions
=A Deductive Database System
* much like the above
=A Programming Language
* Prolog (we've seen) is a dressed up DCL using SLD

* Important to realize that as a programming language,
we are still making logical assertions and proving
logical consequences of these assertions

(€50 394 Lecture St () 2002, . Boutiler 29

Prolog List Operations

= A distinguishing feature of Prolog is its built-in
facilities for list manipulation
* not hacks, but genuine logical assertions/derivations
=Consider the function cons, constant el:
® cons accepts two args, returns pair containing them
* e.g, cons(a,b), cons(a,cons(b,c))
¢ el is a constant denoting the empty list
=A proper list is either el or a pair whose second
element is a proper list
* cons(a, cons(b, cons(c, el))) = (abc) or [ab,c]

CSC.384 Lecture Stides (¢ 2002, €. Boutiler 30

Prolog List Operations

=Prolog uses a more suggestive notation:
¢ [] is a constant symbol (empty list)
¢ [|]is a binary function symbol: infix notation (cons)
¢ [a,b,c] shorthand for[a|[b|[c|0]]]
=But these are just terms in DCL
=Standard list manipulation operations correspond
to logical assertions

* e.g., the usual definition of append(X,Y,Z) simply
defines what it means for Z to be the appending of X

Defining Append

(A1) append([], Z, Z).

(A2) append([E1 | R1],Y, [E1 | Rest]) <-
append(R1, Y, Rest).

and Y
C5C.384 Lecture Slkks (¢ 2002, . Boutiler 31 (C5C384 Lecture Slks (0 2002, . Boutiler 32
Proving the Append Relation #1 Proving the Append Relation #2
Query: ? append([a,b], [c.d], [a.,b,c.d]). Query: ? append([a,b], [c.d], [9. b.c.d]).
(A1) append([], Z, Z). (A1) append([], Z, Z).
(A2) append([E1 | R1], Y, [E1 | Rest]) <- (A2) append([E1 | R1],Y, [E1 | Rest]) <-
append(R1, Y, Rest). append(R1, Y, Rest).
Derivation: Derivation:
yes <- append([a,b], [¢c.d], [a,b.c.d]). yes <- append([a,b], [¢c.d], [f b.c.d]).
yes <- append([b], [¢.d], [b.c.d]).
Resolve with (A2) using { E1/a, R1/[b], Y/[c.d], Rest/[b,c.d]} No append rule can unify with this atom
yes <- append([], [¢c.d], [c.d]). (convince yourself: look at E1)
Resolve with (A2) using { E1/b, R1/[], Y/[c.d], Rest/[c.d]}
yes<-. Answer: no
Resolve with (A1) using { Z/[c,d]1}
Answer: yes
C5C384 Lecture Sles (¢ 2002, . Boutiler 33 €5C384 Lecture Slkks (0 2002, . Boutiler 34

Proving the Append Relation #3

Query: ? append(L, M, [a,b,c.d]).
(A1) append([], Z, Z).

(A2) append([E1 | R1], Y, [E1 | Rest]) «-
append(R1, Y, Rest).

Derivation:
yes(L,M) <- append(L, M, [a,b,c.d]).
yes([a|R1], M) <- append(R1, M, [b,c.d]).

Resolve with (A2) using { L/[a|R1], Y/M, El/a, Rest/[b,c,d]1}
yes([a], [b.c.d]) <-.

Resolve with (A1) using { R1/[], M/[b,c.d], Z/[b,c.d]}

Answer: L= [a], M = [b,c.d]

CSC384 Lecture Siides (0 2002, €. Boutiler 35

Proving the Append Relation

sExercise: Give derivations for at least two other
answers for the previous query:
=Query: ? append(L, M, [a,b,c,d]).
*L=[l,M=[ab,cd]
*L=[a], M=[b,cd]
*L=[ab], M=[cd]
*L=[ab,c],M=[d]
*L=[ab,cd]l,M=]

CSC.384 Lecture Stides (¢ 2002, €. Boutiler

36

DCL and Knowledge Representation

=DCL has obvious uses as a question answering
system for complex knowledge

* A key issue: how does one effectively represent
knowledge of a specific domain for this purpose?

¢ Unfortunately, there are generally many ways to
represent a KB: some more useful (compact, natural,
efficient) than others
= et’s go through a detailed example to see
where choices need to be made, what the
difficulties are, etc.

CSC.384 Lecture Siides (¢ 2002, €. Boutiler 37

The Herbalist Domain

=Suppose we want to build a KB that answers
queries about what sorts of homeopathic
remedies we need to treat different symptoms
* This “expert system” will underly a Web site where
users can ask for advice on herbal remedies
="We need to build a KB that represents info we
have about different clients, their symptoms,
treatments, etc.

CSC.384 Lecture Stides (0 2002, C. Boutiler 38

What Functionality is Needed?

= Before designing KB, we need to know what
types of queries we'll ask; do we want:
a) ?treatnent(john,T).
b) 2treat ment (symptom, T).
C) ?treat ment (combination-of-symptoms, T) .
d) ?saf e(combination-of-treatments) .
e) ?nedical _records(john, R).
f) 2paid_bills(john).

= andsoon

©SC.384 Lecture Siides (0 2002, €. Boutiler 39

What Individuals Do We Need?

=What constants/functions will | need?
=Clients (people), other entities:

 constants: joan, ming, gabrielle, greenshield...

* functions: insurer(X), etc.
=Symptoms (constants): fever, aches, chills, ...
"Treatments:

* constants: echinacea, mudwort, feverfew, ...

¢ or maybe function: tmt(feverfew,capsule),
tmt(mudwort, tincture), where we have a treatment
requires a substance and a preparation

¢ then we need constants for substances, preparations

(€539 Lecture St () 2002, . Boutiler 40

What Individuals Do We Need?

=Diseases: do we need diseases?

* why? why not? (our treatment philosophy will be to

apply treatments to symptoms: simplicity!)

®"Combinations of symptoms? treatments?
=We'll consider combinations:
=symptomList is a list of symptoms:

¢ e.g, function: symList(symptom, SList)

e or using Prolog notation: [aches, fever, chills]
=treatmentList similar:

* [tmt(mudwort,tincture), tmt(echinacea,capsule)]

(€50 394 Lecture St () 2002, . Boutiler 41

What Relations?

"Relations depend on functionality desired
=|f we ask ?treatnent(john, T). we need
information about john in KB (e.g., symptoms)
* e.g.: symptom(john,fever). symptom(john,chills).
e or: symptoms(john, [fever,chills]).
* or maybe symptoms are relations themselves and not
individuals: fever(john). chills(john).
="Maybe we don’t even discuss individual clients:
® e.g.,, we only ask: ?treat nent (SLi st, TLi st).
=Different choices influence how you express your
knowledge: some make life easy, or difficult!

(€5 394 Lecture S () 2002, . Boutiler 42

Facts and Rules

=Once we've decided on suitable relations we
need to populate our KB with suitable facts and
rules
e facts/rules should be correct

* facts/rules should cover all relevant cases (which
depends on the task at hand)

* try to keep facts/rule concise (only relevant facts)

=For example: we can often express a zillion facts
using one or two simple rules

(€50 394 Lecture St () 2002, . Boutiler 43

Some Example Facts/Rules
=Facts about individual patients

Specific Visit Facts (enter into KB during exam):
musclepain(mary shoulders).
slow_digestion(john).
fever(john).

Semi-permanent Facts (persist in KB):
arthritis(ming).
hypertensive(john).
relaxed_disposition(mary).

CSC.384 Lecture Stides (0 2002, C. Boutiler

Some Example Facts/Rules

=Rules relating treatments to symptoms

We can relate treatments to symptoms directly:
remedy(X,echinacea) :- fever(X) & cough(X) & sniffles(X).
remedy(X,echinacea) :- chills(X) & cough(X) & sniffles(X).

Or relate treatments to diseases,
and diseases fo symptoms:
remedy(X,echinacea) :- has_cold(X).

has_cold(X) :- fever(X) & cough(X) & sniffles(X).
has_cold(X) :- chills(X) & cough(X) & sniffles(X).

(€503 Lecture Sl () 2002, . Boutiler 45

Some Example Facts/Rules

=\We might even have more general rules

* Appropriate level of generality can make KB
expression more concise

We might have general problems:
general_dig_probs(X) :- slow_digestion(X).
general_dig_probs(X) :- heartburn(X) & relaxed_disposition(X).
general_dig_probs(X) :- gastritis(X).

and relate treatments to such classes of problems:

remedy(X,cloves) :- general_dig_probs(X).
remedy(X,meadowsweet) :- gastritis(X).

CSC.384 Lecture Siides (¢ 2002, €. Boutiler

Some Example Facts/Rules

=Design choice for relations, individuals can have
impact on ability to prove certain things (easily)
=Suppose we want to find a treatment list for john:
¢ list should cover each symptom john exhibits (in KB)

* but how do we “collect” all the facts from the KB of the
form fever(john), slow_digestion(john), etc.

¢ (actually Prolog has some hacks, but SLD doesn’t)
®"Thus we make our lives easier by thinking of
symptoms as individuals, and relating patients to
a list of all symptoms
* symptoms(john, [fever, aches, slow_digestion]).

€503 Lecture Sl (0 2002, . Boutiler 47

Example Facts/Rules

= et’s attempt to define treatment(S,T): treatment
list T is satisfactory for symptom list S
* Note: it suggests new relations to specify/define
®|s this definition correct? complete? efficient? for
what types of queries will it work?

treatment([], [1).

treatment([S1 | RestS], [T1 | RestT]):-
treats(T1,51),
treatment(RestS, RestT),
safe([T1 | RestT]).

CSC.384 Lecture Stides (¢ 2002, €. Boutiler

Example Facts/Rules

treatment([], [1).

treatment([S1 | RestS], [T1 | RestT]) :-
treats(T1,51),
treatment(RestS, RestT),
safe([T1 | RestT]).

=?treatment([aches,fever], T): is this defn OK?

=?treatment([aches,fever], [ech,mudwort]): OK?
¢ what if ech treats fever and mudwort treats aches?
* must rewrite to make order-independent

=Final Tlist is safe if no nasty interactions:
¢ why is this definition inefficient?
¢ why prove for each sublist? how would you rewrite it?
¢ could proving it each time make sense (for Prolog)?
* Exercise: define a version of the safe predicate

(€50 394 Lecture St () 2002, . Boutiler 49

KB Design: The Moral

=There are many design choices

=®The queries you plan to ask influence the way
you break the world into individuals and relations

=Even with fixed functionality, there are often
several ways to approach the problem

=Different approaches lead to more or less
natural, efficient, and compact KBs

CSC.384 Lecture Stides (0 2002, C. Boutiler

