CSC384: Lecture 3

" ast time
* DCL: syntax, semantics, proofs
* pottom-up proof procedure
"Today
* top-down proof procedure (SLD-resolution)
* perhaps start on uses of DCL
"Readings:
* Today: 2.7, 2.8 (details in tutorial),

=perhaps Ch.3 (excl. 3.7); we’ll discuss only part
* Next week: wrap Ch.3; start on Ch.4: 4.1-4.4/4.6

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Top-Down Proof Procedure

"BUPP Is data-driven

* not influenced by query q, just facts and rules in KB!
* wasteful: proves things unneeded to prove

"Top-down proof procedure is query-driven:
* focussed on deriving a specific query

m\We'll describe a TDPP called SLD-resolution

* Basically, the strategy implemented within Prolog
e stands for selected linear, definite-clause resolution

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD-Resolution (No vars)

"Basic Iintuitions:
* suppose we have query ?9q & Qg2
* suppose we haveruleq; —« a&b&c.

* if we prove subgoal query ?a&b&c& gy thenwe
know that original query must be true

="SLD a form of backchaining or subgoaling:

* to prove g, we look for a rule with the head g, and
then attempt to prove the body of that rule; if proven,
we know g must be a consequence of KB

* Progress: when subgoals are facts!

"Defn: An answer clause: yes « gr & ... & gny
"Defn: An answer: yes - .

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD-Resolution: Algorithm (no vars)

Given query 2g; & ... & g, and a KB
1. Construct answer clause yes — g1 & ... & gp
2. Until no KB-clause choosable or AC is an answer

(a) Select an atom a; from the current AC
yes — ar & ..4& ax

(b) Choose aclause a; — by & .. & b, from KB
whose head matches selected atom

(c) Replace a; in AC with body to obtain new AC
yes — ar&..ai.1&br& ... & by & aji1 4.4 ak

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD-Resolution

"|f we reach an answer, return YES
* query is a logical conseguence of KB

"|f we find no choosable clauses, return NO
* query not a consequence (but not necessarily false)

" A seqguence of answer clauses that culminates In
an answer is an SLD-derivation of the query

®Qur algorithm attempts to find a derivation:
* if it chooses incorrectly at Step 2, it may fail
* see text for distinction between choice and selection

* we say derivation attempt fails if we get stuck
* how does Prolog deal with failure?

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD: Example

KB: (1) a <- b&ec.
(2) b <- d&e.
(2)Yb <« c.

(3) b <- g&e.
(4) c <« e.
(5) d.

(6) e.

(7) f <- adag.

Query: ?a

Derivation Attempt #1

yes <- a.

yes<-b &c. Select a; choose (1)
yes<-g& e & c. Selectb; choose (3)
yes <- g & c. Select e; choose (6)

Select g: FAIL! no choosable clause

SLD: Example
Derivation Attempt #2

KB: (1) a <- b&ec.
(2) b <- d&e.
(2)Yb <« c.

(3) b <- g&e.
(4) c <« e.
(5) d.

(6) e.

(7) f <- adag.

Query: ?a

yes <- a.
yes<-b & c.
yes<-d&e&c.
yes <- e & c.
yes <- C.

yes <- e.

yes <- .

Select a; choose (1)
Select b; choose (2)
Select d; choose (5)
Select e; choose (6)
Select c; choose (4)
Select e; choose (6)

QUERY IS TRUE: obtained answer

C 384 Lecture Slides (c) 2002, C. Boutilier

SLD Notes

"Does atom selected to resolve away matter?
* No: all must be “proven” eventually

®"Does KB clause chosen to resolve with matter?
* Yes: wrong choice can lead to failure
* We'll talk later about backtracking/search for a proof

"Soundness: should be fairly obvious

* Exercise: prove that if any body in any answer clause
IS a consequence of KB, then so is query (soundness
follows: If we derive an answer, query holds)

"Completeness: if KB~ g, there is a derivation

e can we find it? Yes, If we make correct choices
* How? Might have to try all options (watch for cycles)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Aside: Resolution

Resolution

avb, "bvc Proof Rule

avoc

Query yes —« gé&h equivalent to -g v -h v yes
Rule h—-ad&bd&c equivalentto hv-av-bv-c

~-gv-hvyes, hv-av-bv-c
~gVv-av-bvV-CvVyes

Resolvent -gv-av-bv-cvyes
equiv.to yes - g&ad&bdc

C 384 Lecture Slides (c) 2002, C. Boutilier

Variables in SLD (no functions)

"Recall query q(X) is interpreted existentially:
* is there some X s.t. q(X) is a conseguence?
* return a ground instance/term t (or all t) s.t. g(t) holds
* with no functions, terms are just constants

Example: Query:
(1) rich(joan). ? rich(linda).
(2) mother(linda,joan). yes
(3) mother(mary,linda). ? rich(X).
(4) rich(X) <- mother(X.Y) joan, linda, mary
& rich(Y).

10

SLD: Queries with no vars
"Query: ?rich(linda)

* set up answer clause: yes - rich(linda)
* put body matches no heads in KB! How to start??

" |ntuitively, rich(linda) does match the head of
the rule rich(X) — mother(X,Y) & rich(Y).
* just need to substitute constant linda for var X
* result: yes — mother(linda,Y) & rich(Y).
" Applying constant substituition {X/linda} to rule
(4) gives us an instance of rule (4):
* rich(linda) — mother(linda,Y) & rich(Y).
* Note: this instance is clearly entailed by KB

CSC 384 Lecture Slides (c) 2002, C. Boutilier 1 1

Example: SLD with vars in KB

KB: Query:

(1) rich(joan). ? rich(linda).
(2) mother(linda,joan).

(3) mother(mary,linda).

(4) rich(X) <- mother(X,Y) & rich(Y).

Derivation:

yes <- rich(linda).
yes <- mother(linda,Y) & rich(Y).

How: Select rich(linda); resolve with (4) using {X/linda}
yes <- rich(joan).

How: Select mother(linda,Y) . resolve with (2) using {Y/joan}
yes <- .

How: Select rich(joan); resolve with (1) using {}

C 384 Lecture Slides (c) 2002, C. Boutilier 1 2

SLD: Queries with vars

="Query: ?rich(2)
* set up answer clause: yes(Z) — rich(Z)

® once derivation reaches an answer, this allows us to
extract an “individual” for which query holds

* can’t just say yes: must say “for who”

" |ntuitively, rich(Z) does match the head of the
rule rich(X) < mother(X,Y) & rich(Y).
* just need to substitute var Z for var X
* result: yes(Z) — mother(Z,Y) & rich(Z).
= Applying substitution {X/Z} to rule (4) gives:
* rich(Z) — mother(Z,Y) & rich(Y).

CSC 384 Lecture Slides (c) 2002, C. Boutilier

13

Example: SLD with vars in query

KB: Query:

(1) rich(joan). ? ri>clh(Z).
(2) mother(linda,joan).

(3) mother(mary,linda).

(4) rich(X) <- mother(X,Y) & rich(Y).

Derivation:
yes(Z) <- rich(Z).
yes(Z) <- mother(ZY) & rich(Y).
Select rich(Z); resolve with (4) using {X/Z}
yes(Z) <-mother(Z,joan).
Select rich(Y); resolve with (1) using {Y/ joan}
yes(linda) <- .
Select mother(Z,joan) ; resolve with (2) using {Z/linda}
C 384 Lecture Slides (c) 2002, C. Boutilier 1 4

Example: SLD with vars in query

KB: Query:

(1) rich(joan). ? ri>clh(Z).
(2) mother(linda,joan).

(3) mother(mary,linda).

(4) rich(X) <- mother(X,Y) & rich(Y).

A Different Derivation:
yes(Z) <- rich(Z).
yes(joan) <- .
Select rich(Z); resolve with (1) using {Z/ joan}

Exercise: construct derivation that gives the
answer "mary".

Different derivations can give different answers;

C 384 Lecture Slides (c) 2002, C. Boutilier

15

SLD with Variables

"To recap, we've seen SLD with:
* variables in KB, but ground queries
* variables in KR and variables in query

®Basic idea: we need to make appropriate
substitutions of our variables in order to make
atoms in answer clause match heads of KB rules

"|_et's look at one more example, sticking with the
“Intuitive” definition of a substitution

®"Then we’ll formalize unifiers and MGUSs

Example Derivation #1

Query:
KB: ?busy(P).
1. busy(Z) <- teaches(Z X) &
teaches(ZY) & distinct(X,Y). Answer Clause:
2. busy(Z) <- teaches(Z,148). yes(P) <- busy(P).
3. teaches(craig, 384).
4. teaches(craig, 2534). Derivation:
5. teaches(kyros, 384). yes(P) <- busy(P).
6. teaches(kyros, 2501). yes(P) <- teaches(P,148).
7. teaches(suzanne, 148). Select busy(P); resolve with
8. distinct(2534,384). =(2) using {P/Z}
9. distinct(2501,384). oyes(suzqnne) <- .
distinct.. - Select t(Z,148). resolve with
Could have used (2) usmg (Z/P}
(Z/P} instead: as Answer: suzanne

long as vars match (others: craig, kyros... show!)

CSC 384 Lecture Slides (c) 2002, C. Boutilier 1 7

SLD-Resolution: Algorithm (w/ vars)

Given query 2g; & .. & g, with vars x7... x,and a KB
1. Construct answer clause yes(x;.. x,) « g1 & ... & gy, -

2. Until no KB-clause choosable or AC is an answer

(a) Select an atom a; from the current AC yes — a; & ...& ai

(b) Choose aclause A; — by & .. & b, from KB

and a substitution o that unifies the head A, of the
KB clause with the selected atom a; (i.e., that when
applied to A; and a; makes them the same)

(c) apply o to AC and KB clause to obtain ACo, KBo

(d) Replace a;0 in ACO with body of KBO to obtain new AC
(ves(xy.. Xxp) « ar& ..a,.1&b; & .. &b, & a1 4.4 ax)o

CSC 384 Lecture Slides (c) 2002, C. Boutilier

18

Example Derivation #2

KB:
1. busy(Z) <- teaches(Z,X) &

teaches(Z,Y) & distinct(X,Y).

busy(Z) <- teaches(Z,148).
teaches(craig, 384).
teaches(craig, 2534).
teaches(kyros, 384).
teaches(kyros, 2501).
teaches(suzanne, 148).
distinct(2534,384).

. distinct(2501,384).

10. d(148,384). d(2534, 2501).
d(2534,148). d(2501,148).

OO XPNOO W

Same query: ?busy(P).

Derivation:

yes(P) <- busy(P).

yes(P) <- +(P X) & t(P,Y) & d(X,Y).
busy(P); (1); {Z/P}

yes(craig) <- t(craig,Y) & d(384.Y).

t(P,X); (3); {P/craig, X/384})
yes(craig) <- d(384,2534).
t(cY): (4); {X/2534}

FAILS! Nothing will unify with
d(384,2534).

Problem lies in KB. We didn't
axiomatize domain correctly.
Add distinct(384,2534), etc...

or add rule: distinct(C,D) <- distinct(D,C).

CSC 384 Lecture Slides (c) 2002, C. Boutilier

19

Example Derivation #3

Assume KB fixed with rule: 12. distinct(C,D) <- distinct(D,C).

Derivation:
yes(P) <- busy(P).
yes(P) <- 1(P,X) & t(P,Y) & d(X,Y).
busy(P); (1); {Z/P}
yes(craig) <- t(craig,Y) & d(384.Y).
t(P.X); (3):; {P/craig, X/384}
yes(craig) <- d(384,2534).
t(c.Y): (4); {X/2534}
yes(craig) <- d(2534,384).
d(384,2534); (12). {C/384, D/2534}
yes(craig) <- .
d(2534,384); (8). {}

20

Substitutions

"Defn: A substitution o I1s any assignment of
terms to variables
* we write it like as o = {X/t11, Y/t12, ...}

* constant substitution is a special case; terms can be
any terms (nonground included)

=without functions, only terms are constants,vars
* e.g., 0 = {X/craig, Y/father(craig), Z/P, W/father(X)}

= A substitution is applied to an expression by
uniformly and simultaneously substituting each
term for the corresponding variable

® e.g. using subst. above on related(mother(X),W)
gives related(mother(craig), father(X))

CSC 384 Lecture Slides (c) 2002, C. Boutilier

21

Unifiers

"Defn: A substitution unifies two expressions e;
and e, iff e10 Is identical to e;0
"E.g., p(X,f(a)) and p(Y, f(Z)) are unified by:
e {X/b, Y/b, Z/a}. gives p(b,f(a)) for both expressions
o IXIY, Zla}. gives p(Y,f(a)) for both expressions
e IXIZ,YIZ, ZIa}. gives p(Z,f(a)) for both expressions
"Unifier g iIs a most general unifier (MGU) of e
and e, Iff e,0’ Is an instance of (unifies with) e,0
for any other unifier o’
* An MGU gives the most general instance of an

expression; any other unifier gives a result that would
unify with that given by the MGU

CSC 384 Lecture Slides (c) 2002, C. Boutilier

22

MGUs: Examples

" et e; = busy(X), e» = busy(Y)
"Unifier o4: {X/kyros, Y/kyros}
* result: e101 = e»>01 = busy(kyros)
=Unifier a,: {X/craig, Y/craig}
* result: e102 = e»201 = busy(craig)
"Unifier o3: { Y/X }
* result: e103 = e203 = busy(X)
"Unifier oz an MGU of expressions; not o, 0>

* e103 unifies with result of any other unifier

* e101 = busy(kyros) cannot (e.g., cannot unify e101
with e> 01 = busy(craig))

CSC 384 Lecture Slides (c) 2002, C. Boutilier

23

Notes on General SLD Resolution

"Generally insist that you only use MGUs in SLD
resolution to match a body atom with a KB head

* ensures we don’t make too specific a choice and
force us into failure unnecessarily

®To obtain all answers:

* once we derive an answer, we pretend the derivation
failed and backtrack to find other derivations

* we only reconsider KB-clause choices, not atom
selections, or unifier choice

CSC 384 Lecture Slides (c) 2002, C. Boutilier 2 4

Notes on General SLD Resolution

"Prolog (see Appendix B, Ch3.2, Ch3.3)

* pbased on SLD-resolution

* searches for derivations using a specific strategy: (a)
always selects atoms from answer clause in left-to-
right order; (b) always chooses KB clauses in top-to-
bottom order (using first unifiable rule/fact)

® records choices and tries alternatives if failure
(essentially does depth-first search: why?)

* provides a single answer for nonground queries; but
you can force it to search for others (semicolon op)

CSC 384 Lecture Slides (c) 2002, C. Boutilier 25

Renaming of Variables: Example

KB: Query:

(1) rich(joan). ? rich(mary).
(2) mother(linda,joan).

(3) mother(mary,linda).

(4) rich(X) <- mother(X,Y) & rich(Y).

Derivation:
yes <- rich(mary).
yes <- mother(mary,Y) & rich(Y).
rich(mary): (4). {X/mary}
yes <- mother(mary,X) & mother(X,X) & rich(X).
rich(Y): (4) using {Y/X}

Must faill Nobody (in our KB) is their own mother!
C 384 Lecture Slides (c) 2002, C. Boutilier 26

Renaming of Variables

"\When we add body of KB clause to answer
clause, we may have accidental name conflicts

* in example, Y in answer clause Is not “same person”
as Y in KB clause (yet both replaced by X)

"To prevent problems, we always rename vars in
KB clause (uniformly) to prevent clashes

* changing var names in KB clause cannot change
meaning

mSystem: (a) each clause has diff. vars; (b) index
KB vars, increase with each use of the clause

* use rich(X;) <- mother(X;,Y;) & rich(Y;). i-th time you
use this clause in a derivation

CSC 384 Lecture Slides (c) 2002, C. Boutilier 27

Renaming of Variables: Example

KB: Query:

(1) rich(joan). ? rich(mary).
(2) mother(linda,joan).

(3) mother(mary,linda).

(4) rich(X) <- mother(X,Y) & rich(Y).

Derivation:
yes <- rich(mary).
yes <- mother(mary,Y1) & rich(Y1).
rich(mary); (4); {Xi/mary}
yes <- mother(mary,X2) & mother(X2,Y2) & rich(Y2).
rich(Y1) . (4) using {Y1/X2}
etc... (no conflict now)

DCL: How can we use It?

=Query-answering system:

* given KB representing a specific domain, use DCL
(and suitable proof procedure) to answer questions

" A Deductive Database System
* much like the above
" A Programming Language
* Prolog (we’ve seen) is a dressed up DCL using SLD

* I[mportant to realize that as a programming language,
we are still making logical assertions and proving
logical consequences of these assertions

CSC 384 Lecture Slides (c) 2002, C. Boutilier

29

Prolog List Operations

= A distinguishing feature of Prolog is its built-in
facilities for list manipulation

* not hacks, but genuine logical assertions/derivations

®Consider the function cons, constant el:
® cons accepts two args, returns pair containing them
* e.g, cons(a,b), cons(a,cons(b,c))
* el is a constant denoting the empty list
" A proper list is either el or a pair whose second
element is a proper list
* cons(a, cons(b, cons(c, el))) = (abc) or [a,b,c]

CSC 384 Lecture Slides (c) 2002, C. Boutilier

30

Prolog List Operations

"Prolog uses a more suggestive notation:

* [] is a constant symbol (empty list)

* [|]is a binary function symbol: infix notation (cons)
* [a,b,c] shorthand for[a|[b|[c|[]]]]

"But these are just terms in DCL
=Standard list manipulation operations correspond

to logical assertions

* e.g., the usual definition of append(X,Y,Z) simply
defines what it means for Z to be the appending of X
and Y

CSC 384 Lecture Slides (c) 2002, C. Boutilier 3 1

Defining Append

(A1) append([], Z, Z).

(A2) append([El | R1],Y, [El | Rest]) <-
append(R1, Y, Rest).

32

Proving the Append Relation #1

Query: ? append([a,b], [¢,d], [a,b,c.,d]).
(A1) append([], Z, Z).

(A2) append([El | R1],Y, [El | Rest]) «-
append(R1, Y, Rest).

Derivation:
yes <- append([a,b], [c,d], [a,b,c.d]).
yes <- append([b], [c,d], [b,c.d]).

Resolve with (A2) using { E1/a, R1/[b], Y/[c,d], Rest/[b,c,d]}
yes <- append([], [c,d], [c.d]).

Resolve with (A2) using { E1/b, R1/[], Y/[c,d], Rest/[c,d]}
yes <- .

Resolve with (A1) using { Z/[c,d]}

Answer: yes

CSC 384 Lecture Slides (c) 2002, C. Boutilier

33

Proving the Append Relation #2

Query: ? append([a,b], [c,d], [g, b,c.d]).

(A1) append([], Z, Z).

(A2) append([El | R1],Y, [El | Rest]) «-
append(R1, Y, Rest).

Derivation:

yes <- append([a,b], [c,d], [f,b,c.d]).

No append rule can unify with this atom
(convince yourself: look at E1)

Answer: no

CSC 384 Lecture Slides (c) 2002, C. Boutilier

34

Proving the Append Relation #3

Query: ? append(L, M, [a,b,c,d]).
(A1) append([], Z, Z).

(A2) append([El | R1],Y, [El | Rest]) «-
append(R1, Y, Rest).

Derivation:
yes(L,M) <- append(L, M, [a,b,c,d]).
yes([a|R1], M) <- append(R1, M, [b,c,d]).

Resolve with (A2) using { L/[a|R1], Y/M, El/a, Rest/[b,c.d]}
yes(lal, [b.c.d]) <.

Resolve with (A1) using { R1/[], M/[b,cd], Z/[b, c,d]}

Answer: L = [a], M = [b,c,d]

CSC 384 Lecture Slides (c) 2002, C. Boutilier

35

Proving the Append Relation

"Exercise: Give derivations for at least two other
answers for the previous query:

'Query ? append(L, M, [a,b,c.d]).
L =[], M=[ab,c,d]

*L=[a], M=[b,cd
*L=[ab], M=[cd
*L=[ab,c], M=[d
*L=[ab,cd], M=]]

DCL and Knowledge Representation

®"DCL has obvious uses as a guestion answering
system for complex knowledge

* A key issue: how does one effectively represent
knowledge of a specific domain for this purpose?

* Unfortunately, there are generally many ways to
represent a KB: some more useful (compact, natural,
efficient) than others

" et’s go through a detailed example to see
where choices need to be made, what the
difficulties are, etc.

CSC 384 Lecture Slides (c) 2002, C. Boutilier

37

The Herbalist Domain

"Suppose we want to build a KB that answers
gueries about what sorts of homeopathic
remedies we need to treat different symptoms

* This “expert system” will underly a Web site where
users can ask for advice on herbal remedies

"\We need to build a KB that represents info we
have about different clients, their symptoms,
treatments, etc.

C 384 Lecture Slides (c) 2002, C. Boutilier

38

What Functionality is Needed?

Before designing KB, we need to know what
types of queries we’ll ask; do we want:

a) ?treatment(john, T).

D) 2treatnment (symptom, T).

C) ?treat ment (combination-of-symptoms, T) .
d) ?saf e(combination-of-treatments) .

e) ?nedical _records(john, R).

f) ?paid_bills(john).

and so on

C 384 Lecture Slides (c) 2002, C. Boutilier

39

What Individuals Do We Need?

"\\What constants/functions will | need?

=Clients (people), other entities:
* constants: joan, ming, gabrielle, greenshield...
* functions: insurer(X), etc.

="Symptoms (constants): fever, aches, chills, ...

" Treatments:
* constants: echinacea, mudwort, feverfew, ...

* or maybe function: tmt(feverfew,capsule),
tmt(mudwort, tincture), where we have a treatment
requires a substance and a preparation

* then we need constants for substances, preparations

CSC 384 Lecture Slides (c) 2002, C. Boutilier 40

What Individuals Do We Need?

BDiseases: do we need diseases?

* why? why not? (our treatment philosophy will be to
apply treatments to symptoms: simplicity!)

®"Combinations of symptoms? treatments?
="\We’ll consider combinations:

="symptomList is a list of symptoms:

* e.g, function: symList(symptom, SList)

* or using Prolog notation: [aches, fever, chills]
"treatmentList similar:

* [tmt(mudwort,tincture), tmt(echinacea,capsule)]

CSC 384 Lecture Slides (c) 2002, C. Boutilier

41

What Relations?

"Relations depend on functionality desired

"fwe ask ?treatnent(john, T). we need
Information about john in KB (e.g., symptoms)
* e.g.: symptom(john,fever). symptom(john,chills).

* or: symptoms(john, [fever,chills]).

* or maybe symptoms are relations themselves and not
iIndividuals: fever(john). chills(john).

"Maybe we don’t even discuss individual clients:
°* e.g., weonly ask: ?treatnent (SList, TLi st).

®Different choices influence how you express your
knowledge: some make life easy, or difficult!

CSC 384 Lecture Slides (c) 2002, C. Boutilier 42

Facts and Rules

"Once we've decided on suitable relations we
need to populate our KB with suitable facts and
rules

* facts/rules should be correct

* facts/rules should cover all relevant cases (which
depends on the task at hand)

* try to keep facts/rule concise (only relevant facts)

"For example: we can often express a zillion facts
using one or two simple rules

CSC 384 Lecture Slides (c) 2002, C. Boutilier 43

Some Example Facts/Rules

"Facts about individual patients

Specific Visit Facts (enter into KB during exam):
musclepain(mary,shoulders).
slow_digestion(john).
fever(john).

Semi-permanent Facts (persist in KB):
arthritis(ming).
hypertensive(john).
relaxed_disposition(mary).

44

Some Example Facts/Rules

"Rules relating treatments to symptoms

We can relate treatments to symptoms directly:

remedy(X,echinacea) :- fever(X) & cough(X) & sniffles(X).
remedy(X,echinacea) :- chills(X) & cough(X) & sniffles(X).

Or relate treatments to diseases,

and diseases to symptoms:
remedy(X,echinacea) :- has_cold(X).

has_cold(X) :- fever(X) & cough(X) & sniffles(X).
has_cold(X) :- chills(X) & cough(X) & sniffles(X).

CSC 384 Lecture Slides (c) 2002, C. Boutilier

45

Some Example Facts/Rules

"\We might even have more general rules

* Appropriate level of generality can make KB
expression more concise

We might have general problems:
general_dig_probs(X) :- slow_digestion(X).
general_dig_probs(X) :- heartburn(X) & relaxed_disposition(X).
general_dig_probs(X) :- gastritis(X).

and relate treatments to such classes of problems:

remedy(X,cloves) :- general_dig_probs(X).
remedy(X,meadowsweet) :- gastritis(X).

CSC 384 Lecture Slides (c) 2002, C. Boutilier 46

Some Example Facts/Rules

"Design choice for relations, individuals can have
Impact on ability to prove certain things (easily)

"Suppose we want to find a treatment list for john:
* list should cover each symptom john exhibits (in KB)

* hut how do we “collect” all the facts from the KB of the
form fever(john), slow_digestion(john), etc.

* (actually Prolog has some hacks, but SLD doesn't)

®"Thus we make our lives easier by thinking of
symptoms as individuals, and relating patients to
a list of all symptoms

* symptoms(john, [fever, aches, slow_digestion]).

CSC 384 Lecture Slides (c) 2002, C. Boutilier 47

Example Facts/Rules

" et’s attempt to define treatment(S,T): treatment
list T Is satisfactory for symptom list S

* Note: it suggests new relations to specify/define

"|s this definition correct? complete? efficient? for
what types of queries will it work?

treatment([1, []).

treatment([S1 | RestS], [T1 | RestT]) :-
treats(T1,51),
treatment(RestS, RestT),
safe([T1 | RestT]).

C 384 Lecture Slides (c) 2002, C. Boutilier 4 8

Example Facts/Rules

treatment([], []).

treatment([S1 | RestS], [T1 | RestT]) :-
treats(T1,S1),
treatment(RestS, RestT),
safe([T1 | RestT]).

=?2treatment([aches,fever], T): is this defn OK?

=?treatment([aches,fever], [ech,mudwort]): OK?

e what if ech treats fever and mudwort treats aches?
* must rewrite to make order-independent

"Final Tlist is safe If no nasty interactions:
* why is this definition inefficient?
* why prove for each sublist? how would you rewrite it?
* could proving it each time make sense (for Prolog)?
* Exercise: define a version of the safe predicate

CSC 384 Lecture Slides (c) 2002, C. Boutilier 49

KB Design: The Moral

®"There are many design choices

®"The gueries you plan to ask influence the way
you break the world into individuals and relations

"Even with fixed functionality, there are often
several ways to approach the problem

"Different approaches lead to more or less
natural, efficient, and compact KBs

C 384 Lecture Slides (c) 2002, C. Boutilier 50

