
CSC 384 Lecture Slides (c) 2002, C. Boutilier

CSC384: Lecture 3
�Last time

• DCL: syntax, semantics, proofs
• bottom-up proof procedure

�Today
• top-down proof procedure (SLD-resolution)
• perhaps start on uses of DCL

�Readings:
• Today: 2.7; 2.8 (details in tutorial),

�perhaps Ch.3 (excl. 3.7); we’ll discuss only part
• Next week: wrap Ch.3; start on Ch.4: 4.1-4.4/4.6

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Top-Down Proof Procedure

�BUPP is data-driven
• not influenced by query q, just facts and rules in KB!
• wasteful: proves things unneeded to prove q

�Top-down proof procedure is query-driven:
• focussed on deriving a specific query

�We’ll describe a TDPP called SLD-resolution
• Basically, the strategy implemented within Prolog
• stands for selected linear, definite-clause resolution

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD-Resolution (No vars)
�Basic intuitions:

• suppose we have query ?q1 & q2

• suppose we have rule q1 ← a & b & c.
• if we prove subgoal query ?a & b & c & q2 then we

know that original query must be true

�SLD a form of backchaining or subgoaling:
• to prove q, we look for a rule with the head q, and

then attempt to prove the body of that rule; if proven,
we know q must be a consequence of KB

• Progress: when subgoals are facts!

�Defn: An answer clause: ←
�Defn: An answer: ←

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD-Resolution: Algorithm (no vars)

Given query and a KB

1. Construct answer clause ←

2. Until no KB-clause choosable or AC is an answer

(a) Select an atom ai from the current AC
←

(b) Choose a clause ← from KB
whose head matches selected atom

(c) Replace ai in AC with body to obtain new AC
←

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD-Resolution
�If we reach an answer, return YES

• query is a logical consequence of KB

�If we find no choosable clauses, return NO
• query not a consequence (but not necessarily false)

�A sequence of answer clauses that culminates in
an answer is an SLD-derivation of the query
�Our algorithm attempts to find a derivation:

• if it chooses incorrectly at Step 2, it may fail
• see text for distinction between choice and selection
• we say derivation attempt fails if we get stuck
• how does Prolog deal with failure?

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD: Example

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD: Example

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD Notes
�Does atom selected to resolve away matter?

• No: all must be “proven” eventually

�Does KB clause chosen to resolve with matter?
• Yes: wrong choice can lead to failure
• We’ll talk later about backtracking/search for a proof

�Soundness: should be fairly obvious
• Exercise: prove that if any body in any answer clause

is a consequence of KB, then so is query (soundness
follows: if we derive an answer, query holds)

�Completeness: if KB� ����there is a derivation
• can we find it? Yes, if we make correct choices
• How? Might have to try all options (watch for cycles)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Aside: Resolution

�

� � �

←
←

←

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Variables in SLD (no functions)

�Recall query q(X) is interpreted existentially:
• is there some X s.t. q(X) is a consequence?
• return a ground instance/term t (or all t) s.t. q(t) holds
• with no functions, terms are just constants

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD: Queries with no vars
�Query: ?rich(linda)

• set up answer clause: yes ← rich(linda)
• but body matches no heads in KB! How to start??

�Intuitively, rich(linda) does match the head of
the rule rich(X) ← mother(X,Y) & rich(Y).

• just need to substitute constant linda for var X

• result: yes ← mother(linda,Y) & rich(Y).

�Applying constant substituition {X/linda} to rule
(4) gives us an instance of rule (4):

• rich(linda) ← mother(linda,Y) & rich(Y).
• Note: this instance is clearly entailed by KB

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example: SLD with vars in KB

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD: Queries with vars
�Query: ?rich(Z)

• set up answer clause: yes(Z) ← rich(Z)
• once derivation reaches an answer, this allows us to

extract an “individual” for which query holds
• can’t just say yes: must say “for who”

�Intuitively, rich(Z) does match the head of the
rule rich(X) ← mother(X,Y) & rich(Y).

• just need to substitute var Z for var X

• result: yes(Z) ← mother(Z,Y) & rich(Z).

�Applying substitution {X/Z} to rule (4) gives:
• rich(Z) ← mother(Z,Y) & rich(Y).

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example: SLD with vars in query

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example: SLD with vars in query

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD with Variables

�To recap, we’ve seen SLD with:
• variables in KB, but ground queries
• variables in KR and variables in query

�Basic idea: we need to make appropriate
substitutions of our variables in order to make
atoms in answer clause match heads of KB rules
�Let’s look at one more example, sticking with the
“intuitive” definition of a substitution
�Then we’ll formalize unifiers and MGUs

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example Derivation #1

CSC 384 Lecture Slides (c) 2002, C. Boutilier

SLD-Resolution: Algorithm (w/ vars)

Given query with vars and a KB

1. Construct answer clause ← .

2. Until no KB-clause choosable or AC is an answer

(a) Select an atom ai from the current AC ←

(b) Choose a clause ← from KB

and a substitution σ that unifies the head of the
KB clause with the selected atom ai (i.e., that when
applied to and ai makes them the same)

(c) apply σ to AC and KB clause to obtain ACσ KBσ

(d) Replace aiσ in ACσ with body of KBσ to obtain new AC
← σ

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example Derivation #2

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example Derivation #3

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Substitutions

�Defn: A substitution σ is any assignment of
terms to variables

• we write it like as σ = {X/t1, Y/t2, …}
• constant substitution is a special case; terms can be

any terms (nonground included)
�without functions, only terms are constants,vars

• e.g., σ = {X/craig, Y/father(craig), Z/P, W/father(X)}

�A substitution is applied to an expression by
uniformly and simultaneously substituting each
term for the corresponding variable

• e.g. using subst. above on related(mother(X),W)
gives related(mother(craig), father(X))

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Unifiers
�Defn: A substitution unifies two expressions e1
and e2 iff e1σ is identical to e2σ
�E.g., p(X,f(a)) and p(Y, f(Z)) are unified by:

• {X/b, Y/b, Z/a}: gives p(b,f(a)) for both expressions
• {X/Y, Z/a}: gives p(Y,f(a)) for both expressions
• {X/Z, Y/Z, Z/a}: gives p(Z,f(a)) for both expressions

�Unifier σ is a most general unifier (MGU) of e1
and e2 iff e1σ’ is an instance of (unifies with) e1σ
for any other unifier σ’

• An MGU gives the most general instance of an
expression; any other unifier gives a result that would
unify with that given by the MGU

CSC 384 Lecture Slides (c) 2002, C. Boutilier

MGUs: Examples

�Let e1 = busy(X), e2 = busy(Y)
�Unifier σ1: {X/kyros, Y/kyros}

• result: e1σ1 = e2σ1 = busy(kyros)

�Unifier σ2: {X/craig, Y/craig}
• result: e1σ2 = e2σ1 = busy(craig)

�Unifier σ3: { Y/X }
• result: e1σ3 = e2σ3 = busy(X)

�Unifier σ3 an MGU of expressions; not σ1 , σ2

• e1σ3 unifies with result of any other unifier
• e1σ1 = busy(kyros) cannot (e.g., cannot unify e1σ1

with e2σ1 = busy(craig))

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Notes on General SLD Resolution

�Generally insist that you only use MGUs in SLD
resolution to match a body atom with a KB head

• ensures we don’t make too specific a choice and
force us into failure unnecessarily

�To obtain all answers:
• once we derive an answer, we pretend the derivation

failed and backtrack to find other derivations
• we only reconsider KB-clause choices, not atom

selections, or unifier choice

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Notes on General SLD Resolution

�Prolog (see Appendix B, Ch3.2, Ch3.3)
• based on SLD-resolution
• searches for derivations using a specific strategy: (a)

always selects atoms from answer clause in left-to-
right order; (b) always chooses KB clauses in top-to-
bottom order (using first unifiable rule/fact)

• records choices and tries alternatives if failure
(essentially does depth-first search: why?)

• provides a single answer for nonground queries; but
you can force it to search for others (semicolon op)

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Renaming of Variables: Example

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Renaming of Variables

�When we add body of KB clause to answer
clause, we may have accidental name conflicts

• in example, Y in answer clause is not “same person”
as Y in KB clause (yet both replaced by X)

�To prevent problems, we always rename vars in
KB clause (uniformly) to prevent clashes

• changing var names in KB clause cannot change
meaning

�System: (a) each clause has diff. vars; (b) index
KB vars, increase with each use of the clause

• use rich(Xi) <- mother(Xi,Yi) & rich(Yi). i-th time you
use this clause in a derivation

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Renaming of Variables: Example

CSC 384 Lecture Slides (c) 2002, C. Boutilier

DCL: How can we use it?

�Query-answering system:
• given KB representing a specific domain, use DCL

(and suitable proof procedure) to answer questions

�A Deductive Database System
• much like the above

�A Programming Language
• Prolog (we’ve seen) is a dressed up DCL using SLD
• Important to realize that as a programming language,

we are still making logical assertions and proving
logical consequences of these assertions

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Prolog List Operations

�A distinguishing feature of Prolog is its built-in
facilities for list manipulation

• not hacks, but genuine logical assertions/derivations

�Consider the function cons, constant el:
• cons accepts two args, returns pair containing them
• e.g, cons(a,b), cons(a,cons(b,c))
• el is a constant denoting the empty list

�A proper list is either el or a pair whose second
element is a proper list

• cons(a, cons(b, cons(c, el))) = (a b c) or [a,b,c]

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Prolog List Operations

�Prolog uses a more suggestive notation:
• [] is a constant symbol (empty list)
• [|] is a binary function symbol: infix notation (cons)
• [a,b,c] shorthand for [a | [b | [c | []]]]

�But these are just terms in DCL
�Standard list manipulation operations correspond
to logical assertions

• e.g., the usual definition of append(X,Y,Z) simply
defines what it means for Z to be the appending of X
and Y

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Defining Append

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Proving the Append Relation #1

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Proving the Append Relation #2

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Proving the Append Relation #3

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Proving the Append Relation

�Exercise: Give derivations for at least two other
answers for the previous query:
�

CSC 384 Lecture Slides (c) 2002, C. Boutilier

DCL and Knowledge Representation

�DCL has obvious uses as a question answering
system for complex knowledge

• A key issue: how does one effectively represent
knowledge of a specific domain for this purpose?

• Unfortunately, there are generally many ways to
represent a KB: some more useful (compact, natural,
efficient) than others

�Let’s go through a detailed example to see
where choices need to be made, what the
difficulties are, etc.

CSC 384 Lecture Slides (c) 2002, C. Boutilier

The Herbalist Domain

�Suppose we want to build a KB that answers
queries about what sorts of homeopathic
remedies we need to treat different symptoms

• This “expert system” will underly a Web site where
users can ask for advice on herbal remedies

�We need to build a KB that represents info we
have about different clients, their symptoms,
treatments, etc.

CSC 384 Lecture Slides (c) 2002, C. Boutilier

What Functionality is Needed?

� Before designing KB, we need to know what
types of queries we’ll ask; do we want:
a) ?treatment(john,T).

b) ?treatment(symptom,T).

c) ?treatment(combination-of-symptoms,T).
d) ?safe(combination-of-treatments).
e) ?medical_records(john,R).

f) ?paid_bills(john).

� and so on

CSC 384 Lecture Slides (c) 2002, C. Boutilier

What Individuals Do We Need?

�What constants/functions will I need?
�Clients (people), other entities:

• constants: joan, ming, gabrielle, greenshield…
• functions: insurer(X), etc.

�Symptoms (constants): fever, aches, chills, …
�Treatments:

• constants: echinacea, mudwort, feverfew, …
• or maybe function: tmt(feverfew,capsule),

tmt(mudwort, tincture), where we have a treatment
requires a substance and a preparation

• then we need constants for substances, preparations

CSC 384 Lecture Slides (c) 2002, C. Boutilier

What Individuals Do We Need?

�Diseases: do we need diseases?
• why? why not? (our treatment philosophy will be to

apply treatments to symptoms: simplicity!)

�Combinations of symptoms? treatments?
�We’ll consider combinations:
�symptomList is a list of symptoms:

• e.g, function: symList(symptom, SList)
• or using Prolog notation: [aches, fever, chills]

�treatmentList similar:
• [tmt(mudwort,tincture), tmt(echinacea,capsule)]

CSC 384 Lecture Slides (c) 2002, C. Boutilier

What Relations?

�Relations depend on functionality desired
�If we ask ?treatment(john,T). we need
information about john in KB (e.g., symptoms)

• e.g.: symptom(john,fever). symptom(john,chills).
• or: symptoms(john, [fever,chills]).
• or maybe symptoms are relations themselves and not

individuals: fever(john). chills(john).

�Maybe we don’t even discuss individual clients:
• e.g., we only ask: ?treatment(SList,TList).

�Different choices influence how you express your
knowledge: some make life easy, or difficult!

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Facts and Rules

�Once we’ve decided on suitable relations we
need to populate our KB with suitable facts and
rules

• facts/rules should be correct
• facts/rules should cover all relevant cases (which

depends on the task at hand)
• try to keep facts/rule concise (only relevant facts)

�For example: we can often express a zillion facts
using one or two simple rules

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Some Example Facts/Rules

�Facts about individual patients

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Some Example Facts/Rules

�Rules relating treatments to symptoms

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Some Example Facts/Rules

�We might even have more general rules
• Appropriate level of generality can make KB

expression more concise

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Some Example Facts/Rules

�Design choice for relations, individuals can have
impact on ability to prove certain things (easily)
�Suppose we want to find a treatment list for john:

• list should cover each symptom john exhibits (in KB)
• but how do we “collect” all the facts from the KB of the

form fever(john), slow_digestion(john), etc.
• (actually Prolog has some hacks, but SLD doesn’t)

�Thus we make our lives easier by thinking of
symptoms as individuals, and relating patients to
a list of all symptoms

• symptoms(john, [fever, aches, slow_digestion]).

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example Facts/Rules

�Let’s attempt to define treatment(S,T): treatment
list T is satisfactory for symptom list S

• Note: it suggests new relations to specify/define

�Is this definition correct? complete? efficient? for
what types of queries will it work?

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Example Facts/Rules

�?treatment([aches,fever], T): is this defn OK?
�?treatment([aches,fever], [ech,mudwort]): OK?

• what if ech treats fever and mudwort treats aches?
• must rewrite to make order-independent

�Final Tlist is safe if no nasty interactions:
• why is this definition inefficient?
• why prove for each sublist? how would you rewrite it?
• could proving it each time make sense (for Prolog)?
• Exercise: define a version of the safe predicate

CSC 384 Lecture Slides (c) 2002, C. Boutilier

KB Design: The Moral

�There are many design choices
�The queries you plan to ask influence the way
you break the world into individuals and relations
�Even with fixed functionality, there are often
several ways to approach the problem
�Different approaches lead to more or less
natural, efficient, and compact KBs

