CSC384: Lecture 3

- Last time
 - DCL: syntax, semantics, proofs
 - bottom-up proof procedure
- Today
 - top-down proof procedure (SLD-resolution)
 - perhaps start on uses of DCL
- Readings:
 - Today: 2.7; 2.8 (details in tutorial),
 - perhaps Ch.3 (excl. 3.7); we'll discuss only part
 - Next week: wrap Ch.3; start on Ch.4: 4.1-4.4/4.6

Top-Down Proof Procedure

- BUPP is data-driven
 - not influenced by query q, just facts and rules in KB!
 - wasteful: proves things unneeded to prove q
- ■Top-down proof procedure is query-driven:
 - focussed on deriving a specific query
- We'll describe a TDPP called SLD-resolution
 - Basically, the strategy implemented within Prolog
 - stands for selected linear, definite-clause resolution

SLD-Resolution (No vars)

- Basic intuitions:
 - suppose we have query ?q₁ & q₂
 - suppose we have rule $q_1 \leftarrow a \& b \& c$.
 - if we prove subgoal query ?a & b & c & q2 then we know that original query must be true
- SLD a form of backchaining or subgoaling:
 - to prove q, we look for a rule with the head q, and then attempt to prove the body of that rule; if proven, we know q must be a consequence of KB
 - Progress: when subgoals are facts!
- **■Defn**: An answer clause: $yes \leftarrow q_1 \& ... \& q_m$
- ■**Defn**: An answer. $yes \leftarrow .$

SLD-Resolution: Algorithm (no vars)

Given query $2q_1 \& ... \& q_m$ and a KB

- 1. Construct answer clause $yes \leftarrow q_1 \& ... \& q_m$
- 2. Until no KB-clause choosable or AC is an answer
 - (a) Select an atom a_i from the current AC $yes \leftarrow a_1 \& ... \& a_k$
 - (b) Choose a clause $a_i \leftarrow b_1 \& ... \& b_n$ from KB whose head matches selected atom
 - (c) Replace a_i in AC with body to obtain new AC $yes \leftarrow a_1 \& ... a_{i-1} \& b_1 \& ... \& b_n \& a_{i+1} \& ... \& a_k$

SLD-Resolution

- If we reach an answer, return YES
 - query is a logical consequence of KB
- If we find no choosable clauses, return NO
 - query not a consequence (but not necessarily false)
- A sequence of answer clauses that culminates in an answer is an SLD-derivation of the query
- Our algorithm attempts to find a derivation:
 - if it chooses incorrectly at Step 2, it may fail
 - see text for distinction between choice and selection
 - we say derivation attempt fails if we get stuck
 - how does Prolog deal with failure?

SLD: Example

Query: ?a

Derivation Attempt #1

Select q: FAIL! no choosable clause

| SLD: Example

Query: ?a

Derivation Attempt #2

```
yes <- a.
(2') b <- c. | yes <- b & c. | Select a; choose (1)
                   yes <- d & e & c. Select b; choose (2)
                   yes <- e & c.
                                  Select d; choose (5)
                   yes <- c.
                                  Select e; choose (6)
                  yes <- e.
                                      Select c; choose (4)
                   yes <- .
                                       Select e; choose (6)
```

QUERY IS TRUE: obtained answer

SLD Notes

- Does atom selected to resolve away matter?
 - No: all must be "proven" eventually
- Does KB clause chosen to resolve with matter?
 - Yes: wrong choice can lead to failure
 - We'll talk later about backtracking/search for a proof
- **Soundness**: should be fairly obvious
 - Exercise: prove that if any body in any answer clause is a consequence of KB, then so is query (soundness follows: if we derive an answer, query holds)
- **Completeness**: if $KB \models q$, there is a derivation
 - can we find it? Yes, if we make correct choices
 - How? Might have to try all options (watch for cycles)

Aside: Resolution

Query yes
$$\leftarrow$$
 g & h equivalent to \neg g v \neg h v yes Rule h \leftarrow a & b & c equivalent to h v \neg a v \neg b v \neg c

Resolvent
$$\neg g \lor \neg a \lor \neg b \lor \neg c \lor yes$$
 equiv. to yes $\leftarrow g \& a \& b \& c$

Variables in SLD (no functions)

- Recall query q(X) is interpreted existentially:
 - is there some X s.t. q(X) is a consequence?
 - return a ground instance/term t (or all t) s.t. q(t) holds
 - with no functions, terms are just constants

Example:

- (1) rich(joan).
- (2) mother(linda, joan).
- (3) mother(mary, linda).
- (4) rich(X) <- mother(X,Y)
 & rich(Y).</pre>

Query:

```
? rich(linda).
    yes
? rich(X).
    joan, linda, mary
```

SLD: Queries with no vars

- Query: ?rich(linda)
 - set up answer clause: yes ← rich(linda)
 - but body matches no heads in KB! How to start??
- ■Intuitively, rich(linda) does match the head of the rule $rich(X) \leftarrow mother(X, Y) \& rich(Y)$.
 - just need to substitute constant linda for var X
 - result: yes ← mother(linda, Y) & rich(Y).
- Applying constant substituition {X/linda} to rule(4) gives us an *instance* of rule (4):
 - rich(linda) ← mother(linda, Y) & rich(Y).
 - Note: this instance is clearly entailed by KB

Example: SLD with vars in KB

```
KB:
                                            Query:
 (1) rich(joan).
                                              ? rich(linda).
 (2) mother(linda, joan).
 (3) mother(mary, linda).
 (4) rich(X) <- mother(X,Y) & rich(Y).
 Derivation:
   yes <- rich(linda).
   yes <- mother(linda, Y) & rich(Y).
        How: Select rich(linda); resolve with (4) using {X/linda}
    yes <- rich(joan).
       How: Select mother(linda, Y); resolve with (2) using {Y/joan}
    yes <- .
       How: Select rich(joan); resolve with (1) using { }
```

SLD: Queries with vars

- Query: ?rich(Z)
 - set up answer clause: yes(Z) ← rich(Z)
 - once derivation reaches an answer, this allows us to extract an "individual" for which query holds
 - can't just say yes: must say "for who"
- ■Intuitively, rich(Z) does match the head of the rule $rich(X) \leftarrow mother(X, Y) \& rich(Y)$.
 - just need to substitute var Z for var X
 - result: $yes(Z) \leftarrow mother(Z, Y) \& rich(Z)$.
- Applying substitution {X/Z} to rule (4) gives:
 - $rich(Z) \leftarrow mother(Z, Y) \& rich(Y)$.

Example: SLD with vars in query

```
KB:
                                                Query:
 (1) rich(joan).
                                                   ? rich(Z).
 (2) mother(linda, joan).
 (3) mother(mary, linda).
 (4) rich(X) \leftarrow mother(X,Y) \& rich(Y).
 Derivation:
    yes(Z) \leftarrow rich(Z).
    yes(Z) \leftarrow mother(Z,Y) \& rich(Y).
        Select rich(Z); resolve with (4) using {X/Z}
    yes(Z) \leftarrow mother(Z_i joan).
        Select rich(Y); resolve with (1) using {Y/joan}
    yes(linda) <- .
        Select mother (Z, joan); resolve with (2) using \{Z/linda\}
```

Example: SLD with vars in query

Different derivations can give different answers; Exercise: construct derivation that gives the answer "mary".

SLD with Variables

- To recap, we've seen SLD with:
 - variables in KB, but ground queries
 - variables in KR and variables in query
- Basic idea: we need to make appropriate substitutions of our variables in order to make atoms in answer clause match heads of KB rules
- Let's look at one more example, sticking with the "intuitive" definition of a substitution
- Then we'll formalize unifiers and MGUs

Example Derivation #1

long as vars match

```
Query:
KB:
                                          ?busy(P).
1. busy(Z) \leftarrow teaches(Z,X) &
    teaches(Z,Y) \& distinct(X,Y).
                                          Answer Clause:
2. busy(Z) \leftarrow teaches(Z,148).
                                          yes(P) \leftarrow busy(P).
3. teaches(craig, 384).
4. teaches(craig, 2534).
                                          Derivation:
5. teaches(kyros, 384).
                                          yes(P) \leftarrow busy(P).
6. teaches(kyros, 2501).
                                          yes(P) \leftarrow teaches(P,148).
7. teaches(suzanne, 148).
                                             Select busy(P); resolve with
8. distinct(2534,384).
                                          \circ(2) using \{P/Z\}
9. distinct(2501,384).
                                         yes(suzanne) <- .
   distinct...
                                             Select t(Z,148); resolve with
                                             (2) using \{Z/P\}
            Could have used
                                          Answer: suzanne
            {Z/P} instead; as
```

(others: craig, kyros... show!)

SLD-Resolution: Algorithm (w/ vars)

Given query $2q_1 \& ... \& q_m$ with vars $x_1 ... x_n$ and a KB

- 1. Construct answer clause $yes(x_1...x_n) \leftarrow q_1 \& ... \& q_m$.
- 2. Until no KB-clause choosable or AC is an answer
- (a) Select an atom a_i from the current AC $yes \leftarrow a_1 \& ... \& a_k$
- (b) Choose a clause $h_i \leftarrow b_1 \& ... \& b_n$ from KB

and a <u>substitution</u> σ that <u>unifies</u> the head h_i of the KB clause with the selected atom a_i (i.e., that when applied to h_i and a_i makes them the same)

- (c) apply σ to AC and KB clause to obtain AC σ , KB σ
- (d) Replace $a_i \sigma$ in AC σ with body of KB σ to obtain new AC $(yes(x_1...x_n) \leftarrow a_1 \& ... a_{i-1} \& b_1 \& ... \& b_n \& a_{i+1} \& ... \& a_k) \sigma$

Example Derivation #2

KB:

- busy(Z) <- teaches(Z,X) & teaches(Z,Y) & distinct(X,Y).
- 2. $busy(Z) \leftarrow teaches(Z,148)$.
- 3. teaches(craig, 384).
- 4. teaches(craig, 2534).
- 5. teaches(kyros, 384).
- 6. teaches(kyros, 2501).
- 7. teaches(suzanne, 148).
- 8. distinct(2534,384).
- 9. distinct(2501,384).
- 10. d(148,384). d(2534, 2501). d(2534,148). d(2501,148).

```
yes(P) <- busy(P).
yes(P) <- t(P,X) & t(P,Y) & d(X,Y).
    busy(P); (1); {Z/P}
yes(craig) <- t(craig,Y) & d(384,Y).
    t(P,X); (3); {P/craig, X/384}
yes(craig) <- d(384,2534).
    t(c,Y); (4); {X/2534}</pre>
```

FAILS! Nothing will unify with d(384,2534).

Problem lies in KB. We didn't axiomatize domain correctly.

Add distinct(384,2534), etc... or add rule: $distinct(C,D) \leftarrow distinct(D,C)$.

Same query: ?busy(P).

Derivation:

Example Derivation #3

Assume KB fixed with rule: 12. distinct(C,D) <- distinct(D,C).

```
Derivation:
yes(P) \leftarrow busy(P).
yes(P) \leftarrow t(P,X) \& t(P,Y) \& d(X,Y).
     busy(P); (1); \{Z/P\}
yes(craig) <- t(craig, Y) & d(384, Y).
   t(P,X); (3); {P/craig, X/384}
yes(craig) \leftarrow d(384,2534).
   t(c,Y); (4); \{X/2534\}
yes(craig) \leftarrow d(2534,384).
   d(384,2534); (12); {C/384, D/2534}
yes(craig) <- .
   d(2534,384); (8); {}
```

Substitutions

- Defn: A substitution σ is any assignment of terms to variables
 - we write it like as $\sigma = \{X/t1, Y/t2, ...\}$
 - constant substitution is a special case; terms can be any terms (nonground included)
 - without functions, only terms are constants, vars
 - e.g., $\sigma = \{X/craig, Y/father(craig), Z/P, W/father(X)\}$
- A substitution is applied to an expression by uniformly and simultaneously substituting each term for the corresponding variable
 - e.g. using subst. above on related(mother(X), W)
 gives related(mother(craig), father(X))

Unifiers

- **Defn**: A substitution **unifies** two expressions e_1 and e_2 iff $e_1\sigma$ is identical to $e_2\sigma$
- ■E.g., p(X,f(a)) and p(Y, f(Z)) are unified by:
 - {X/b, Y/b, Z/a}: gives p(b,f(a)) for both expressions
 - $\{X/Y, Z/a\}$: gives p(Y,f(a)) for both expressions
 - $\{X/Z, Y/Z, Z/a\}$: gives p(Z,f(a)) for both expressions
- •Unifier σ is a most general unifier (MGU) of e_1 and e_2 iff $e_1\sigma$ is an *instance of* (unifies with) $e_1\sigma$ for any other unifier σ '
 - An MGU gives the most general instance of an expression; any other unifier gives a result that would unify with that given by the MGU

MGUs: Examples

- Let $e_1 = busy(X)$, $e_2 = busy(Y)$
- •Unifier σ_1 : {X/kyros, Y/kyros}
 - result: $e_1\sigma_1 = e_2\sigma_1 = \text{busy(kyros)}$
- •Unifier σ₂: {X/craig, Y/craig}
 - result: $e_1\sigma_2 = e_2\sigma_1 = \text{busy(craig)}$
- •Unifier σ_3 : { Y/X }
 - result: $e_1\sigma_3 = e_2\sigma_3 = \text{busy}(X)$
- •Unifier σ_3 an MGU of expressions; not σ_1 , σ_2
 - $e_1\sigma_3$ unifies with result of any other unifier
 - $e_1\sigma_1 = busy(kyros)$ cannot (e.g., cannot unify $e_1\sigma_1$ with $e_2\sigma_1 = busy(craig)$)

Notes on General SLD Resolution

- Generally insist that you only use MGUs in SLD resolution to match a body atom with a KB head
 - ensures we don't make too specific a choice and force us into failure unnecessarily
- To obtain all answers:
 - once we derive an answer, we pretend the derivation failed and backtrack to find other derivations
 - we only reconsider KB-clause choices, not atom selections, or unifier choice

Notes on General SLD Resolution

- Prolog (see Appendix B, Ch3.2, Ch3.3)
 - based on SLD-resolution
 - searches for derivations using a specific strategy: (a) always selects atoms from answer clause in left-toright order; (b) always chooses KB clauses in top-tobottom order (using first *unifiable* rule/fact)
 - records choices and tries alternatives if failure (essentially does depth-first search: why?)
 - provides a single answer for nonground queries; but you can force it to search for others (semicolon op)

Renaming of Variables: Example

```
KB:
                                         Query:
 (1) rich(joan).
                                           ? rich(mary).
 (2) mother(linda, joan).
 (3) mother(mary, linda).
 (4) rich(X) <- mother(X,Y) & rich(Y).
 Derivation:
   yes <- rich(mary).
   yes <- mother(mary, Y) & rich(Y).
       rich(mary); (4); {X/mary}
   yes <- mother(mary,X) & mother(X,X) & rich(X).
       rich(Y); (4) using \{Y/X\}
 Must fail! Nobody (in our KB) is their own mother!
```

Renaming of Variables

- When we add body of KB clause to answer clause, we may have accidental name conflicts
 - in example, Y in answer clause is not "same person" as Y in KB clause (yet both replaced by X)
- To prevent problems, we always rename vars in KB clause (uniformly) to prevent clashes
 - changing var names in KB clause cannot change meaning
- System: (a) each clause has diff. vars; (b) index KB vars, increase with each use of the clause
 - use rich(X_i) <- mother(X_i,Y_i) & rich(Y_i). i-th time you use this clause in a derivation

Renaming of Variables: Example

```
KB:
                                               Query:
 (1) rich(joan).
                                                 ? rich(mary).
 (2) mother(linda, joan).
 (3) mother(mary,linda).
 (4) rich(X) \leftarrow mother(X,Y) \& rich(Y).
 Derivation:
    yes <- rich(mary).
    yes \leftarrow mother(mary, Y_1) & rich(Y_1).
        rich(mary); (4); \{X_1/\text{mary}\}
    yes <- mother(mary, X_2) & mother(X_2, Y_2) & rich(Y_2).
        rich(Y_1); (4) using \{Y_1/X_2\}
    etc... (no conflict now)
```

DCL: How can we use it?

- •Query-answering system:
 - given KB representing a specific domain, use DCL (and suitable proof procedure) to answer questions
- A Deductive Database System
 - much like the above
- A Programming Language
 - Prolog (we've seen) is a dressed up DCL using SLD
 - Important to realize that as a programming language, we are still making logical assertions and proving logical consequences of these assertions

Prolog List Operations

- A distinguishing feature of Prolog is its built-in facilities for *list manipulation*
 - not hacks, but genuine logical assertions/derivations
- ■Consider the function *cons*, constant *el*:
 - cons accepts two args, returns pair containing them
 - e.g, cons(a,b), cons(a,cons(b,c))
 - el is a constant denoting the empty list
- A proper list is either el or a pair whose second element is a proper list
 - cons(a, cons(b, cons(c, el))) = (a b c) or [a,b,c]

Prolog List Operations

- Prolog uses a more suggestive notation:
 - [] is a constant symbol (empty list)
 - [|] is a binary function symbol: infix notation (cons)
 - [a,b,c] shorthand for [a | [b | [c | []]]]
- But these are just terms in DCL
- Standard list manipulation operations correspond to logical assertions
 - e.g., the usual definition of append(X,Y,Z) simply defines what it means for Z to be the appending of X and Y

Defining Append

(A1) append([], Z, Z).

(A2) append([E1 | R1], Y, [E1 | Rest]) <- append(R1, Y, Rest).

Proving the Append Relation #1

```
Query: ? append([a,b], [c,d], [a,b,c,d]).
(A1) append([], Z, Z).
(A2) append([E1 | R1], Y, [E1 | Rest]) <-
             append(R1, Y, Rest).
Derivation:
yes \leftarrow append([a,b], [c,d], [a,b,c,d]).
yes <- append([b], [c,d], [b,c,d]).
  Resolve with (A2) using \{E1/a, R1/[b], Y/[c,d], Rest/[b,c,d]\}
yes <- append([], [c,d], [c,d]).
  Resolve with (A2) using \{E1/b, R1/[], Y/[c,d], Rest/[c,d]\}
yes <- .
  Resolve with (A1) using \{Z/[c,d]\}
Answer: yes
```

Proving the Append Relation #2

Answer: no

34

Proving the Append Relation #3

```
Query: ? append(L, M, [a,b,c,d]).
(A1) append([], Z, Z).
(A2) append([E1 | R1], Y, [E1 | Rest]) <-
             append(R1, Y, Rest).
Derivation:
yes(L,M) \leftarrow append(L, M, [a,b,c,d]).
yes([a|R1], M) \leftarrow append(R1, M, [b,c,d]).
  Resolve with (A2) using \{L/[a|R1], Y/M, E1/a, Rest/[b,c,d]\}
yes([a], [b,c,d]) <- .
  Resolve with (A1) using \{R1/[], M/[b,c,d], Z/[b,c,d]\}
Answer: L = [a], M = [b,c,d]
```

Proving the Append Relation

- Exercise: Give derivations for at least two other answers for the previous query:
- Query: ? append(L, M, [a,b,c,d]).
 - L = [], M = [a,b,c,d]
 - L = [a], M = [b,c,d]
 - L = [a,b], M = [c,d]
 - L = [a,b,c], M = [d]
 - L = [a,b,c,d], M = []

DCL and Knowledge Representation

- DCL has obvious uses as a question answering system for complex knowledge
 - A key issue: how does one effectively represent knowledge of a specific domain for this purpose?
 - Unfortunately, there are generally many ways to represent a KB: some more useful (compact, natural, efficient) than others
- Let's go through a detailed example to see where choices need to be made, what the difficulties are, etc.

The Herbalist Domain

- Suppose we want to build a KB that answers queries about what sorts of homeopathic remedies we need to treat different symptoms
 - This "expert system" will underly a Web site where users can ask for advice on herbal remedies
- •We need to build a KB that represents info we have about different clients, their symptoms, treatments, etc.

What Functionality is Needed?

- Before designing KB, we need to know what types of queries we'll ask; do we want:
 - a) ?treatment(john,T).
 - b) ?treatment(symptom,T).
 - C) ?treatment(combination-of-symptoms,T).
 - d) ?safe(combination-of-treatments).
 - e) ?medical_records(john,R).
 - f) ?paid_bills(john).
- and so on

What Individuals Do We Need?

- What constants/functions will I need?
- Clients (people), other entities:
 - constants: joan, ming, gabrielle, greenshield...
 - functions: *insurer(X)*, etc.
- Symptoms (constants): fever, aches, chills, ...
- Treatments:
 - constants: echinacea, mudwort, feverfew, ...
 - or maybe function: tmt(feverfew,capsule), tmt(mudwort, tincture), where we have a treatment requires a substance and a preparation
 - then we need constants for substances, preparations

What Individuals Do We Need?

- Diseases: do we need diseases?
 - why? why not? (our treatment philosophy will be to apply treatments to symptoms: simplicity!)
- Combinations of symptoms? treatments?
- We'll consider combinations:
- symptomList is a list of symptoms:
 - e.g, function: symList(symptom, SList)
 - or using Prolog notation: [aches, fever, chills]
- treatmentList similar:
 - [tmt(mudwort,tincture), tmt(echinacea,capsule)]

What Relations?

- Relations depend on functionality desired
- •If we ask ?treatment(john,T). we need information about john in KB (e.g., symptoms)
 - e.g.: symptom(john,fever). symptom(john,chills).
 - or: symptoms(john, [fever,chills]).
 - or maybe symptoms are relations themselves and not individuals: fever(john). chills(john).
- Maybe we don't even discuss individual clients:
 - e.g., we only ask: ?treatment(SList,TList).
- Different choices influence how you express your knowledge: some make life easy, or difficult!

Facts and Rules

- Once we've decided on suitable relations we need to populate our KB with suitable facts and rules
 - facts/rules should be correct
 - facts/rules should cover all relevant cases (which depends on the task at hand)
 - try to keep facts/rule concise (only relevant facts)
- For example: we can often express a zillion facts using one or two simple rules

Facts about individual patients

```
Specific Visit Facts (enter into KB during exam):
   musclepain(mary,shoulders).
   slow_digestion(john).
   fever(john).

Semi-permanent Facts (persist in KB):
   arthritis(ming).
   hypertensive(john).
   relaxed_disposition(mary).
```

Rules relating treatments to symptoms

We can relate treatments to symptoms directly:

```
remedy(X,echinacea):- fever(X) & cough(X) & sniffles(X). remedy(X,echinacea):- chills(X) & cough(X) & sniffles(X).
```

Or relate treatments to diseases, and diseases to symptoms:

remedy(X,echinacea) :- has_cold(X).

```
has_cold(X):- fever(X) & cough(X) & sniffles(X). has_cold(X):- chills(X) & cough(X) & sniffles(X).
```

- We might even have more general rules
 - Appropriate level of generality can make KB expression more concise

We might have general problems:

```
general\_dig\_probs(X) := slow\_digestion(X).
general\_dig\_probs(X) := heartburn(X) \& relaxed\_disposition(X).
general\_dig\_probs(X) := gastritis(X).
```

and relate treatments to such classes of problems:

```
remedy(X,cloves):- general_dig_probs(X).
remedy(X,meadowsweet):- gastritis(X).
```

- Design choice for relations, individuals can have impact on ability to prove certain things (easily)
- Suppose we want to find a treatment list for john:
 - list should cover each symptom john exhibits (in KB)
 - but how do we "collect" all the facts from the KB of the form fever(john), slow_digestion(john), etc.
 - (actually Prolog has some hacks, but SLD doesn't)
- Thus we make our lives easier by thinking of symptoms as individuals, and relating patients to a list of all symptoms
 - symptoms(john, [fever, aches, slow_digestion]).

Example Facts/Rules

- Let's attempt to define treatment(S,T): treatment list T is satisfactory for symptom list S
 - Note: it suggests new relations to specify/define
- Is this definition correct? complete? efficient? for what types of queries will it work?

```
treatment([],[]).
treatment([S1 | RestS], [T1 | RestT]):-
    treats(T1,S1),
    treatment(RestS, RestT),
    safe([T1 | RestT]).
```

Example Facts/Rules

```
treatment([],[]).
treatment([S1 | RestS], [T1 | RestT]):-
    treats(T1,S1),
    treatment(RestS, RestT),
    safe([T1 | RestT]).
```

- ?treatment([aches,fever], T): is this defn OK?
- ?treatment([aches,fever], [ech,mudwort]): OK?
 - what if ech treats fever and mudwort treats aches?
 - must rewrite to make order-independent
- Final Tlist is safe if no nasty interactions:
 - why is this definition inefficient?
 - why prove for each sublist? how would you rewrite it?
 - could proving it each time make sense (for Prolog)?
 - Exercise: define a version of the safe predicate

KB Design: The Moral

- There are many design choices
- The queries you plan to ask influence the way you break the world into individuals and relations
- Even with fixed functionality, there are often several ways to approach the problem
- Different approaches lead to more or less natural, efficient, and compact KBs