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CSC384: Lecture 12
�Last time

• Variable elimination, Intro to decision theory

�Today
• sequential decision problems; decision trees

�Readings:
• Today: 10.4 (decision trees, decision networks)
• Next week: wrap up

�Announcements:
• none

�
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Decision Making under Uncertainty
�We saw expected utility can be quite useful

• allows one to tradeoff outcome probabilities with their 
relative desirability to help make decisions

• but formulation so far for “single shot” decisions

�Decision space is often quite large
• they involve sequential choices (like plans)
• if we treat each plan as a distinct decision, decision 

space is too large to handle directly
• Soln: use dynamic programming methods to 

construct optimal plans (actually generalizations of 
plans, called policies… like in game trees)

�
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An Simple Example

�Suppose we have two actions: a, b
�We have time to execute two actions in sequence
�This means we can do either:

• [a,a], [a,b], [b,a], [b,b]

�Actions are stochastic: action a induces 
distribution Pra(si | sj) over states

• e.g., Pra(s2 | s1) = .9 means prob. of moving to state s2
when a is performed at  s1 is .9

• similar distribution for action b

�How good is a particular sequence of actions?

�
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Distributions for Action Sequences
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Distributions for Action Sequences

�Sequence [a,a] gives distribution over “final states”
• Pr(s4) = .45, Pr(s5) = .45, Pr(s8) = .02, Pr(s9) = .08

�Similarly:
• [a,b]: Pr(s6) = .54, Pr(s7) = .36, Pr(s10) = .07, Pr(s11) = .03
• and similar distributions for sequences [b,a] and [b,b]
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How Good is a Sequence?

�We associate utilities with the “final” outcomes
• how good is it to end up at s4, s5, s6, …
• note: we could assign utilities to the intermediate 

states s2, s3, s12, and s13 also. We ignore this for 
now. Technically, think if utility u(s4) as utility of entire 
trajectory or sequence of states we pass through.

�Now we have:
• EU(aa) = .45u(s4)  + .45u(s5) + .02u(s8) + .08u(s9)
• EU(ab) = .54u(s6)  + .36u(s7) + .07u(s10) + .03u(s11)
• etc…
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Utilities for Action Sequences
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Why Sequences might be bad

�Suppose we do a first; we could reach s2 or s3:
• At s2, assume: EU(a) = .5u(s4) + .5u(s5) > EU(b) = .6u(s6) + .4u(s7)
• At s3: EU(a) = .2u(s8) + .8u(s9) < EU(b) = .7u(s10) + .3u(s11) 

� After doing a first, we want to do a next if we reach s2, but 
we want to do b second if we reach s3
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Policies

�This suggests that we want to consider policies, 
not sequences of actions (plans)
�We have eight policies for this decision tree:

[a; if s2 a, if s3 a] [b; if s12 a, if s13 a]
[a; if s2 a, if s3 b] [b; if s12 a, if s13 b]
[a; if s2 b, if s3 a] [b; if s12 b, if s13 a]
[a; if s2 b, if s3 b] [b; if s12 b, if s13 b]

�Contrast this with four “plans”
• [a; a],  [a; b],  [b; a],  [b; b]
• note: each plan corresponds to a policy, so we can 

only gain by allowing decision maker to use policies

� ;
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Evaluating Policies

�Number of plans (sequences) of length k
• exponential in k:   |A|k if A is our action set

�Number of policies is even much larger
• if we have n=|A| actions and m=|O| outcomes per 

action, then we have (nm)k policies

�Fortunately, dynamic programming can be used
• e.g., suppose EU(a) > EU(b) at s2
• never consider a policy that does anything else at s2

�How to do this?
• back values up the tree much like minimax search

� �
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Decision Trees
�Squares denote choice nodes

• these denote action choices by 
decision maker (decision nodes)

�Circles denote chance nodes
• these denote uncertainty 

regarding action effects
• “nature” will choose the child 

with specified probability

�Terminal nodes labeled with 
utilities

• denote utility of “trajectory” 
(branch) to decision maker
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Evaluating Decision Trees

�Procedure is exactly like game trees, except…
• key difference: the “opponent” is “nature” who simply 

chooses outcomes at chance nodes with specified 
probability: so we average instead on minimizing

�Back values up the tree
• U(t) is defined for all terminals (part of input)
• U(n) = avg {U(c) : c a child of n} if n is a chance node
• U(n) = max {U(c) : c a child of n} if n is a choice node

�At any choice node (state), the decision maker 
chooses action that leads to highest utility child
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Evaluating a Decision Tree
�U(n3) = .9*5 + .1*2
�U(n4) = .8*3 + .2*4
�U(s2) = max{U(n3), U(n4)}

• decision a or b (whichever is max)
�U(n1) = .3U(s2) + .7U(s3)

�U(s1) = max{U(n1), U(n2)}
• decision: max of a, b
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Decision Tree Policies
�Note that we don’t just 
compute values, but 
policies for the tree
�A policy assigns a 
decision to each 
choice node in tree

�Some policies can’t be distinguished in terms of 
there expected values

• e.g., if policy chooses a at node s1, choice at s4 
doesn’t matter because it won’t be reached

• Two policies are implementationally indistinguishable if 
they disagree only at unreachable decision nodes
�reachability is determined by policy themselves
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Key Assumption: Observability

�Full observability: we must know the initial state 
and outcome of each action

• specifically, to implement the policy, we must be able 
to resolve the uncertainty of any chance node that is 
followed by a decision node

• e.g., after doing a at s1, we must know which of the 
outcomes (s2 or s3) was realized so we know what 
action to do next (note: s2 and s3 may prescribe 
different ations)

�Note: we don’t need to resolve the uncertainty at 
a chance node if no decision follows it

• no future choice depends on outcome (only utility)
� $
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Computational Issues

�Savings compared to explicit policy evaluation is 
substantial
�Evaluate only O((nm)d ) nodes in tree of depth d

• total computational cost is thus O((nm)d ) 

�Note that this is how many policies there are
• but evaluating a single policy explicitly requires 

substantial computation: O(nmd ) 
• total computation for explicity evaluating each policy 

would be O(ndm2d ) !!!

�Tremendous value to dynamic programming 
solution

� �
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Computational Issues

�Tree size: grows exponentially with depth
�Possible solutions:

• bounded lookahead with heuristics (like game trees)
• heuristic search procedures (like A*)

�Full observability: we must know the initial state 
and outcome of each action
�Possible solutions:

• handcrafted decision trees for certain initial state 
uncertainty

• more general policies based on observations

�
9

CSC 384 Lecture Slides (c) 2002, C. Boutilier

Other Issues

�Specif ication: suppose each state is an 
assignment to variables; then representing action 
probability distributions is complex (and 
branching factor could be immense)
�Possible solutions:

• represent distribution using Bayes nets
• solve problems using decision networks (or influence 

diagrams)
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Partial Observability
�If we push (unobservable) 

uncertainty to the “end of 
the tree” then we can 
evaluate the tree

• often used in    
handcrafted           
decision trees
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Large State Spaces (Variables)

�To represent outcomes of actions or decisions, 
we need to specify distributions 

• Pr(s|d) : probability of outcome s given decision d
• Pr(s|a,s’): prob. of state s given that action a 

performed in state s’

�But state space exponential in # of variables
• spelling out distributions explicitly is intractable

�Bayes nets can be used to represent actions
• this is just a joint distribution over variables, 

conditioned on action/decision and previous state

� �
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Example Action using Dynamic BN

I;J

K�J

L J

M J

INJ�O�P

K�J�O�P

L JQO�P

M JQO�P

RTS,U�V�WXSNY[Z]\@^@^;SNS`_@a@b0V�\@c

dfe�g K J�h M0JQh L0JQh L�J�O�P3i

d0j
g I;JQh INJ�O�P3i
k emlnl-o p qsr t3l-o p q r t
uvuwu P�x yzy�x y
{ uwu P3x yzy
x y
u { u P3x yzy
x y
{z{ u P�x y`y-x y
uvu { y�x |zy
x }
{ u { y-x y~P�x y
u {`{ y-x y~P�x y
{z{z{ y
x y~P�x y

u�u o p q r t u o p qsr tu P�x y�y
x y
{ y�x y�P�x y

� J � JQO�P

���-� ��� � ����� �3� ��� %;��% � ��� �)& � #0� ����� !�!�f� � �����3� ��� � � � ��� ����& � #�� ����� !3!� � � ��� �3�X� � � ��� ! � � � % � ��� ��� # �3����� ��!

� �
CSC 384 Lecture Slides (c) 2002, C. Boutilier

Dynamic BN Action Representation
�Dynamic Bayesian networks (DBNs): 

• a way to use BNs to represent specific actions
• list all state variables for time t (pre-action)
• list all state variables for time t+1 (post-action)
• indicate parents of all t+1 variables

�these can include time t and time t+1 variables
�network must be acyclic though

• specify CPT for each time t+1 variable

�Note: generally no prior given for time t variables
• we’re (generally) interested in conditional distribution 

over post-action states given pre-action state
• so time t vars are instantiated as “evidence” when 

using a DBN (generally)
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Example of Dependence within Slice
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Use of BN Action Reprsnt’n
�DBNs: actions concisely,naturally specified

• These look a bit like STRIPS and the situtation
calculus, but allow for probabilistic effects

�How to use:
• use to generate “expectimax” search tree to solve 

decision problems
• use directly in stochastic decision making algorithms

�First use doesn’t buy us much computationally 
when solving decision problems. But second use 
allows us to compute expected utilities without 
enumerating the outcome space (tree)

• well see something like this with decision networks
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Decision Networks

�Decision networks (more commonly known as 
influence diagrams) provide a way of representing 
sequential decision problems

• basic idea: represent the variables in the problem as 
you would in a BN

• add decision variables – variables that you “control”
• add utility variables – how good different states are

� $
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Sample Decision Network
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Decision Networks: Chance Nodes

�Chance nodes
• random variables, denoted by circles
• as in a BN, probabilistic dependence on parents
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Decision Networks: Decision Nodes
�Decision nodes

• variables decision maker sets, denoted by squares
• parents reflect information available at time decision 

is to be made

�In example decision node: the actual values of 
Ch and Fev will be observed before the decision 
to take test must be made

• agent can make different decisions for each 
instantiation of parents (i.e., policies)
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Decision Networks: Value Node
�Value node

• specifies utility of a state, denoted by a diamond
• utility depends only on state of parents of value node
• generally: only one value node in a decision network

�Utility depends only on disease and drug
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Decision Networks: Assumptions
�Decision nodes are totally ordered

• decision variables D1, D2, …, Dn
• decisions are made in sequence
• e.g., BloodTst (yes,no) decided before Drug (fd,md,no)

�No-forgetting property
• any information available when decision Di is made is 

available when decision Dj is made (for i < j)
• thus all parents of Di are parents of Dj
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Policies
�Let Par(Di) be the parents of decision node Di

• Dom(Par(Di)) is the set of assignments to parents

�A policy � is a set of mappings � i, one for each 
decision node Di� �

i :Dom(Par(Di)) � Dom(Di)� �
i associates a decision with each parent asst for Di

�For example, a policy for BT might be:� �
BT (c,f) = bt� �
BT (c,~f) = ~bt� �
BT (~c,f) = bt� �
BT (~c,~f) = ~bt
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Value of a Policy

�Value of a policy � is the expected utility given 
that decision nodes are executed according to �
�Given asst x to the set X of all chance variables, 
let � (x) denote the asst to decision variables 
dictated by �

• e.g., asst to D1 determined by it’s parents’ asst in x
• e.g., asst to D2 determined by it’s parents’ asst in x 

along with whatever was assigned to D1� ��� �
	
�Value of � :

EU( � ) = � X P(X, � (X)) U(X, � (X))

� �
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Optimal Policies

�An optimal policy is a policy � * such that        
EU( �
� ) � EU( � ) for all policies �

�We can use the dynamic programming principle 
yet again to avoid enumerating all policies
�We can also use the structure of the decision 
network to use variable elimination to aid in the 
computation

� �
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Computing the Best Policy

�We can work backwards as follows
�First compute optimal policy for Drug (last dec’n)

• for each asst to parents (C,F,BT,TR) and for each 
decision value (D = md,fd,none), compute the 
expected value of choosing that value of D

• set policy choice for each
value of parents to be
the value of D that
has max value

• eg: � D(c,f,bt,pos) = md
(�� #�! � #�!

��# � � !�# ��� �% &�� � � #
� !3$�! � � � �3� � ��# � (�� ���
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Computing the Best Policy

�Next compute policy for BT given policy 
� D(C,F,BT,TR) just determined for Drug

• since � D(C,F,BT,TR) is fixed, we can treat Drug as a 
normal random variable with deterministic 
probabilities

• i.e., for any instantiation of parents, value of Drug is 
fixed by policy � D

• this means we can solve for optimal policy for BT just 
as before 

• only uninstantiated vars are random vars (once we fix 
its parents)

� $
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Computing the Best Policy
�How do we compute these expected values?

• suppose we have asst <c,f,bt,pos> to parents of Drug
• we want to compute EU of deciding to set Drug = md
• we can run variable elimination!

�Treat C,F,BT,TR,Dr as evidence
• this reduces factors (e.g., U restricted to bt,md: depends on Dis)
• eliminate remaining variables (e.g., only Disease left)

• left with factor:    U() = � Dis P(Dis| c,f,bt,pos,md)U(Dis)
�We now know EU of doing
Dr=md when c,f,bt,pos true
�Can do same for fd,no to 

decide which is best
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Computing Expected Utilities
�The preceding illustrates a general phenomenon

• computing expected utilities with BNs is quite easy
• utility nodes are just factors that can be dealt with 

using variable elimination

EU = 
�

A,B,C P(A,B,C) U(B,C)

= 
�

A,B,C P(C|B) P(B|A) P(A) U(B,C)

�Just eliminate variables

in the usual way
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Optimizing Policies: Key Points

�If a decision node D has no decisions that follow 
it, we can find its policy by instantiating each of 
its parents and computing the expected utility of 
each decision for each parent instantiation

• no-forgetting means that all other decisions are 
instantiated (they must be parents)

• its easy to compute the expected utility using VE
• the number of computations is quite large: we run 

expected utility calculations (VE) for each parent 
instantiation together with each possible decision D 
might allow

• policy: choose max decision for each parent instant’n
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Optimizing Policies: Key Points

�When a decision D node is optimized, it can be 
treated as a random variable

• for each instantiation of its parents we now know 
what value the decision should take

• just treat policy as a new CPT: for a given parent 
instantiation x, D gets � (x) with probability 1(all other 
decisions get probability zero)

�If we optimize from last decision to first, at each 
point we can optimize a specific decision by (a 
bunch of) simple VE calculations

• it’s successor decisions (optimized) are just normal 
nodes in the BNs (with CPTs)
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Decision Network Notes

�Decision networks commonly used by decision 
analysts to help structure decision problems
�Much work put into computationally effective 
techniques to solve these

• common trick: replace the decision nodes with 
random variables at outset and solve a plain Bayes
net (a subtle but useful transformation)

�Complexity much greater than BN inference
• we need to solve a number of BN inference problems
• one BN problem for each setting of decision node 

parents and decision node value
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Real Estate Investment
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Decision Tree for Medical Network
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Building Decision Tree from Netw’k

�Structure of decision tree is straightforward
• order decisions as in the network
• ensure observed chance nodes are in the tree before 

the decision that uses them
• label leaves with utilities dictated by the utility node 

(using the domain values assigned to the to the utility 
nodes parents on that branch)

• assign probabilities to outcomes (chance nodes in the 
tree) using the conditional probabilities of those 
outcomes given the observed variables and decisions 
that precede it on that branch of the decision tree
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DBN-Decision Nets for Planning
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DBN Decision Networks
�In example on previous slide:

• we assume the state (of the variables at any stage) is 
fully observable
�hence all time t vars point to time t decision

• this means the state at time t d-separates the 
decision at time t-1 from the decision at time t-2

• so we ignore “no-forgetting” arcs between decisions
�once you know the state at time t, what you did at 

time t-1 to get there is irrelevant to the decision at 
time t-1

�If the state were not fully observable, we could 
not ignore the “no-forgetting” arcs 


